1932

Abstract

Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. -Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. -Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of -serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating -serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of -serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061021-022648
2023-08-21
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/nutr/43/1/annurev-nutr-061021-022648.html?itemId=/content/journals/10.1146/annurev-nutr-061021-022648&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson DD, Quintero CM, Stover PJ. 2011. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. PNAS 108:15163–68Demonstrates the metabolic contribution and directionality of folate fluxes to thymidylate biosynthesis.
    [Google Scholar]
  2. 2.
    Anderson DD, Stover PJ. 2009. SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLOS ONE 4:e5839
    [Google Scholar]
  3. 3.
    Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH et al. 1993. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268:15329–32
    [Google Scholar]
  4. 4.
    Axelrod FB, Gold-von Simson G. 2007. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J. Rare Dis. 2:39
    [Google Scholar]
  5. 5.
    Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I et al. 2020. The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142:259–74
    [Google Scholar]
  6. 6.
    Baksh SC, Todorova PK, Gur-Cohen S, Hurwitz B, Ge Y et al. 2020. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. Cell Biol. 22:779–90
    [Google Scholar]
  7. 7.
    Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B et al. 2020. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183:1202–18.e25
    [Google Scholar]
  8. 8.
    Bervoets L, Massa G, Guedens W, Louis E, Noben JP, Adriaensens P. 2017. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study. Diabetol. Metab. Syndr. 9:48
    [Google Scholar]
  9. 9.
    Bianchi G, Marchesini G, Brunetti N, Manicardi E, Montuschi F et al. 2003. Impaired insulin-mediated amino acid plasma disappearance in non-alcoholic fatty liver disease: a feature of insulin resistance. Dig. Liver Dis. 35:722–27
    [Google Scholar]
  10. 10.
    Ceballos I, Chauveau P, Guerin V, Bardet J, Parvy P et al. 1990. Early alterations of plasma free amino acids in chronic renal failure. Clin. Chim. Acta 188:101–8
    [Google Scholar]
  11. 11.
    Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J et al. 2021. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49:D498–508
    [Google Scholar]
  12. 12.
    Chasin LA, Feldman A, Konstam M, Urlaub G. 1974. Reversion of a Chinese hamster cell auxotrophic mutant. PNAS 71:718–22
    [Google Scholar]
  13. 13.
    Chen R, Hornemann T, Štefanić S, Schraner EM, Zuellig R et al. 2020. Serine administration as a novel prophylactic approach to reduce the severity of acute pancreatitis during diabetes in mice. Diabetologia 63:1885–99
    [Google Scholar]
  14. 14.
    Choi BH, Rawat V, Högström J, Burns PA, Conger KO et al. 2022. Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Rep. 38:110278
    [Google Scholar]
  15. 15.
    Clemons TE, Gillies MC, Chew EY, Bird AC, Peto T et al. 2010. Baseline characteristics of participants in the natural history study of macular telangiectasia (MacTel): MacTel Project Report No. 2. Ophthalmic Epidemiol. 17:66–73
    [Google Scholar]
  16. 16.
    Cordes T, Kuna RS, McGregor GH, Khare SV, Gengatharan J et al. 2022. 1-Deoxysphingolipid synthesis compromises anchorage-independent growth and plasma membrane endocytosis in cancer cells. J. Lipid Res. 63:100281
    [Google Scholar]
  17. 17.
    Cramer E. 1865. Ueber die Bestandtheile der Seide. J. Prakt. Chem. 96:76–98
    [Google Scholar]
  18. 18.
    Dantzler WH, Silbernagl S. 1988. Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am. J. Physiol. Renal Physiol. 255:F397–407
    [Google Scholar]
  19. 19.
    Dasarathy S, Kasumov T, Edmison JM, Gruca LL, Bennett C et al. 2009. Glycine and urea kinetics in nonalcoholic steatohepatitis in human: effect of intralipid infusion. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G567–75
    [Google Scholar]
  20. 20.
