1932

Abstract

Linear growth during three distinct stages of life determines attained stature in adulthood: namely, in utero, early postnatal life, and puberty and the adolescent period. Individual host factors, genetics, and the environment, including nutrition, influence attained human stature. Each period of physical growth has its specific biological and environmental considerations. Recent epidemiologic investigations reveal a strong influence of prenatal factors on linear size at birth that in turn influence the postnatal growth trajectory. Although average population height changes have been documented in high-income regions, stature as a complex human trait is not well understood or easily modified. This review summarizes the biology of linear growth and its major drivers, including nutrition from a life-course perspective, the genetics of programmed growth patterns or height, and gene–environment interactions that determine human stature in toto over the life span. Implications for public health interventions and knowledge gaps are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061121-091112
2024-08-29
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-061121-091112.html?itemId=/content/journals/10.1146/annurev-nutr-061121-091112&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, et al. 2002.. The role of the resting zone in growth plate chondrogenesis. . Endocrinology 143::185157
    [Crossref] [Google Scholar]
  2. 2.
    Allagh KP, Shamanna BR, Murthy GV, Ness AR, Doyle P, et al. 2015.. Birth prevalence of neural tube defects and orofacial clefts in India: a systematic review and meta-analysis. . PLOS ONE 10::e0118961
    [Crossref] [Google Scholar]
  3. 3.
    Allen LH. 2001.. Biological mechanisms that might underlie iron's effects on fetal growth and preterm birth. . J. Nutr. 131::581S89S
    [Crossref] [Google Scholar]
  4. 4.
    Amza A, Yu SN, Kadri B, Nassirou B, Stoller NE, et al. 2014.. Does mass azithromycin distribution impact child growth and nutrition in Niger? A cluster-randomized trial. . PLOS Negl. Trop. Dis. 8::e3128
    [Crossref] [Google Scholar]
  5. 5.
    Andrade NLM, Cellin LP, Rezende RC, Vasques GA, Jorge AAL. 2023.. Idiopathic short stature: what to expect from genomic investigations. . Endocrines 4::117
    [Crossref] [Google Scholar]
  6. 6.
    Apter D. 2003.. The role of leptin in female adolescence. . Ann. N. Y. Acad. Sci. 997::6476
    [Crossref] [Google Scholar]
  7. 7.
    Ashizawa K, Kawabata M. 1990.. Daily measurements of the heights of two children from June 1984 to May 1985. . Ann. Hum. Biol. 17::43743
    [Crossref] [Google Scholar]
  8. 8.
    Baronas JM, Bartell E, Eliasen A, Doench JG, Yengo L, et al. 2023.. Genome-wide CRISPR screening of chondrocyte maturation newly implicates genes in skeletal growth and height-associated GWAS loci. . Cell Genom. 3::100299
    [Crossref] [Google Scholar]
  9. 9.
    Benjamin-Chung J, Mertens A, Colford JM Jr., Hubbard AE, van der Laan MJ, et al. 2023.. Early-childhood linear growth faltering in low- and middle-income countries. . Nature 621::55057
    [Crossref] [Google Scholar]
  10. 10.
    Bernasconi S, Bergomi A, Milioli S, Tirendi A, Mastronardi G, et al. 1999.. Genetics and molecular biology of the GHRH-GH-IGF-I axis. . Minerva Pediatr. 51::37594
    [Google Scholar]
  11. 11.
    Black RE, Liu L, Hartwig FP, Villavicencio F, Rodriguez-Martinez A, et al. 2022.. Health and development from preconception to 20 years of age and human capital. . Lancet 399::173040
    [Crossref] [Google Scholar]
  12. 12.
    Blom S, Ortiz-Bobea A, Hoddinott J. 2022.. Heat exposure and child nutrition: evidence from West Africa. . J. Environ. Econ. Manag. 115::102698
    [Crossref] [Google Scholar]
  13. 13.
    Boersma B, Wit JM. 1997.. Catch-up growth. . Endocr. Rev. 18::64661
    [Crossref] [Google Scholar]
  14. 14.
    Calder PC, Jackson AA. 2000.. Undernutrition, infection and immune function. . Nutr. Res. Rev. 13::329
    [Crossref] [Google Scholar]
  15. 15.
    Calhoon JH, Bunegin L, Gelineau JF, Felger MC, Naples JJ, et al. 1996.. Twelve-hour canine heart preservation with a simple, portable hypothermic organ perfusion device. . Ann. Thorac. Surg. 62::9193
    [Crossref] [Google Scholar]
  16. 16.
