1932

Abstract

Ultra-high-energy (UHE, >0.1 PeV) γ-ray astronomy is rapidly evolving into an expanding branch of γ-ray astronomy with the surprising discovery of 12 PeVatrons and the detection of a handful of photons above 1 PeV. Nearly all known celestial object types that have emissions in the TeV band are found also to emit UHE photons. UHE γ-rays have a well-defined horizon inside our Galaxy due to the absorption of infrared and cosmic microwave backgrounds in the Universe. In the last 30 years, traditional cosmic ray (CR) measurement techniques have enabled the detection of UHE γ-rays and opened the last observation window. For leptonic sources, UHE radiation is in the deep Klein–Nishina regime, which is largely suppressed. Therefore, UHE γ-ray detection will be helpful in locating and identifying hadronic radiation sources, tracing the historic pursuit for the origin of CRs around the knee of the spectrum. The Crab Nebula is the focus of attention with measured photon emissions up to 1 PeV. In the absence of hadronic processes, these emissions may indicate the existence of an extreme accelerator of +. Use of CR extensive air shower detection techniques broadens the field of view of the source observations, enabling measurement of UHE radiation surrounding the sources. These observations can probe the particle propagation inside and outside the accelerators and the subsequent injection/escape into the interstellar medium.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-112822-025357
2023-09-25
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-112822-025357.html?itemId=/content/journals/10.1146/annurev-nucl-112822-025357&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hinton JA, Hofmann W. Annu. Rev. Astron. Astrophys. 47:523 2009.)
    [Google Scholar]
  2. 2.
    Weekes TC et al. Astrophys. J. 342:379 1989.)
    [Google Scholar]
  3. 3.
    Funk S. Annu. Rev. Nucl. Part. Sci. 65:245 2015.)
    [Google Scholar]
  4. 4.
    Samorski M, Stamm W. Astrophys. J. Lett. 268:L17 1983.)
    [Google Scholar]
  5. 5.
    Cao Z. Universe 7:339 2021.)
    [Google Scholar]
  6. 6.
    Cao Z. Nat. Astron. 5:849 2021.)
    [Google Scholar]
  7. 7.
    Cao Z et al. Nature 594:33 2021.)
    [Google Scholar]
  8. 8.
    Moskalenko IV, Porter TA, Strong AW. Astrophys. J. Lett. 640:L155 2006.)
    [Google Scholar]
  9. 9.
    Popescu CC et al. Mon. Not. R. Astron. Soc. 470:2539 2017.)
    [Google Scholar]
  10. 10.
    Franceschini A, Rodighiero G, Vaccari M. Astron. Astrophys. 487:837 2008.)
    [Google Scholar]
  11. 11.
    Gould RJ, Schréder G. Phys. Rev. Lett. 16:252 1966.)
    [Google Scholar]
  12. 12.
    Bartoli B et al. Phys. Rev. D 92:092005 2015.)
    [Google Scholar]
  13. 13.
    Blasi P. Astron. Astrophys. Rev. 21:70 2013.)
    [Google Scholar]
  14. 14.
    Kelner SR, Aharonian FA, Bugayov VV. Phys. Rev. D 74:034018 2006.)
    [Google Scholar]
  15. 15.
    Giuliani A et al. Astron. Astrophys. 516:L11 2010.)
    [Google Scholar]
  16. 16.
    Ackermann M et al. Science 339:807 2013.)
    [Google Scholar]
  17. 17.
    Acero F et al. Astron. Astrophys. 516:A62 2010.)
    [Google Scholar]
  18. 18.
    Aharonian F et al. Astron. Astrophys. 464:235 2007.)
    [Google Scholar]
  19. 19.
    Archambault S et al. Astrophys. J. 836:23 2017.)
    [Google Scholar]
  20. 20.
    Ahnen ML et al. Mon. Not. R. Astron. Soc. 472:2956 2017.)
    [Google Scholar]
  21. 21.
    Abramowski A et al. (HESS Collab.) Astrophys. J. Lett. 794:L1 2014.)
    [Google Scholar]
  22. 22.
    Abu-Zayyad T et al. Astrophys. J. 557:686 2001.)