    Davis SR, Scheer JB, Quinlivan EP, Coats BS, Stacpoole PW, Gregory JF 3rd. 2005. Dietary vitamin B-6 restriction does not alter rates of homocysteine remethylation or synthesis in healthy young women and men. Am. J. Clin. Nutr. 81:648–55
    [Google Scholar]
  21. 21.
    Diehl FF, Lewis CA, Fiske BP, Vander Heiden MG. 2019. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat. Metab. 1:861–67
    [Google Scholar]
  22. 22.
    Dietrich S, Trefflich I, Ueland PM, Menzel J, Penczynski KJ et al. 2022. Amino acid intake and plasma concentrations and their interplay with gut microbiota in vegans and omnivores in Germany. Eur. J. Nutr. 61:2103–14
    [Google Scholar]
  23. 23.
    Du J, Yanagida A, Knight K, Engel AL, Vo AH et al. 2016. Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. PNAS 113:14710–15
    [Google Scholar]
  24. 24.
    Ducker GS, Rabinowitz JD. 2017. One-carbon metabolism in health and disease. Cell Metab. 25:27–42
    [Google Scholar]
  25. 25.
    Dudman NP, Tyrrell PA, Wilcken DE. 1987. Homocysteinemia: depressed plasma serine levels. Metabolism 36:198–201
    [Google Scholar]
  26. 26.
    Eade K, Gantner ML, Hostyk JA, Nagasaki T, Giles S et al. 2021. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat. Metab. 3:366–77
    [Google Scholar]
  27. 27.
    Eichler FS, Hornemann T, McCampbell A, Kuljis D, Penno A et al. 2009. Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1. J. Neurosci. 29:14646–51
    [Google Scholar]
  28. 28.
    Esaki K, Sayano T, Sonoda C, Akagi T, Suzuki T et al. 2015. l-Serine deficiency elicits intracellular accumulation of cytotoxic deoxysphingolipids and lipid body formation. J. Biol. Chem. 290:14595–609
    [Google Scholar]
  29. 29.
    Felig P, Marliss E, Ohman JL, Cahill CF Jr. 1970. Plasma amino acid levels in diabetic ketoacidosis. Diabetes 19:727–28
    [Google Scholar]
  30. 30.
    Fitzpatrick DB, Hooper RE, Seife B. 1976. Hereditary deafness and sensory radicular neuropathy. Arch. Otolaryngol. 102:552–57
    [Google Scholar]
  31. 31.
    Fridman V, Zarini S, Sillau S, Harrison K, Bergman BC et al. 2021. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J. Diabetes Complic. 35:107852
    [Google Scholar]
  32. 32.
    Fuchs BC, Bode BP. 2005. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime?. Semin. Cancer Biol. 15:254–66
    [Google Scholar]
  33. 33.
    Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK et al. 2000. Identification and characterization of a Na+-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J. Biol. Chem. 275:9690–98
    [Google Scholar]
  34. 34.
    Galsgaard KD, Winther-Sørensen M, Ørskov C, Kissow H, Poulsen SS et al. 2018. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver-α-cell axis. Am. J. Physiol. Endocrinol. Metab. 314:E93–103
    [Google Scholar]
  35. 35.
    Gantner ML, Eade K, Wallace M, Handzlik MK, Fallon R et al. 2019. Serine and lipid metabolism in macular disease and peripheral neuropathy. N. Engl. J. Med. 381:1422–33Identifies correlations between l-serine, l-alanine, and 1-deoxysphingolipids in MacTel patients.
    [Google Scholar]
  36. 36.
    Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP et al. 2011. Oral l-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 121:4735–45Shows that oral l-serine supplementation effectively reduces 1-deoxysphingolipids in HSAN1 patients.
    [Google Scholar]
  37. 37.
