1932

Abstract

Over the past decade, the disparity between the value of the cosmic expansion rate determined directly from measurements of distance and redshift and that determined instead from the standard Lambda cold dark matter (ΛCDM) cosmological model, calibrated by measurements from the early Universe, has grown to a level of significance requiring a solution. Proposed systematic errors are not supported by the breadth of available data (and unknown errors are untestable by lack of definition). Simple theoretical explanations for this Hubble tension that are consistent with the majority of the data have been surprisingly hard to come by, but in recent years, attention has focused increasingly on models that alter the early or pre-recombination physics of ΛCDM as the most feasible. Here, we describe the nature of this tension and emphasize recent developments on the observational side. We then explain why early-Universe solutions are currently favored and the constraints that any such model must satisfy. We discuss one workable example, early dark energy, and describe how it can be tested with future measurements. Given an assortment of more extended recent reviews on specific aspects of the problem, the discussion is intended to be fairly general and understandable to a broad audience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-111422-024107
2023-09-25
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-111422-024107.html?itemId=/content/journals/10.1146/annurev-nucl-111422-024107&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Asimov I. Asimov's Chronology of Science & Discovery: Updated and Illustrated New York: Harper-Collins 1994.)
    [Google Scholar]
  2. 2.
    Freedman WL et al. Astrophys. J. 553:47 2001.)
    [Google Scholar]
  3. 3.
    Freedman WL et al. Astrophys. J. Lett. 758:24 2012.)
    [Google Scholar]
  4. 4.
    Aghanim N et al. Astron. Astrophys. 641:A6 2020. Erratum. Astron. Astrophys. 652:C4 2021.)
    [Google Scholar]
  5. 5.
    Alam S et al. Phys. Rev. D 103:083533 2021.)
    [Google Scholar]
  6. 6.
    Abbott TMC et al. Phys. Rev. D 105:023520 2022.)
    [Google Scholar]
  7. 7.
    Riess AG et al. Astrophys. J. 730:119 2011. Erratum. Astrophys. J. 732:129 2011.)
    [Google Scholar]
  8. 8.
    Riess AG et al. Astrophys. J. 826:56 2016.)
    [Google Scholar]
  9. 9.
    Riess AG et al. Astrophys. J. Lett. 934:L7 2022.)
    [Google Scholar]
  10. 10.
    Abdalla E et al. J. High Energy Astrophys. 34:49 2022.)
    [Google Scholar]
  11. 11.
    Perlmutter S et al. Astrophys. J. 517:565 1999.)
    [Google Scholar]
  12. 12.
    Riess AG et al. Astron. J. 116:1009 1998.)
    [Google Scholar]
  13. 13.
    Caldwell RR, Kamionkowski M. Annu. Rev. Nucl. Part. Sci. 59:397 2009.)
    [Google Scholar]
  14. 14.
    Karwal T, Kamionkowski M. Phys. Rev. D 94:103523 2016.)
    [Google Scholar]
  15. 15.
    Poulin V et al. Phys. Rev. D 98:083525 2018.)
    [Google Scholar]
  16. 16.
    Bernal JL, Verde L, Riess AG. J. Cosmol. Astropart. Phys. 1610:019 2016.)
    [Google Scholar]
  17. 17.
    Verde L, Treu T, Riess AG. Nat. Astron. 3:891 2019.)
    [Google Scholar]
  18. 18.
    Knox L, Millea M. Phys. Rev. D 101:043533 2020.)
    [Google Scholar]
  19. 19.
    Di Valentino E et al. Class. Quant. Grav. 38:153001 2021.)
    [Google Scholar]
  20. 20.
    Shah P, Lemos P, Lahav O. Astron. Astrophys. Rev. 29:9 2021.)
    [Google Scholar]
  21. 21.
    Efstathiou G. Mon. Not. R. Astron. Soc. 505:3866 2021.)
    [Google Scholar]
  22. 22.
    Schöneberg N et al. Phys. Rep. 984:1 2022.)
    [Google Scholar]
  23. 23.
    Frieman J, Turner M, Huterer D. Annu. Rev. Astron. Astrophys. 46:385 2008.)
    [Google Scholar]
  24. 24.