    [Google Scholar]
  23. 23.
    Berezinsky V, Gazizov A, Grigorieva S. Phys. Rev. D 74:043005 2006.)
    [Google Scholar]
  24. 24.
    Grenier IA, Black JH, Strong AW. Annu. Rev. Astron. Astrophys. 53:199 2015.)
    [Google Scholar]
  25. 25.
    Bartoli B et al. Phys. Rev. D 84:022003 2011.)
    [Google Scholar]
  26. 26.
    Yodh GB. Space Sci. Rev. 75:199 1996.)
    [Google Scholar]
  27. 27.
    Abeysekara AU et al. Astropart. Phys. 50:26 2013.)
    [Google Scholar]
  28. 28.
    LHAASO Collab Chin. Phys. C 34:249 2010.)
    [Google Scholar]
  29. 29.
    Cao Z et al., eds. arXiv:1905.02773 [astro-ph.HE] 2019.)
  30. 30.
    Krimm HA et al. AIP Conf. Proc. 220:122 1991.)
    [Google Scholar]
  31. 31.
    Amenomori M et al. AIP Conf. Proc. 220:257 1991.)
    [Google Scholar]
  32. 32.
    Amenomori M et al. Astrophys. J. 813:98 2015.)
    [Google Scholar]
  33. 33.
    Cao Z et al. (LHAASO Collab.) Science 373:425 2021.)
    [Google Scholar]
  34. 34.
    Sako TK et al. Astropart. Phys. 32:177 2009.)
    [Google Scholar]
  35. 35.
    Bartoli B et al. Astrophys. J. 779:27 2013.)
    [Google Scholar]
  36. 36.
    DeYoung T. (HAWC Collab.) Nucl. Instrum. Methods Phys. Res. A 692:72 2012.)
    [Google Scholar]
  37. 37.
    Cao Z et al. Chin. Astron. Astrophys. 43:457 2019.)
    [Google Scholar]
  38. 38.
    Bernlöhr K et al. Astropart. Phys. 43:171 2013.)
    [Google Scholar]
  39. 39.
    de Angelis A, Mansutti O, Persic M. Nuovo Cim. Riv. Ser. 31:187 2008.)
    [Google Scholar]
  40. 40.
    Tescaro D. Nucl. Instrum. Methods Phys. Res. A 766:65 2014.)
    [Google Scholar]
  41. 41.
    Ajello M et al. Astrophys. J. Suppl. 256:12 2021.)
    [Google Scholar]
  42. 42.
    Albert A et al. (HAWC Collab.) Astrophys. J. 905:76 2020.)
    [Google Scholar]
  43. 43.
    Aharonian F et al. Chin. Phys. C 45:025002 2021.)
    [Google Scholar]
  44. 44.
    Pintore F et al. J. High Energy Astrophys. 26:83 2020.)
    [Google Scholar]
  45. 45.
    Hinton J. (SWGO Collab.) Proc. Sci. ICRC2021:023 2022.)
    [Google Scholar]
  46. 46.
    Abramowski A et al. (HESS Collab.) Nature 531:476 2016.)
    [Google Scholar]
  47. 47.
    Amenomori M et al. Phys. Rev. Lett. 123:051101 2019.)
    [Google Scholar]
  48. 48.
    Abeysekara AU et al. (HAWC Collab.) Phys. Rev. Lett. 124::021102 ( 2020.)
    [Google Scholar]
  49. 49.
    Adams CB et al. Astrophys. J. 913:115 2021.)
    [Google Scholar]
  50. 50.
    Aharonian F et al. Nature 439:695 2006.)
    [Google Scholar]
  51. 51.
    Acciari VA et al. (MAGIC Collab.) Astron. Astrophys. 642:A190 2020.)
    [Google Scholar]
  52. 52.
    Acciari VA et al. (MAGIC Collab.) Astron. Astrophys. 635:A158 2020.)
    [Google Scholar]
  53. 53.
    Gaensler BM, Slane PO. Annu. Rev. Astron. Astrophys. 44:17 2006.)