    Gheller BJ, Blum JE, Lim EW, Handzlik MK, Fong EHH et al. 2021. Extracellular serine and glycine are required for mouse and human skeletal muscle stem and progenitor cell function. Mol. Metab. 43:101106
    [Google Scholar]
  38. 38.
    Ghergurovich JM, Xu X, Wang JZ, Yang L, Ryseck RP et al. 2021. Methionine synthase supports tumour tetrahydrofolate pools. Nat. Metab. 3:1512–20
    [Google Scholar]
  39. 39.
    Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA et al. 1998. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene 210:315–24
    [Google Scholar]
  40. 40.
    Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J et al. 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50:1685–95
    [Google Scholar]
  41. 41.
    Green CR, Bonelli R, Ansell BRE, Tzaridis S, Handzlik MK et al. 2023. Divergent amino acid and sphingolipid metabolism in patients with inherited neuro-retinal disease. Mol. Metab. 72:101716
    [Google Scholar]
  42. 42.
    Gregory JF 3rd, Cuskelly GJ, Shane B, Toth JP, Baumgartner TG, Stacpoole PW. 2000. Primed, constant infusion with [2H3]serine allows in vivo kinetic measurement of serine turnover, homocysteine remethylation, and transsulfuration processes in human one-carbon metabolism. Am. J. Clin. Nutr. 72:1535–41
    [Google Scholar]
  43. 43.
    Grillo MA, Fossa T, Coghe M. 1966. Synthesis of serine in the liver of vertebrates. Comp. Biochem. Physiol. 19:589–96
    [Google Scholar]
  44. 44.
    Handzlik MK, Gengatharan JM, Frizzi KE, McGregor GH, Martino C et al. 2023. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614:118–24Identifies insulin-regulated l-serine disposal as a driver of peripheral neuropathy in diabetic mouse models.
    [Google Scholar]
  45. 45.
    Hart CE, Race V, Achouri Y, Wiame E, Sharrard M et al. 2007. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 80:931–37
    [Google Scholar]
  46. 46.
    Herbig L, Chiang E-P, Lee L-R, Hills J, Shane B, Stover PJ. 2002. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosynthesis. J. Biol. Chem. 277:38381–89
    [Google Scholar]
  47. 47.
    Hesaka A, Sakai S, Hamase K, Ikeda T, Matsui R et al. 2019. d-Serine reflects kidney function and diseases. Sci. Rep. 9:5104
    [Google Scholar]
  48. 48.
    Holman KM, Puppala AK, Lee JW, Lee H, Simonović M. 2017. Insights into substrate promiscuity of human seryl-tRNA synthetase. RNA 23:1685–99
    [Google Scholar]
  49. 49.
    Holmes WB, Appling DR. 2002. Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 277:20205–13
    [Google Scholar]
  50. 50.
    Houlden H, King R, Blake J, Groves M, Love S et al. 2006. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129:411–25
    [Google Scholar]
  51. 51.
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–18
    [Google Scholar]
  52. 52.
    Jaeken J, Detheux M, Van Maldergem L, Foulon M, Carchon H, Van Schaftingen E. 1996. 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch. Dis. Child. 74:542–45
    [Google Scholar]
  53. 53.
    Jang C, Hui S, Zeng X, Cowan AJ, Wang L et al. 2019. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30:594–606.e3
    [Google Scholar]
  54. 54.
    Jog R, Chen G, Wang J, Leff T. 2021. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol. Rep. 9:e14991
    [Google Scholar]
  55. 55.
    Kaplan E, Zubedat S, Radzishevsky I, Valenta AC, Rechnitz O et al. 2018. ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. PNAS 115:9628–33
    [Google Scholar]
  56. 56.
    Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K et al. 2015. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–55
    [Google Scholar]
  57. 57.
    Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F et al. 2018. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 362:eaat9528
    [Google Scholar]
  58. 58.