    Weinberg DH et al. Phys. Rep. 530:87 2013.)
    [Google Scholar]
  25. 25.
    Brout D et al. Astrophys. J. 938:110 2022.)
    [Google Scholar]
  26. 26.
    Riess AG et al. Astrophys. J. 876:85 2019.)
    [Google Scholar]
  27. 27.
    Leavitt HS, Pickering EC. Harv. Coll. Obs. Circ. 173:1 1912.)
    [Google Scholar]
  28. 28.
    Eddington AS. The Observatory 40:290 1917.)
    [Google Scholar]
  29. 29.
    Christy RF. Annu. Rev. Astron. Astrophys. 4:353 1966.)
    [Google Scholar]
  30. 30.
    Pesce DW et al. Astrophys. J. Lett. 891:L1 2020.)
    [Google Scholar]
  31. 31.
    Riess AG et al. Astrophys. J. 861:126 2018.)
    [Google Scholar]
  32. 32.
    Riess AG et al. Astrophys. J. Lett. 908:L6 2021.)
    [Google Scholar]
  33. 33.
    Yuan W, Riess AG, Casertano S, Macri LM. Astrophys. J. Lett. 940:L17 2022.)
    [Google Scholar]
  34. 34.
    Scolnic DM et al. Astrophys. J. 859:101 2018.)
    [Google Scholar]
  35. 35.
    Burns CR et al. Astrophys. J. 869:56 2018.)
    [Google Scholar]
  36. 36.
    Feeney SM, Mortlock DJ, Dalmasso N. Mon. Not. R. Astron. Soc. 476:3861 2018.)
    [Google Scholar]
  37. 37.
    Javanmardi B et al. Astrophys. J. 911:12 2021.)
    [Google Scholar]
  38. 38.
    Breuval L et al. Astrophys. J. 939:89 2022.)
    [Google Scholar]
  39. 39.
    Riess AG et al. Astrophys. J. 938:36 2022.)
    [Google Scholar]
  40. 40.
    Hoyt TJ et al. Astrophys. J. 915:34 2021.)
    [Google Scholar]
  41. 41.
    Freedman WL et al. Astrophys. J. 882:34 2019.)
    [Google Scholar]
  42. 42.
    Anand GS et al. Astron. J. 162:80 2021.)
    [Google Scholar]
  43. 43.
    Blakeslee JP et al. Astrophys. J. 911:65 2021.)
    [Google Scholar]
  44. 44.
    Li S, Casertano S, Riess AG. Astrophys. J. 939:96 2022.)
    [Google Scholar]
  45. 45.
    Soltis J, Casertano S, Riess AG. Astrophys. J. Lett. 908:L5 2021.)
    [Google Scholar]
  46. 46.
    Peterson ER et al. Astrophys. J. 938:112 2022.)
    [Google Scholar]
  47. 47.
    Brownsberger S et al. arXiv:2110.03486 [astro-ph.CO] 2021.)
  48. 48.
    Schutz BF. Nature 323:310 1986.)
    [Google Scholar]
  49. 49.
    Abbott BP et al. Phys. Rev. Lett. 119:161101 2017.)
    [Google Scholar]
  50. 50.
    Abbott BP et al. Astrophys. J. Lett. 848:L12 2017.)
    [Google Scholar]
  51. 51.
    Abbott BP et al. Astrophys. J. Lett. 848:L13 2017.)
    [Google Scholar]
  52. 52.
    Abbott BP et al. Nature 551:85 2017.)
    [Google Scholar]
  53. 53.
    Chen HY, Fishbach M, Holz DE. Nature 562:545 2018.)
    [Google Scholar]
  54. 54.
    Soares-Santos M et al. Astrophys. J. Lett. 876:L7 2019.)
    [Google Scholar]
  55. 55.
    Huang CD et al. Astrophys. J. 889:5 2020.)
    [Google Scholar]
  56. 56.
    Tonry J, Schneider DP. Astron. J. 96:807 1988.)
    [Google Scholar]
  57. 57.
    Garnavich P et al. arXiv:2204.12060 [astro-ph.CO] 2022.)
  58. 58.
    Refsdal S. Mon. Not. R. Astron. Soc. 128:307 1964.)