    Campbell MC, Tishkoff SA. 2008.. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. . Annu. Rev. Genom. Hum. Genet. 9::40333
    [Crossref] [Google Scholar]
  17. 17.
    Caparros-Gonzalez RA, Lynn F, Alderdice F, Peralta-Ramirez MI. 2022.. Cortisol levels versus self-report stress measures during pregnancy as predictors of adverse infant outcomes: a systematic review. . Stress 25::189212
    [Crossref] [Google Scholar]
  18. 18.
    Castillo-Castrejon M, Yang IV, Davidson EJ, Borengasser SJ, Jambal P, et al. 2021.. Preconceptional lipid-based nutrient supplementation in 2 low-resource countries results in distinctly different IGF-1/mTOR placental responses. . J. Nutr. 151::55669
    [Crossref] [Google Scholar]
  19. 19.
    Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, et al. 2008.. Multi-country analysis of the effects of diarrhoea on childhood stunting. . Int. J. Epidemiol. 37::81630
    [Crossref] [Google Scholar]
  20. 20.
    Christian P. 2010.. Micronutrients, birth weight, and survival. . Annu. Rev. Nutr. 30::83104
    [Crossref] [Google Scholar]
  21. 21.
    Christian P. 2022.. Starting life right: Birth length matters. . Am. J. Clin. Nutr. 116::12
    [Crossref] [Google Scholar]
  22. 22.
    Christian P, Shaikh S, Shamim AA, Mehra S, Wu L, et al. 2015.. Effect of fortified complementary food supplementation on child growth in rural Bangladesh: a cluster-randomized trial. . Int. J. Epidemiol. 44::186276
    [Crossref] [Google Scholar]
  23. 23.
    Christian P, Smith ER. 2018.. Adolescent undernutrition: global burden, physiology, and nutritional risks. . Ann. Nutr. Metab. 72::31628
    [Crossref] [Google Scholar]
  24. 24.
    Coly AN, Milet J, Diallo A, Ndiaye T, Bénéfice E, et al. 2006.. Preschool stunting, adolescent migration, catch-up growth, and adult height in young Senegalese men and women of rural origin. . J. Nutr. 136::241220
    [Crossref] [Google Scholar]
  25. 25.
    Combarnous Y, Nguyen TMD. 2019.. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. . Toxics 7:(1):5
    [Crossref] [Google Scholar]
  26. 26.
    Cowell W, Ard N, Herrera T, Medley EA, Trasande L. 2023.. Ambient temperature, heat stress and fetal growth: a review of placenta-mediated mechanisms. . Mol. Cell. Endocrinol. 576::112000
    [Crossref] [Google Scholar]
  27. 27.
    Crane RJ, Jones KD, Berkley JA. 2015.. Environmental enteric dysfunction: an overview. . Food Nutr. Bull. 36::S7687
    [Crossref] [Google Scholar]
  28. 28.
    Das D, Grais RF, Okiro EA, Stepniewska K, Mansoor R, et al. 2018.. Complex interactions between malaria and malnutrition: a systematic literature review. . BMC Med. 16::186
    [Crossref] [Google Scholar]
  29. 29.
    Das JK, Salam RA, Hadi YB, Sadiq Sheikh S, Bhutta AZ, et al. 2019.. Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes. . Cochrane Database Syst. Rev. 5::CD012611
    [Google Scholar]
  30. 30.
    De Sanctis V, Soliman A, Alaaraj N, Ahmed S, Alyafei F, Hamed N. 2021.. Early and long-term consequences of nutritional stunting: from childhood to adulthood. . Acta Biomed. 92::e2021168
    [Google Scholar]
  31. 31.
    Durda-Masny M, Ciomborowska-Basheer J, Makalowska I, Szwed A. 2022.. The mediating role of the gut microbiota in the physical growth of children. . Life 12:(2):152
    [Crossref] [Google Scholar]
  32. 32.
    Emons JA, Boersma B, Baron J, Wit JM. 2005.. Catch-up growth: testing the hypothesis of delayed growth plate senescence in humans. . J. Pediatr. 147::84346
    [Crossref] [Google Scholar]
  33. 33.
    Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. 2022.. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. . Front. Endocrinol. 13::1019468
    [Crossref] [Google Scholar]
  34. 34.
    Fazeli PK, Klibanski A. 2014.. Determinants of GH resistance in malnutrition. . J. Endocrinol. 220::R5765
    [Crossref] [Google Scholar]
  35. 35.