    Kurita K, Ohta H, Shirakawa I, Tanaka M, Kitaura Y et al. 2021. Macrophages rely on extracellular serine to suppress aberrant cytokine production. Sci. Rep. 11:11137
    [Google Scholar]
  59. 59.
    Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. 2014. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7:1248–58
    [Google Scholar]
  60. 60.
    Le Douce J, Maugard M, Veran J, Matos M, Jego P et al. 2020. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease. Cell Metab. 31:503–17.e8Demonstrates that modulating l-serine synthesis and availability affects cognitive defects in a mouse AD model.
    [Google Scholar]
  61. 61.
    Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM et al. 2006. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55
    [Google Scholar]
  62. 62.
    Lefauconnier JM, Trouvé R. 1983. Developmental changes in the pattern of amino acid transport at the blood-brain barrier in rats. Brain Res. 282:175–82
    [Google Scholar]
  63. 63.
    Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY et al. 2014. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55:253–63
    [Google Scholar]
  64. 64.
    Liljenquist JE, Lewis SB, Cherrington AD, Sinclair-Smith BC, Lacy WW. 1981. Effects of pharmacologic hyperglucagonemia on plasma amino acid concentrations in normal and diabetic man. Metabolism 30:1195–99
    [Google Scholar]
  65. 65.
    Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR et al. 2011. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43:869–74
    [Google Scholar]
  66. 66.
    Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. 2010. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90:207–58
    [Google Scholar]
  67. 67.
    Lowry M, Hall DE, Brosnan JT. 1986. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. Renal Physiol. 250:F649–58
    [Google Scholar]
  68. 68.
    Ma EH, Bantug G, Griss T, Condotta S, Johnson RM et al. 2017. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25:345–57
    [Google Scholar]
  69. 69.
    Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–46
    [Google Scholar]
  70. 70.
    Maddocks OD, Athineos D, Cheung EC, Lee P, Zhang T et al. 2017. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–76Shows that dietary l-serine and glycine restriction modulates tumor growth and therapeutic response in mouse models.
    [Google Scholar]
  71. 71.
    Maffioli E, Murtas G, Rabattoni V, Badone B, Tripodi F et al. 2022. Insulin and serine metabolism as sex-specific hallmarks of Alzheimer's disease in the human hippocampus. Cell Rep. 40:111271
    [Google Scholar]
  72. 72.
    Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. 2014. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5:3083Uses metabolic modeling of human liver from patients with nonalcoholic fatty liver disease to identify l-serine deficiency as a potential target.
    [Google Scholar]
  73. 73.
    Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S et al. 2017. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13:916
    [Google Scholar]
  74. 74.
    Marliss EB, Aoki TT, Unger RH, Soeldner JS, Cahill G Jr. 1970. Glucagon levels and metabolic effects in fasting man. J. Clin. Investig. 49:2256–70
    [Google Scholar]
  75. 75.
    Mitoma J, Furuya S, Hirabayashi Y. 1998. A novel metabolic communication between neurons and astrocytes: Non-essential amino acid l-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci. Res. 30:195–99
    [Google Scholar]
  76. 76.
    Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A et al. 2020. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370:364–68
    [Google Scholar]
  77. 77.
    Murch SJ, Cox PA, Banack SA. 2004. A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. PNAS 101:12228–31
    [Google Scholar]
  78. 78.
    Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW. 2004. Occurrence of β-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol. Scand. 110:267–69
    [Google Scholar]
  79. 79.
    Murphy JP, Giacomantonio MA, Paulo JA, Everley RA, Kennedy BE et al. 2018. The NAD+ salvage pathway supports PHGDH-driven serine biosynthesis. Cell Rep. 24:2381–91.e5
    [Google Scholar]
  80. 80.
    Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW et al. 2020. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586:790–95
    [Google Scholar]
  81. 81.
    Nakauchi J, Matsuo H, Kim DK, Goto A, Chairoungdua A et al. 2000. Cloning and characterization of a human brain Na+-independent transporter for small neutral amino acids that transports d-serine with high affinity. Neurosci. Lett. 287:231–35
    [Google Scholar]
  82. 82.