    [Google Scholar]
  54. 54.
    de Oña Wilhelmi E, López-Coto R, Amato E, Aharonian F. Astrophys. J. Lett. 930:L2 2022.)
    [Google Scholar]
  55. 55.
    Burgess DA et al. Astrophys. J. 930:148 2022.)
    [Google Scholar]
  56. 56.
    Albert A et al. Astrophys. J. 928:116 2022.)
    [Google Scholar]
  57. 57.
    De Sarkar A et al. Astron. Astrophys. 668:A23 2022.)
    [Google Scholar]
  58. 58.
    Liang XH et al. Universe 8:547 2022.)
    [Google Scholar]
  59. 59.
    Fang J, Wen L, Yu H, Chen S. Mon. Not. R. Astron. Soc. 498:4901 2020.)
    [Google Scholar]
  60. 60.
    Aharonian F, Yang R, de Oña Wilhelmi E. Nat. Astron. 3:561 2019.)
    [Google Scholar]
  61. 61.
    Abeysekara AU et al. Nat. Astron. 5:465 2021.)
    [Google Scholar]
  62. 62.
    Cristofari P. Universe 7:324 2021.)
    [Google Scholar]
  63. 63.
    Bodaghee A et al. Astrophys. J. 775:98 2013.)
    [Google Scholar]
  64. 64.
    Abeysekara AU et al. Nature 562:82 2018.)
    [Google Scholar]
  65. 65.
    Ng CY, Romani RW. Astrophys. J. 601:479 2004.)
    [Google Scholar]
  66. 66.
    Baars JWM, Hartsuijker AP. Astron. Astrophys. 17:172 1972.)
    [Google Scholar]
  67. 67.
    Bandiera R, Neri R, Cesaroni R. Astron. Astrophys. 386:1044 2002.)
    [Google Scholar]
  68. 68.
    Veron-Cetty MP, Woltjer L Astron. Astrophys. 270:370 1993.)
    [Google Scholar]
  69. 69.
    Kuiper L et al. Astron. Astrophys. 378:918 2001.)
    [Google Scholar]
  70. 70.
    Arakawa M, Hayashida M, Khangulyan D, Uchiyama Y. Astrophys. J. 897:33 2020.)
    [Google Scholar]
  71. 71.
    Abeysekara AU et al. Astrophys. J. 881:134 2019.)
    [Google Scholar]
  72. 72.
    Nie L, Liu Y, Jiang Z, Geng X. Astrophys. J. 924:42 2022.)
    [Google Scholar]
  73. 73.
    Pétri J, Lyubarsky Y. Astron. Astrophys. 473:683 2007.)
    [Google Scholar]
  74. 74.
    Amato E, Olmi B. Universe 7:448 2021.)
    [Google Scholar]
  75. 75.
    Du S et al. AGU Fall Meeting Abstracts Abstr. SM34B-05 Washington, DC: Am. Geophys. Union 2021.)
    [Google Scholar]
  76. 76.
    French O, Guo F, Zhang Q, Uzdensky DA. Astrophys. J. 948:19 2023.)
    [Google Scholar]
  77. 77.
    Cheng KS et al. J. Phys. G 16:1115 1990.)
    [Google Scholar]
  78. 78.
    Atoyan AM, Aharonian FA. Mon. Not. R. Astron. Soc. 278:525 1996.)
    [Google Scholar]
  79. 79.
    Amato E, Guetta D, Blasi P. Astron. Astrophys. 402:827 2003.)
    [Google Scholar]
  80. 80.
    Horns D et al. Astron. Astrophys. 451:L51 2006.)
    [Google Scholar]
  81. 81.
    Zhang L, Yang XC. Astrophys. J. Lett. 699:L153 2009.)
    [Google Scholar]
  82. 82.
    Di Palma I, Guetta D, Amato E. Astrophys. J. 836:159 2017.)
    [Google Scholar]
  83. 83.
    Zhang X, Chen Y, Huang J, Chen D. Mon. Not. R. Astron. Soc. 497:3477 2020.)
    [Google Scholar]
  84. 84.
    Peng QY, Bao BW, Lu FW, Zhang L. Astrophys. J. 926:7 2022.)
    [Google Scholar]
  85. 85.