    Fitz-James MH, Cavalli G. 2022.. Molecular mechanisms of transgenerational epigenetic inheritance. . Nat. Rev. Genet. 23::32541
    [Crossref] [Google Scholar]
  36. 36.
    Forcinito P, Andrade AC, Finkielstain GP, Baron J, Nilsson O, Lui JC. 2011.. Growth-inhibiting conditions slow growth plate senescence. . J. Endocrinol. 208::5967
    [Crossref] [Google Scholar]
  37. 37.
    Fowden AL, Forhead AJ. 2013.. Endocrine interactions in the control of fetal growth. . Nestle Nutr. Inst. Workshop Ser. 74::91102
    [Crossref] [Google Scholar]
  38. 38.
    Fowden AL, Sibley C, Reik W, Constancia M. 2006.. Imprinted genes, placental development and fetal growth. . Horm. Res. 65:(Suppl. 3):5058
    [Google Scholar]
  39. 39.
    Gallagher MD, Chen-Plotkin AS. 2018.. The post-GWAS era: from association to function. . Am. J. Hum. Genet. 102::71730
    [Crossref] [Google Scholar]
  40. 40.
    Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, et al. 2008.. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. . Cell Metab. 8::16974
    [Crossref] [Google Scholar]
  41. 41.
    Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. 2020.. Oxidative stress pathways of air pollution mediated toxicity: recent insights. . Redox Biol. 34::101545
    [Crossref] [Google Scholar]
  42. 42.
    Gat-Yablonski G, Pando R, Phillip M. 2013.. Nutritional catch-up growth. . World Rev. Nutr. Diet. 106::8389
    [Crossref] [Google Scholar]
  43. 43.
    Gardner WM, Razo C, McHugh TA, Hagins H, Vilchis-Tella VM, et al. (GBD 2021 Anaemia Collab.). 2023.. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021. . Lancet Haematol. 10::e71334
    [Crossref] [Google Scholar]
  44. 44.
    Geraghty AA, Lindsay KL, Alberdi G, McAuliffe FM, Gibney ER. 2015.. Nutrition during pregnancy impacts offspring's epigenetic status—evidence from human and animal studies. . Nutr. Metab. Insights 8::4147
    [Google Scholar]
  45. 45.
    Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. 2021.. Prenatal air pollution exposure and placental DNA methylation changes: implications on fetal development and future disease susceptibility. . Cells 10::3025
    [Crossref] [Google Scholar]
  46. 46.
    Gluckman PD, Pinal CS. 2003.. Regulation of fetal growth by the somatotrophic axis. . J. Nutr. 133::1741S46S
    [Crossref] [Google Scholar]
  47. 47.
    Gomez F, Hirbo J, Tishkoff SA. 2014.. Genetic variation and adaptation in Africa: implications for human evolution and disease. . Cold Spring Harb. Perspect. Biol. 6::a008524
    [Crossref] [Google Scholar]
  48. 48.
    Gong YY, Watson S, Routledge MN. 2016.. Aflatoxin exposure and associated human health effects, a review of epidemiological studies. . Food Saf. 4::1427
    [Crossref] [Google Scholar]
  49. 49.
    Greenspan LC, Lee MM. 2018.. Endocrine disrupters and pubertal timing. . Curr. Opin. Endocrinol. Diabetes Obes. 25::4954
    [Crossref] [Google Scholar]
  50. 50.
    Grumbach MM. 2000.. Estrogen, bone, growth and sex: a sea change in conventional wisdom. . J. Pediatr. Endocrinol. Metab. 13:(Suppl. 6):143955
    [Crossref] [Google Scholar]
  51. 51.
    Guo M, Liu Z, Willen J, Shaw CP, Richard D, et al. 2017.. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height. . eLife 6::e29329
    [Crossref] [Google Scholar]
  52. 52.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al. 2008.. AMPK phosphorylation of raptor mediates a metabolic checkpoint. . Mol. Cell 30::21426
    [Crossref] [Google Scholar]
  53. 53.
    Hambidge KM, Westcott JE, Garces A, Figueroa L, Goudar SS, et al. 2019.. A multicountry randomized controlled trial of comprehensive maternal nutrition supplementation initiated before conception: the Women First trial. . Am. J. Clin. Nutr. 109::45769
    [Crossref] [Google Scholar]
  54. 54.
    Heinrichs C, Munson PJ, Counts DR, Cutler GB Jr., Baron J. 1995.. Patterns of human growth. . Science 268::44247
    [Crossref] [Google Scholar]
  55. 55.