    Narkewicz MR, Jones G, Thompson H, Kolhouse F, Fennessey PV. 2002. Folate cofactors regulate serine metabolism in fetal ovine hepatocytes. Pediatr. Res. 52:589–94
    [Google Scholar]
  83. 83.
    Narkewicz MR, Sauls SD, Tjoa SS, Teng C, Fennessey PV. 1996. Evidence for intracellular partitioning of serine and glycine metabolism in Chinese hamster ovary cells. Biochem. J. 313:991–96
    [Google Scholar]
  84. 84.
    Neu RL, Kajii T, Gardner LI, Nagyfy SF. 1971. A lethal syndrome of microcephaly with multiple congenital anomalies in three siblings. Pediatrics 47:610–12
    [Google Scholar]
  85. 85.
    Neubauer S. 2007. The failing heart—an engine out of fuel. N. Engl. J. Med. 356:1140–51
    [Google Scholar]
  86. 86.
    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD et al. 2009. A branched-chain amino acid–related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9:311–26
    [Google Scholar]
  87. 87.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–34
    [Google Scholar]
  88. 88.
    Othman A, Bianchi R, Alecu I, Wei Y, Porretta-Serapiglia C et al. 2015. Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes 64:1035–45Finds that dietary l-serine supplementation in rats mitigates peripheral neuropathy.
    [Google Scholar]
  89. 89.
    Penno A, Reilly MM, Houlden H, Laura M, Rentsch K et al. 2010. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285:11178–87
    [Google Scholar]
  90. 90.
    Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E et al. 2022. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur. Heart J. 43:3477–89
    [Google Scholar]
  91. 91.
    Pitts RF, Damian AC, MacLeod MB. 1970. Synthesis of serine by rat kidney in vivo and in vitro. Am. J. Physiol. 219:584–89
    [Google Scholar]
  92. 92.
    Pitts RF, MacLeod MB. 1972. Synthesis of serine by the dog kidney in vivo. Am. J. Physiol. 222:394–98
    [Google Scholar]
  93. 93.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–50
    [Google Scholar]
  94. 94.
    Reisner SH, Aranda JV, Colle E, Papageorgiou A, Schiff D et al. 1973. The effect of intravenous glucagon on plasma amino acids in the newborn. Pediatr. Res. 7:184–91
    [Google Scholar]
  95. 95.
    Rinaldi G, Pranzini E, Van Elsen J, Broekaert D, Funk CM et al. 2021. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81:386–97.e7
    [Google Scholar]
  96. 96.
    Rodriguez AE, Ducker GS, Billingham LK, Martinez CA, Mainolfi N et al. 2019. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29:1003–11.e4
    [Google Scholar]
  97. 97.
    Rom O, Liu Y, Liu Z, Zhao Y, Wu J et al. 2020. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 12:eaaz2841
    [Google Scholar]
  98. 98.
    Rossi M, Altea-Manzano P, Demicco M, Doglioni G, Bornes L et al. 2022. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605:747–53
    [Google Scholar]
  99. 99.
    Sallach HJ, Sanborn TA, Bruin WJ. 1972. Dietary and hormonal regulation of hepatic biosynthetic and catabolic enzymes of serine metabolism in rats. Endocrinology 91:1054–63
    [Google Scholar]
  100. 100.
    Scerri TS, Quaglieri A, Cai C, Zernant J, Matsunami N et al. 2017. Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nat. Genet. 49:559–67
    [Google Scholar]
  101. 101.
    Schmidt JA, Rinaldi S, Scalbert A, Ferrari P, Achaintre D et al. 2016. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 70:306–12
    [Google Scholar]
  102. 102.
    Shaheen R, Rahbeeni Z, Alhashem A, Faqeih E, Zhao Q et al. 2014. Neu–Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94:898–904
    [Google Scholar]
  103. 103.