    [Google Scholar]
  59. 59.
    Vanderriest C et al. Astron. Astrophys. 215:1 1989.)
    [Google Scholar]
  60. 60.
    Keeton CR, Kochanek CS. Astrophys. J. 487:42 1997.)
    [Google Scholar]
  61. 61.
    Schechter PL et al. Astrophys. J. Lett. 475:L85 1997.)
    [Google Scholar]
  62. 62.
    Koopmans LVE et al. Astrophys. J. 599:70 2003.)
    [Google Scholar]
  63. 63.
    Wong KC et al. Mon. Not. R. Astron. Soc. 498:1420 2020.)
    [Google Scholar]
  64. 64.
    Falco EE, Gorenstein MV, Shapiro II. Astrophys. J. Lett. 289:L1 1985.)
    [Google Scholar]
  65. 65.
    Birrer S et al. Astron. Astrophys. 643:A165 2020.)
    [Google Scholar]
  66. 66.
    Millon M et al. Astron. Astrophys. 639:A101 2020.)
    [Google Scholar]
  67. 67.
    Jimenez R, Loeb A. Astrophys. J. 573:37 2002.)
    [Google Scholar]
  68. 68.
    Stern D et al. J. Cosmol. Astropart. Phys. 1002:008 2010.)
    [Google Scholar]
  69. 69.
    Moresco M et al. J. Cosmol. Astropart. Phys. 1208:006 2012.)
    [Google Scholar]
  70. 70.
    Moresco M et al. Astrophys. J. 898:82 2020.)
    [Google Scholar]
  71. 71.
    Borghi N et al. Astrophys. J. 927:164 2022.)
    [Google Scholar]
  72. 72.
    O'Malley EM, Gilligan C, Chaboyer B. Astrophys. J. 838:162 2017.)
    [Google Scholar]
  73. 73.
    Jimenez R et al. J. Cosmol. Astropart. Phys. 1903:043 2019.)
    [Google Scholar]
  74. 74.
    Bernal JL et al. Phys. Rev. D 103:103533 2021.)
    [Google Scholar]
  75. 75.
    Jungman G, Kamionkowski M, Kosowsky A, Spergel DN. Phys. Rev. D 54:1332 1996.)
    [Google Scholar]
  76. 76.
    Fixsen DJ et al. Astrophys. J. 473:576 1996.)
    [Google Scholar]
  77. 77.
    Dodelson S, Turner MS. Phys. Rev. D 46:3372 1992.)
    [Google Scholar]
  78. 78.
    Jaffe AH et al. Phys. Rev. Lett. 86:3475 2001.)
    [Google Scholar]
  79. 79.
    Bennett CL et al. Astrophys. J. Suppl. 208:20 2013.)
    [Google Scholar]
  80. 80.
    Spergel DN et al. Astrophys. J. Suppl. 148:175 2003.)
    [Google Scholar]
  81. 81.
    Aiola S et al. J. Cosmol. Astropart. Phys. 2012:047 2020.)
    [Google Scholar]
  82. 82.
    Dutcher D et al. Phys. Rev. D 104:022003 2021.)
    [Google Scholar]
  83. 83.
    Ross AJ et al. Mon. Not. R. Astron. Soc. 464:1168 2017.)
    [Google Scholar]
  84. 84.
    Brieden S, Gil-Marín H, Verde L. Phys. Rev. D 104:L121301 2021.)
    [Google Scholar]
  85. 85.
    Philcox OHE et al. Phys. Rev. D 106:063530 2022.)
    [Google Scholar]
  86. 86.
    Smith TL, Poulin V, Simon T. arXiv:2208.12992 [astro-ph.CO] 2022.)
  87. 87.
    Poulin V, Boddy KK, Bird S, Kamionkowski M. Phys. Rev. D 97:123504 2018.)
    [Google Scholar]
  88. 88.
    Caldwell RR. Phys. Lett. B 545:23 2002.)
    [Google Scholar]
  89. 89.
    Efstathiou G. Mon. Not. R. Astron. Soc. 505:3866 2021.)
    [Google Scholar]
  90. 90.
    Keeley RE, Shafieloo A. arXiv:2206.08440 [astro-ph.CO] 2022.)