    Herberth G, Bauer M, Gasch M, Hinz D, Roder S, et al. 2014.. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. . J. Allergy Clin. Immunol. 133::54350
    [Crossref] [Google Scholar]
  56. 56.
    Hermanussen M, Geiger-Benoit K. 1995.. No evidence for saltation in human growth. . Ann. Hum. Biol. 22::34145
    [Crossref] [Google Scholar]
  57. 57.
    Hernandez-Vargas H, Castelino J, Silver MJ, Dominguez-Salas P, Cros MP, et al. 2015.. Exposure to aflatoxin B1 in utero is associated with DNA methylation in white blood cells of infants in The Gambia. . Int. J. Epidemiol. 44::123848
    [Crossref] [Google Scholar]
  58. 58.
    Hileman SM, Pierroz DD, Flier JS. 2000.. Leptin, nutrition, and reproduction: Timing is everything. . J. Clin. Endocrinol. Metab. 85::8047
    [Crossref] [Google Scholar]
  59. 59.
    Hoffmann V, Jones K, Leroy JL. 2018.. The impact of reducing dietary aflatoxin exposure on child linear growth: a cluster randomised controlled trial in Kenya. . BMJ Glob. Health 3::e000983
    [Crossref] [Google Scholar]
  60. 60.
    Hunziker EB. 1994.. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. . Microsc. Res. Tech. 28::50519
    [Crossref] [Google Scholar]
  61. 61.
    Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. 2008.. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. . Cell Metab. 8::7783
    [Crossref] [Google Scholar]
  62. 62.
    Inoki K, Guan KL. 2009.. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. . Hum. Mol. Genet. 18::R94100
    [Crossref] [Google Scholar]
  63. 63.
    Jack DW, Ae-Ngibise KA, Gould CF, Boamah-Kaali E, Lee AG, et al. 2021.. A cluster randomised trial of cookstove interventions to improve infant health in Ghana. . BMJ Glob. Health 6::e005599
    [Crossref] [Google Scholar]
  64. 64.
    Janssen BG, Byun HM, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS. 2015.. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: an ENVIRONAGE birth cohort study. . Epigenetics 10::53644
    [Crossref] [Google Scholar]
  65. 65.
    Juul A, Bang P, Hertel NT, Main K, Dalgaard P, et al. 1994.. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. . J. Clin. Endocrinol. Metab. 78::74452
    [Google Scholar]
  66. 66.
    Kadawathagedara M, de Lauzon-Guillain B, Botton J. 2018.. Environmental contaminants and child's growth. . J. Dev. Orig. Health Dis. 9::63241
    [Crossref] [Google Scholar]
  67. 67.
    Karlberg J. 1989.. A biologically-oriented mathematical model (ICP) for human growth. . Acta Paediatr. Scand. Suppl. 350::7094
    [Crossref] [Google Scholar]
  68. 68.
    Keats EC, Haider BA, Tam E, Bhutta ZA. 2019.. Multiple-micronutrient supplementation for women during pregnancy. . Cochrane Database Syst. Rev. 3::CD004905
    [Google Scholar]
  69. 69.
    Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. 1993.. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. . J. Clin. Endocrinol. Metab. 76::9961001
    [Google Scholar]
  70. 70.
    Kember NF, Walker KV. 1971.. Control of bone growth in rats. . Nature 229::42829
    [Crossref] [Google Scholar]
  71. 71.
    Kim R, Mejia-Guevara I, Corsi DJ, Aguayo VM, Subramanian SV. 2017.. Relative importance of 13 correlates of child stunting in South Asia: insights from nationally representative data from Afghanistan, Bangladesh, India, Nepal, and Pakistan. . Soc. Sci. Med. 187::14454
    [Crossref] [Google Scholar]
  72. 72.
    Klein KO, Munson PJ, Bacher JD, Cutler GB Jr., Baron J. 1994.. Linear growth in the rabbit is continuous, not saltatory. . Endocrinology 134::131720
    [Crossref] [Google Scholar]
  73. 73.
    Kobayashi T, Young C, Zhou W, Rhee EP. 2023.. Reduced glycolysis links resting zone chondrocyte proliferation in the growth plate. . bioRxiv 2023.01.18.524550. https://doi.org/10.1101/2023.01.18.524550
  74. 74.
    Kozuki N, Katz J, Lee AC, Vogel JP, Silveira MF, et al. 2015.. Short maternal stature increases risk of small-for-gestational-age and preterm births in low- and middle-income countries: individual participant data meta-analysis and population attributable fraction. . J. Nutr. 145::254250
    [Crossref] [Google Scholar]
  75. 75.