    Liu RY, Wang XY. Astrophys. J. 922:221 2021.)
    [Google Scholar]
  86. 86.
    Giuliani A, Cardillo M, Tavani M et al. Astrophys. J. Lett. 742:L30 2011.)
    [Google Scholar]
  87. 87.
    Ackermann M et al. Science 334:1103 2011.)
    [Google Scholar]
  88. 88.
    Abramowski A et al. Astron. Astrophys. 537:A114 2012.)
    [Google Scholar]
  89. 89.
    Yang R-z, de Oña Wilhelmi E, Aharonian F Astron. Astrophys. 611:A77 2018.)
    [Google Scholar]
  90. 90.
    Abramowski A et al. (HESS Collab.) Astron. Astrophys. 525:A46 2011.)
    [Google Scholar]
  91. 91.
    Cesarsky CJ, Montmerle T. Space Sci. Rev. 36:173 1983.)
    [Google Scholar]
  92. 92.
    Yang R, Aharonian F, Evoli C. Phys. Rev. D 93:123007 2016.)
    [Google Scholar]
  93. 93.
    Sun XN et al. Astron. Astrophys. 639:A80 2020.)
    [Google Scholar]
  94. 94.
    Yang RZ, Wang Y. Astron. Astrophys. 640:A60 2020.)
    [Google Scholar]
  95. 95.
    Aharonian F et al. Astron. Astrophys. 393:L37 2002.)
    [Google Scholar]
  96. 96.
    Bartoli B et al. (ARGO-YBJ Collab.) Astrophys. J. 790:152 2014.)
    [Google Scholar]
  97. 97.
    Amenomori M et al. Phys. Rev. Lett. 127:031102 2021.)
    [Google Scholar]
  98. 98.
    Amenomori M et al. Phys. Rev. Lett. 126:141101 2021.)
    [Google Scholar]
  99. 99.
    Li C. (LHAASO Collab.) Proc. Sci. ICRC2021:843 2022.)
    [Google Scholar]
  100. 100.
    Dzhappuev DD et al. Astrophys. J. Lett. 916:L22 2021.)
    [Google Scholar]
  101. 101.
    IceCube Collab GCN Circular 28927, NASA Washington, DC: 2020.)
  102. 102.
    Pineault S, Joncas G. Astron. J. 120:3218 2000.)
    [Google Scholar]
  103. 103.
    Kothes R, Uyaniker B, Pineault S. Astrophys. J. 560:236 2001.)
    [Google Scholar]
  104. 104.
    Halpern JP, Gotthelf EV, Leighly KM, Helfand DJ. Astrophys. J. 547:323 2001.)
    [Google Scholar]
  105. 105.
    Amenomori M et al. (Tibet ASγ Collab.) Nat. Astron. 5:460 2021.)
    [Google Scholar]
  106. 106.
    Albert A et al. Astrophys. J. Lett. 896:L29 2020.)
    [Google Scholar]
  107. 107.
    Acciari VA et al. (MAGIC Collab.) Proc. Sci. ICRC2021:796 2022.)
    [Google Scholar]
  108. 108.
    Abdo AA et al. Astrophys. J. Lett. 664:L91 2007.)
    [Google Scholar]
  109. 109.
    Acciari VA et al. Astrophys. J. Lett. 703:L6 2009.)
    [Google Scholar]
  110. 110.
    Xin Y et al. Astrophys. J. 885:162 2019.)
    [Google Scholar]
  111. 111.
    Fang K et al. Phys. Rev. Lett. 129:071101 2022.)
    [Google Scholar]
  112. 112.
    Bao Y, Chen Y. Astrophys. J. 919:32 2021.)
    [Google Scholar]
  113. 113.
    Ge C et al. Innovation 2:100118 2021.)
    [Google Scholar]
  114. 114.
    Fujita Y, Bamba A, Nobukawa KK, Matsumoto H. Astrophys. J. 912:133 2021.)
    [Google Scholar]
  115. 115.
    Zirakashvili VN, Aharonian F. Astron. Astrophys. 465:695 2007.)
    [Google Scholar]
  116. 116.