  91. 91.
    Kamionkowski M, Pradler J, Walker DGE. Phys. Rev. Lett. 113:251302 2014.)
    [Google Scholar]
  92. 92.
    McDonough E, Scalisi M. arXiv:2209.00011 [hep-th] 2022.)
  93. 93.
    Turner MS. Phys. Rev. D 28:1243 1983.)
    [Google Scholar]
  94. 94.
    Johnson MC, Kamionkowski M. Phys. Rev. D 78:063010 2008.)
    [Google Scholar]
  95. 95.
    Agrawal P, Cyr-Racine FY, Pinner D, Randall L. arXiv:1904.01016 [astro-ph.CO] 2019.)
  96. 96.
    Lin MX, Benevento G, Hu W, Raveri M. Phys. Rev. D 100:063542 2019.)
    [Google Scholar]
  97. 97.
    Hu W. Astrophys. J. 506:485 1998.)
    [Google Scholar]
  98. 98.
    Bertschinger E. arXiv:astro-ph/9506070 1995.)
  99. 99.
    Seljak U, Zaldarriaga M. Astrophys. J. 469:437 1996.)
    [Google Scholar]
  100. 100.
    Lewis A, Challinor A, Lasenby A. Astrophys. J. 538:473 2000.)
    [Google Scholar]
  101. 101.
    Lesgourgues J. Report CERN-PH-TH/2011-081 CERN Geneva: 2011.)
  102. 102.
    Hlozek R, Marsh DJE, Grin D. Mon. Not. R. Astron. Soc. 476:3063 2018.)
    [Google Scholar]
  103. 103.
    Sabla VI, Caldwell RR. Phys. Rev. D 106:063526 2022.)
    [Google Scholar]
  104. 104.
    Karwal T et al. Phys. Rev. D 105:063535 2022.)
    [Google Scholar]
  105. 105.
    Sakstein J, Trodden M. Phys. Rev. Lett. 124:161301 2020.)
    [Google Scholar]
  106. 106.
    Berghaus KV, Karwal T. Phys. Rev. D 101:083537 2020.)
    [Google Scholar]
  107. 107.
    Berghaus KV, Karwal T. arXiv:2204.09133 [astro-ph.CO] 2022.)
  108. 108.
    Aloni D et al. Phys. Rev. D 105:123516 2022.)
    [Google Scholar]
  109. 109.
    Harari D, Sikivie P. Phys. Lett. B 289:67 1992.)
    [Google Scholar]
  110. 110.
    Carroll SM, Field GB, Jackiw R. Phys. Rev. D 41:1231 1990.)
    [Google Scholar]
  111. 111.
    Carroll SM. Phys. Rev. Lett. 81:3067 1998.)
    [Google Scholar]
  112. 112.
    Capparelli LM, Caldwell RR, Melchiorri A. Phys. Rev. D 101:123529 2020.)
    [Google Scholar]
  113. 113.
    Murai K, Naokawa F, Namikawa T, Komatsu E. arXiv:2209.07804 [astro-ph.CO] 2022.)
  114. 114.
    Kamionkowski M, Kosowsky A, Stebbins A. Phys. Rev. D 55:7368 1997.)
    [Google Scholar]
  115. 115.
    Zaldarriaga M, Seljak U. Phys. Rev. D 55:1830 1997.)
    [Google Scholar]
  116. 116.
    Lue A, Wang LM, Kamionkowski M. Phys. Rev. Lett. 83:1506 1999.)
    [Google Scholar]
  117. 117.
    Lepora NF. arXiv:gr-qc/9812077 1998.)
  118. 118.
    Liu GC, Lee S, Ng KW. Phys. Rev. Lett. 97:161303 2006.)
    [Google Scholar]
  119. 119.
    Hotinli SC, Holder GP, Johnson MC, Kamionkowski M. J. Cosmol. Astropart. Phys. 2210:026 2022.)
    [Google Scholar]
  120. 120.
    Lee N, Hotinli SC, Kamionkowski M. Phys. Rev. D 106:083518 2022.)
    [Google Scholar]
  121. 121.
    Smith TL, Poulin V, Amin MA. Phys. Rev. D 101:063523 2020.)
    [Google Scholar]
  122. 122.