    Krebs NF, Hambidge KM, Westcott JL, Garces AL, Figueroa L, et al. 2022.. Birth length is the strongest predictor of linear growth status and stunting in the first 2 years of life after a preconception maternal nutrition intervention: the children of the Women First trial. . Am. J. Clin. Nutr. 116::8696
    [Crossref] [Google Scholar]
  76. 76.
    Krohn K, Haffner D, Hügel U, Himmele R, Klaus G, et al. 2003.. 1,25(OH)2D3 and dihydrotestosterone interact to regulate proliferation and differentiation of epiphyseal chondrocytes. . Calcif. Tissue Int. 73::40010
    [Crossref] [Google Scholar]
  77. 77.
    Kronenberg HM. 2003.. Developmental regulation of the growth plate. . Nature 423::33236
    [Crossref] [Google Scholar]
  78. 78.
    Kubicky RA, Wu S, Kharitonenkov A, De Luca F. 2012.. Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. . Endocrinology 153::228795
    [Crossref] [Google Scholar]
  79. 79.
    Kumar M, Ji B, Babaei P, Das P, Lappa D, et al. 2018.. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. . Metab. Eng. 49::12842
    [Crossref] [Google Scholar]
  80. 80.
    Lang D, Olotegui MP, Chavez CB, Trigoso DR, Flores JT, et al. 2015.. Opportunities to assess factors contributing to the development of the intestinal microbiota in infants living in developing countries. . Microb. Ecol. Health Dis. 26::28316
    [Google Scholar]
  81. 81.
    Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. 2010.. Hundreds of variants clustered in genomic loci and biological pathways affect human height. . Nature 467::83238
    [Crossref] [Google Scholar]
  82. 82.
    Laplante M, Sabatini DM. 2012.. mTOR signaling in growth control and disease. . Cell 149::27493
    [Crossref] [Google Scholar]
  83. 83.
    Leung KC, Johannsson G, Leong GM, Ho KK. 2004.. Estrogen regulation of growth hormone action. . Endocr. Rev. 25::693721
    [Crossref] [Google Scholar]
  84. 84.
    Li J, Oehlert J, Snyder M, Stevenson DK, Shaw GM. 2017.. Fetal de novo mutations and preterm birth. . PLOS Genet. 13::e1006689
    [Crossref] [Google Scholar]
  85. 85.
    Liu YZ, Guo YF, Xiao P, Xiong DH, Zhao LJ, et al. 2006.. Epistasis between loci on chromosomes 2 and 6 influences human height. . J. Clin. Endocrinol. Metab. 91::382125
    [Crossref] [Google Scholar]
  86. 86.
    Lonjou C, Zhang W, Collins A, Tapper WJ, Elahi E, et al. 2003.. Linkage disequilibrium in human populations. . PNAS 100::606974
    [Crossref] [Google Scholar]
  87. 87.
    Lui JC. 2020.. Home for a rest: stem cell niche of the postnatal growth plate. . J. Endocrinol. 246::R111
    [Crossref] [Google Scholar]
  88. 88.
    Lui JC, Baron J. 2024.. Epigenetic causes of overgrowth syndromes. . J. Clin. Endocrinol. Metab. 109::31220
    [Crossref] [Google Scholar]
  89. 89.
    Lui JC, Garrison P, Baron J. 2015.. Regulation of body growth. . Curr. Opin. Pediatr. 27::50210
    [Crossref] [Google Scholar]
  90. 90.
    Lui JC, Nilsson O, Baron J. 2011.. Growth plate senescence and catch-up growth. . Endocr. Dev. 21::2329
    [Crossref] [Google Scholar]
  91. 91.
    Lui JC, Nilsson O, Chan Y, Palmer CD, Andrade AC, et al. 2012.. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. . Hum. Mol. Genet. 21::5193201
    [Crossref] [Google Scholar]
  92. 92.
    Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, et al. 2017.. Rare and low-frequency coding variants alter human adult height. . Nature 542::18690
    [Crossref] [Google Scholar]
  93. 93.
    Masarwi M, Shamir R, Phillip M, Gat-Yablonski G. 2018.. Leptin stimulates aromatase in the growth plate: limiting catch-up growth efficiency. . J. Endocrinol. 237::22942
    [Crossref] [Google Scholar]
  94. 94.
    Metspalu M, Romero IG, Yunusbayev B, Chaubey G, Mallick CB, et al. 2011.. Shared and unique components of human population structure and genome-wide signals of positive selection in South Asia. . Am. J. Hum. Genet. 89::73144
    [Crossref] [Google Scholar]
  95. 95.