    Snell K. 1984. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul. 22:325–400
    [Google Scholar]
  104. 104.
    Stover P, Schirch V. 1990. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J. Biol. Chem. 265:14227–33
    [Google Scholar]
  105. 105.
    Stover PJ, Durga J, Field MS. 2017. Folate nutrition and blood–brain barrier dysfunction. Curr. Opin. Biotechnol. 44:146–52
    [Google Scholar]
  106. 106.
    Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S et al. 2019. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29:1410–21.e4
    [Google Scholar]
  107. 107.
    Swendseid ME, Wang M, Vyhmeister I, Chan W, Siassi F et al. 1975. Amino acid metabolism in the chronically uremic rat. Clin. Nephrol. 3:240–46
    [Google Scholar]
  108. 108.
    Tabatabaie L, de Koning TJ, Geboers AJ, van den Berg IE, Berger R, Klomp LW. 2009. Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Hum. Mutat. 30:749–56
    [Google Scholar]
  109. 109.
    Teng YW, Mehedint MG, Garrow TA, Zeisel SH. 2011. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem. 286:36258–67
    [Google Scholar]
  110. 110.
    Thalacker-Mercer AE, Ingram KH, Guo F, Ilkayeva O, Newgard CB, Garvey WT. 2014. BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes 63:791–800
    [Google Scholar]
  111. 111.
    Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C. 1980. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Investig. 65:1162–73
    [Google Scholar]
  112. 112.
    Tserng KY, Kalhan SC. 1983. Estimation of glucose carbon recycling and glucose turnover with [U-13C] glucose. Am. J. Physiol. Endocrinol. Metab. 245:E476–82
    [Google Scholar]
  113. 113.
    Turgeon C, Magera MJ, Allard P, Tortorelli S, Gavrilov D et al. 2008. Combined newborn screening for succinylacetone, amino acids, and acylcarnitines in dried blood spots. Clin. Chem. 54:657–64
    [Google Scholar]
  114. 114.
    Utsunomiya-Tate N, Endou H, Kanai Y. 1996. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J. Biol. Chem. 271:14883–90
    [Google Scholar]
  115. 115.
    van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH. 2004. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 79:185–97
    [Google Scholar]
  116. 116.
    van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, Van Maldergem L, Coskun T et al. 2013. An update on serine deficiency disorders. J. Inherit. Metab. Dis. 36:613–19
    [Google Scholar]
  117. 117.
    Vandekeere S, Dubois C, Kalucka J, Sullivan MR, García-Caballero M et al. 2018. Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28:573–87.e13
    [Google Scholar]
  118. 118.
    Wolfe RR, Allsop JR, Burke JF. 1979. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism 28:210–20
    [Google Scholar]
  119. 119.
    Xia C, Suriyanarayanan S, Gong Y, Fridman V, Selig M et al. 2022. Long-term effects of l-serine supplementation upon a mouse model of diabetic neuropathy. J. Diabetes Complic. 37:108383
    [Google Scholar]
  120. 120.
    Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M. 2001. 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J. Neurosci. 21:7691–704Demonstrates that l-serine synthesis is a critical function of astrocytes.
    [Google Scholar]
  121. 121.
    Yoshida K, Furuya S, Osuka S, Mitoma J, Shinoda Y et al. 2004. Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J. Biol. Chem. 279:3573–77
    [Google Scholar]
  122. 122.
    Zhang T, Zhu L, Madigan MC, Liu W, Shen W et al. 2019. Human macular Müller cells rely more on serine biosynthesis to combat oxidative stress than those from the periphery. eLife 8:e43598
    [Google Scholar]
  123. 123.
    Zhang Z, TeSlaa T, Xu X, Zeng X, Yang L et al. 2021. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3:1608–20
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-061021-022648
Loading
/content/journals/10.1146/annurev-nutr-061021-022648
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error