    Jeong D, Kamionkowski M. Phys. Rev. Lett. 124:041301 2020.)
    [Google Scholar]
  123. 123.
    Hanany S et al. arXiv:1902.10541 [astro-ph.IM] 2019.)
  124. 124.
    Griest K. Phys. Rev. D 66:123501 2002.)
    [Google Scholar]
  125. 125.
    Dodelson S, Kaplinghat M, Stewart E. Phys. Rev. Lett. 85:5276 2000.)
    [Google Scholar]
  126. 126.
    Sabla VI, Caldwell RR. Phys. Rev. D 103:103506 2021.)
    [Google Scholar]
  127. 127.
    Hill JC, Baxter EJ. J. Cosmol. Astropart. Phys. 1808:037 2018.)
    [Google Scholar]
  128. 128.
    Bowman JD et al. Nature 555:67 2018.)
    [Google Scholar]
  129. 129.
    Muñoz JB. Phys. Rev. Lett. 123:131301 2019.)
    [Google Scholar]
  130. 130.
    Muñoz JB. Phys. Rev. D 100:063538 2019.)
    [Google Scholar]
  131. 131.
    Sarkar D, Kovetz ED. Phys. Rev. D 107:023524 2023.)
    [Google Scholar]
  132. 132.
    Lin MX, Raveri M, Hu W. Phys. Rev. D 99:043514 2019.)
    [Google Scholar]
  133. 133.
    Braglia M, Ballardini M, Finelli F, Koyama K. Phys. Rev. D 103:043528 2021.)
    [Google Scholar]
  134. 134.
    Braglia M et al. Phys. Rev. D 102:023529 2020.)
    [Google Scholar]
  135. 135.
    Ballesteros G, Notari A, Rompineve F. J. Cosmol. Astropart. Phys. 2011:024 2020.)
    [Google Scholar]
  136. 136.
    Ballardini M et al. J. Cosmol. Astropart. Phys. 2010:044 2020.)
    [Google Scholar]
  137. 137.
    Zumalacarregui M. Phys. Rev. D 102:023523 2020.)
    [Google Scholar]
  138. 138.
    Abadi T, Kovetz ED. Phys. Rev. D 103:023530 2021.)
    [Google Scholar]
  139. 139.
    Benevento G, Kable JA, Addison GE, Bennett CL. Astrophys. J. 935:156 2022.)
    [Google Scholar]
  140. 140.
    Kreisch CD, Cyr-Racine FY, Doré O Phys. Rev. D 101:123505 2020.)
    [Google Scholar]
  141. 141.
    Blinov N, Kelly KJ, Krnjaic GZ, McDermott SD. Phys. Rev. Lett. 123:191102 2019.)
    [Google Scholar]
  142. 142.
    Jedamzik K, Pogosian L. Phys. Rev. Lett. 125:181302 2020.)
    [Google Scholar]
  143. 143.
    Poulin V, Smith TL, Karwal T, Kamionkowski M. Phys. Rev. Lett. 122:221301 2019.)
    [Google Scholar]
  144. 144.
    Ivanov MM et al. Phys. Rev. D 102:103502 2020.)
    [Google Scholar]
  145. 145.
    Hill JC, McDonough E, Toomey MW, Alexander S. Phys. Rev. D 102:043507 2020.)
    [Google Scholar]
  146. 146.
    D'Amico G, Senatore L, Zhang P, Zheng H. J. Cosmol. Astropart. Phys. 2105:072 2021.)
    [Google Scholar]
  147. 147.
    Smith TL et al. Phys. Rev. D 103:123542 2021.)
    [Google Scholar]
  148. 148.
    Herold L, Ferreira EGM. arXiv:2210.16296 [astro-ph.CO] 2022.)
  149. 149.
    Hill JC et al. Phys. Rev. D 105:123536 2022.)
    [Google Scholar]
  150. 150.
    Poulin V, Smith TL, Bartlett A. Phys. Rev. D 104:123550 2021.)
    [Google Scholar]
  151. 151.
    Wu J et al. arXiv:2211.06354 [astro-ph.CO] (2022)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-111422-024107
Loading
/content/journals/10.1146/annurev-nucl-111422-024107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error