    Michaelsen KF. 2015.. Child growth. . In Pediatric Nutrition in Practice, ed. B Koletzko, J Bhatia, ZA Bhutta, P Cooper, M Makrides, et al. , pp. 9296. Basel:: Karger
    [Google Scholar]
  96. 96.
    Mistry JN, Silvennoinen S, Zaman F, Sävendahl L, Mariniello K, et al. 2023.. The crosstalk between FGF21 and GH leads to weakened GH receptor signaling and IGF1 expression and is associated with growth failure in very preterm infants. . Front. Endocrinol. 14::1105602
    [Crossref] [Google Scholar]
  97. 97.
    Nakamura A, François O, Lepeule J. 2021.. Epigenetic alterations of maternal tobacco smoking during pregnancy: a narrative review. . Int. J. Environ. Res. Public Health 18::5083
    [Crossref] [Google Scholar]
  98. 98.
    Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, et al. 2019.. The formation of human populations in South and Central Asia. . Science 365:(6457):eaat7487
    [Crossref] [Google Scholar]
  99. 99.
    NCD Risk Factor Collab. 2016.. A century of trends in adult human height. . eLife 5::e13410
    [Crossref] [Google Scholar]
  100. 100.
    Nilsson O, Marino R, De Luca F, Phillip M, Baron J. 2005.. Endocrine regulation of the growth plate. . Horm. Res. 64::15765
    [Google Scholar]
  101. 101.
    Nilsson O, Weise M, Landman EB, Meyers JL, Barnes KM, Baron J. 2014.. Evidence that estrogen hastens epiphyseal fusion and cessation of longitudinal bone growth by irreversibly depleting the number of resting zone progenitor cells in female rabbits. . Endocrinology 155::289299
    [Crossref] [Google Scholar]
  102. 102.
    Oichi T, Kodama J, Wilson K, Tian H, Imamura Kawasawa Y, et al. 2023.. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. . Bone Res. 11::20
    [Crossref] [Google Scholar]
  103. 103.
    Ornitz DM, Legeai-Mallet L. 2017.. Achondroplasia: development, pathogenesis, and therapy. . Dev. Dyn. 246::291309
    [Crossref] [Google Scholar]
  104. 104.
    Palit P, Gazi MA, Das S, Hasan MM, Noor Z, et al. 2022.. Exploratory analysis of selected components of the mTOR Pathway reveals potentially crucial associations with childhood malnutrition. . Nutrients 14::1612
    [Crossref] [Google Scholar]
  105. 105.
    Parikh P, Semba R, Manary M, Swaminathan S, Udomkesmalee E, et al. 2022.. Animal source foods, rich in essential amino acids, are important for linear growth and development of young children in low- and middle-income countries. . Matern. Child Nutr. 18::e13264
    [Crossref] [Google Scholar]
  106. 106.
    Park JH, Gail MH, Weinberg CR, Carroll RJ, Chung CC, et al. 2011.. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. . PNAS 108::1802631
    [Crossref] [Google Scholar]
  107. 107.
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, et al. 1995.. Effects of the obese gene product on body weight regulation in ob/ob mice. . Science 269::54043
    [Crossref] [Google Scholar]
  108. 108.
    Perkins JM, Subramanian SV, Davey Smith G, Ozaltin E. 2016.. Adult height, nutrition, and population health. . Nutr. Rev. 74::14965
    [Crossref] [Google Scholar]
  109. 109.
    Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA. 2008.. mTOR signaling contributes to chondrocyte differentiation. . Dev. Dyn. 237::70212
    [Crossref] [Google Scholar]
  110. 110.
    Pickering AJ, Null C, Winch PJ, Mangwadu G, Arnold BF, et al. 2019.. The WASH Benefits and SHINE trials: interpretation of WASH intervention effects on linear growth and diarrhoea. . Lancet Glob. Health 7::e113946
    [Crossref] [Google Scholar]
  111. 111.
    Pontzer H, Yamada Y, Sagayama H, Ainslie PN, Andersen LF, et al. 2021.. Daily energy expenditure through the human life course. . Science 373::80812
    [Crossref] [Google Scholar]
  112. 112.
    Predieri B, Alves CAD, Iughetti L. 2022.. New insights on the effects of endocrine-disrupting chemicals on children. . J. Pediatr. 98:(Suppl. 1):S7385
    [Crossref] [Google Scholar]
  113. 113.