    Abe H et al. (MAGIC Collab.) Astron. Astrophys. 671:A12 2023.)
    [Google Scholar]
  117. 117.
    Liu RY, Yan H. Mon. Not. R. Astron. Soc. 494:2618 2020.)
    [Google Scholar]
  118. 118.
    Giacinti G et al. Astron. Astrophys. 636:A113 2020.)
    [Google Scholar]
  119. 119.
    Liu RY. Int. J. Mod. Phys. A 37:2230011 2022.)
    [Google Scholar]
  120. 120.
    López-Coto R et al. Nat. Astron. 6:199 2022.)
    [Google Scholar]
  121. 121.
    Fang K. Front. Astron. Space Sci. 9:1022100 2022.)
    [Google Scholar]
  122. 122.
    Abeysekara AU et al. Science 358:911 2017.)
    [Google Scholar]
  123. 123.
    Amato E, Blasi P. Adv. Space Res. 62:2731 2018.)
    [Google Scholar]
  124. 124.
    Linden T et al. Phys. Rev. D 96:103016 2017.)
    [Google Scholar]
  125. 125.
    Sudoh T, Linden T, Beacom JF. Phys. Rev. D 100:043016 2019.)
    [Google Scholar]
  126. 126.
    Aharonian F et al. Phys. Rev. Lett. 126:241103 2021.)
    [Google Scholar]
  127. 127.
    Saz Parkinson PM et al. Astrophys. J. 725:571 2010.)
    [Google Scholar]
  128. 128.
    López-Coto R, Giacinti G Mon. Not. R. Astron. Soc. 479:4526 2018.)
    [Google Scholar]
  129. 129.
    Evoli C, Linden T, Morlino G. Phys. Rev. D 98:063017 2018.)
    [Google Scholar]
  130. 130.
    Mukhopadhyay P, Linden T. Phys. Rev. D 105:123008 2022.)
    [Google Scholar]
  131. 131.
    Liu RY, Yan H, Zhang H. Phys. Rev. Lett. 123:221103 2019.)
    [Google Scholar]
  132. 132.
    Fang K, Bi X-J, Yin P-F. Mon. Not. R. Astron. Soc. 488:4074 2019.)
    [Google Scholar]
  133. 133.
    Yan K, Liu RY, Chen SZ, Wang XY. Astrophys. J. 935:65 2022.)
    [Google Scholar]
  134. 134.
    De La Torre Luque P, Fornieri O, Linden T. Phys. Rev. D 106:123033 2022.)
    [Google Scholar]
  135. 135.
    Xi SQ et al. Astrophys. J. 878:104 2019.)
    [Google Scholar]
  136. 136.
    Di Mauro M, Manconi S, Donato F. Phys. Rev. D 100:123015 2019.)
    [Google Scholar]
  137. 137.
    Liu RY, Ge C, Sun XN, Wang XY. Astrophys. J. 875:149 2019.)
    [Google Scholar]
  138. 138.
    Ackermann M et al. Astrophys. J. 750:3 2012.)
    [Google Scholar]
  139. 139.
    Abdo AA et al. Astrophys. J. 688:1078 2008.)
    [Google Scholar]
  140. 140.
    Bartoli B et al. Astrophys. J. 806:20 2015.)
    [Google Scholar]
  141. 141.
    Abramowski A et al. Phys. Rev. D 90:122007 2014.)
    [Google Scholar]
  142. 142.
    Yang R. Sci. Sin. Phys. Mech. Astron. 52:229501 2022.)
    [Google Scholar]
  143. 143.
    Cao Z et al. (LHAASO Collab.) arXiv:2305.05372 [astro-ph.HE] 2023.)
  144. 144.
    Cao Z et al. (LHAASO Collab.) arXiv:2305.17030 [astro-ph.HE] 2023.)
  145. 145.
    Cao Z et al. (LHAASO Collab.) Phys. Rev. Lett. 129:261103 2022.)
    [Google Scholar]
  146. 146.
    Cao Z et al. Phys. Rev. Lett. 128:051102 2022.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-112822-025357
Loading
/content/journals/10.1146/annurev-nucl-112822-025357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error