    Prendergast AJ, Humphrey JH. 2014.. The stunting syndrome in developing countries. . Paediatr Int. Child Health 34::25065
    [Crossref] [Google Scholar]
  114. 114.
    Prentice AM, Ward KA, Goldberg GR, Jarjou LM, Moore SE, et al. 2013.. Critical windows for nutritional interventions against stunting. . Am. J. Clin. Nutr. 97::91118
    [Crossref] [Google Scholar]
  115. 115.
    Rana SVS. 2020.. Endoplasmic reticulum stress induced by toxic elements—a review of recent developments. . Biol. Trace Elem. Res. 196::1019
    [Crossref] [Google Scholar]
  116. 116.
    Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, et al. 2018.. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. . Lancet Glob. Health 6::e131928
    [Crossref] [Google Scholar]
  117. 117.
    Roth DE, Krishna A, Leung M, Shi J, Bassani DG, Barros AJD. 2017.. Early childhood linear growth faltering in low-income and middle-income countries as a whole-population condition: analysis of 179 Demographic and Health Surveys from 64 countries (1993–2015). . Lancet Glob. Health 5::e124957
    [Crossref] [Google Scholar]
  118. 118.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. 2008.. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. . Science 320::1496501
    [Crossref] [Google Scholar]
  119. 119.
    Satterfield MC, Edwards AK, Bazer FW, Dunlap KA, Steinhauser CB, Wu G. 2021.. Placental adaptation to maternal malnutrition. . Reproduction 162::R7383
    [Crossref] [Google Scholar]
  120. 120.
    Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, et al. 2016.. Child stunting is associated with low circulating essential amino acids. . EBioMedicine 6::24652
    [Crossref] [Google Scholar]
  121. 121.
    Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, et al. 2016.. Perspective: The potential role of essential amino acids and the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the pathogenesis of child stunting. . Adv. Nutr. 7::85365
    [Crossref] [Google Scholar]
  122. 122.
    Sexton CE, Ebbert MTW, Miller RH, Ferrel M, Tschanz JAT, et al. 2018.. Common DNA variants accurately rank an individual of extreme height. . Int. J. Genom. 2018::5121540
    [Google Scholar]
  123. 123.
    Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. 2013.. Hormonal and nutritional drivers of intrauterine growth. . Curr. Opin. Clin. Nutr. Metab. Care 16::298309
    [Crossref] [Google Scholar]
  124. 124.
    Siauciunaite R, Foulkes NS, Calabro V, Vallone D. 2019.. Evolution shapes the gene expression response to oxidative stress. . Int. J. Mol. Sci. 20::3040
    [Crossref] [Google Scholar]
  125. 125.
    Sie A, Bountogo M, Zakane A, Compaore G, Ouedraogo T, et al. 2023.. Neonatal azithromycin administration and growth during infancy: a randomized controlled trial. . Am. J. Trop. Med. Hyg. 108::106370
    [Crossref] [Google Scholar]
  126. 126.
    Smith LE, Stoltzfus RJ, Prendergast A. 2012.. Food chain mycotoxin exposure, gut health, and impaired growth: a conceptual framework. . Adv. Nutr. 3::52631
    [Crossref] [Google Scholar]
  127. 127.
    Sohail M, Palma-Martinez MJ, Chong AY, Quinto-Cortes CD, Barberena-Jonas C, et al. 2023.. Mexican Biobank advances population and medical genomics of diverse ancestries. . Nature 622::77583
    [Crossref] [Google Scholar]
  128. 128.
    Stewart CP, Fernald LCH, Weber AM, Arnold C, Galasso E. 2020.. Lipid-based nutrient supplementation reduces child anemia and increases micronutrient status in Madagascar: a multiarm cluster-randomized controlled trial. . J. Nutr. 150::95866
    [Crossref] [Google Scholar]
  129. 129.
    Subramanian SV, Ozaltin E, Finlay JE. 2011.. Height of nations: a socioeconomic analysis of cohort differences and patterns among women in 54 low- to middle-income countries. . PLOS ONE 6::e18962
    [Crossref] [Google Scholar]
  130. 130.
    Taneja S, Chowdhury R, Dhabhai N, Upadhyay RP, Mazumder S, et al. 2022.. Impact of a package of health, nutrition, psychosocial support, and WaSH interventions delivered during preconception, pregnancy, and early childhood periods on birth outcomes and on linear growth at 24 months of age: factorial, individually randomised controlled trial. . BMJ 379::e072046
    [Crossref] [Google Scholar]
  131. 131.
    Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. 2018.. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. . Epigenetics 13::13546
    [Crossref] [Google Scholar]
  132. 132.
    van Gastel N, Carmeliet G. 2021.. Metabolic regulation of skeletal cell fate and function in physiology and disease. . Nat. Metab. 3::1120
    [Crossref] [Google Scholar]
  133. 133.
    Victora CG, Bahl R, Barros AJ, Franca GV, Horton S, et al. 2016.. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. . Lancet 387::47590
    [Crossref] [Google Scholar]
  134. 134.
    Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, et al. 2006.. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. . PLOS Genet. 2::e41
    [Crossref] [Google Scholar]
  135. 135.
    Wainschtein P, Jain D, Zheng Z, Aslibekyan S, Becker D, et al. 2022.. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. . Nat. Genet. 54::26373
    [Crossref] [Google Scholar]
  136. 136.
    Walker KV, Kember NF. 1972.. Cell kinetics of growth cartilage in the rat tibia. II. Measurements during ageing. . Cell Tissue Kinet. 5::40919
    [Google Scholar]
  137. 137.
    Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, et al. 2023.. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. . Nat. Genet. 55:(8):126776
    [Crossref] [Google Scholar]
  138. 138.
    Wit JM, Camacho-Hübner C. 2011.. Endocrine regulation of longitudinal bone growth. . Endocr. Dev. 21::3041
    [Crossref] [Google Scholar]
  139. 139.
    Witkowska-Sedek E, Pyrzak B. 2020.. Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. . Cent Eur. J. Immunol. 45::46975
    [Crossref] [Google Scholar]
  140. 140.
    Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. 2016.. Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. . Endocr. Rev. 37::62110
    [Crossref] [Google Scholar]
  141. 141.
    Wood AR, Esko T, Yang J, Vedantam S, Pers TH, et al. 2014.. Defining the role of common variation in the genomic and biological architecture of adult human height. . Nat. Genet. 46::117386
    [Crossref] [Google Scholar]
  142. 142.
    World Health Organ. 1995.. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. . World Health Organ. Tech. Rep. Ser. 854::1452
    [Google Scholar]
  143. 143.
    World Health Organ. Multicent. Growth Ref. Study Group. 2006.. WHO child growth standards based on length/height, weight and age. . Acta Paediatr. Suppl. 450::7685
    [Google Scholar]
  144. 144.
    Wu S, Levenson A, Kharitonenkov A, De Luca F. 2012.. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. . J. Biol. Chem. 287::2606067
    [Crossref] [Google Scholar]
  145. 145.
    Wylie BJ, Matechi E, Kishashu Y, Fawzi W, Premji Z, et al. 2017.. Placental pathology associated with household air pollution in a cohort of pregnant women from Dar es Salaam, Tanzania. . Environ. Health Perspect. 125::13440
    [Crossref] [Google Scholar]
  146. 146.
    Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, et al. 2002.. Circulating levels of IGF-1 directly regulate bone growth and density. . J. Clin. Investig. 110::77181
    [Crossref] [Google Scholar]
  147. 147.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. 2010.. Common SNPs explain a large proportion of the heritability for human height. . Nat. Genet. 42::56569
    [Crossref] [Google Scholar]
  148. 148.
    Yang Y, Fan X, Tao J, Xu T, Zhang Y, et al. 2018.. Impact of prenatal hypoxia on fetal bone growth and osteoporosis in ovariectomized offspring rats. . Reprod. Toxicol. 78::18
    [Crossref] [Google Scholar]
  149. 149.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, et al. 2022.. A saturated map of common genetic variants associated with human height. . Nature 610::70412
    [Crossref] [Google Scholar]
  150. 150.
    Zachmann M, Prader A, Sobel EH, Crigler JF Jr., Ritzén EM, et al. 1986.. Pubertal growth in patients with androgen insensitivity: indirect evidence for the importance of estrogens in pubertal growth of girls. . J. Pediatr. 108::69497
    [Crossref] [Google Scholar]
  151. 151.
    Zawatski W, Lee MM. 2013.. Male pubertal development: are endocrine-disrupting compounds shifting the norms?. J. Endocrinol. 218::R112
    [Crossref] [Google Scholar]
  152. 152.
    Zeevi D, Yehuda AB, Zangen D, Kruglyak L. 2022.. Accurate prediction of children's target height from their mid-parental height. . medRxiv 2022.10.31.22281712. https://doi.org/10.1101/2022.10.31.22281712
/content/journals/10.1146/annurev-nutr-061121-091112
Loading
/content/journals/10.1146/annurev-nutr-061121-091112
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error