1932

Abstract

Together, loss- and gain-of-function experiments have identified the bone-derived secreted molecule osteocalcin as a hormone with a broad reach in rodents and primates. Following its binding to one of three receptors, osteocalcin exerts a profound influence on various aspects of energy metabolism as well as steroidogenesis, neurotransmitter biosynthesis and thereby male fertility, electrolyte homeostasis, cognition, the acute stress response, and exercise capacity. Although this review focuses mostly on the regulation of energy metabolism by osteocalcin, it also touches on its other functions. Lastly, it proposes what could be a common theme between the functions of osteocalcin and between these functions and the structural functions of bone.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061121-091348
2023-08-21
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/nutr/43/1/annurev-nutr-061121-091348.html?itemId=/content/journals/10.1146/annurev-nutr-061121-091348&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bacharach LK. 1993. Bone mineralization in childhood and adolescence. Curr. Opin. Pediatr. 5:4467–73
    [Google Scholar]
  2. 2.
    Becker DL. 1977. Calcification mechanisms: roles for cells and mineral. J. Oral. Path. 6:5307–15
    [Google Scholar]
  3. 3.
    Berger JM, Singh P, Khrimian L, Morgan DA, Chowdhury S et al. 2019. Mediation of the acute stress response by the skeleton. Cell Metab. 30:5890–902
    [Google Scholar]
  4. 4.
    Bluher M, Michael MD, Peroni OD, Ueki K, Carter N et al. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3:125–38
    [Google Scholar]
  5. 5.
    Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. 1998. Fourier transform infrared microspectroscopic analysis of bone of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:3187–96
    [Google Scholar]
  6. 6.
    Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D et al. 1998. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2:5559–69
    [Google Scholar]
  7. 7.
    Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM et al. 2020. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J. Clin. Investig. 130:62888–902
    [Google Scholar]
  8. 8.
    Comhaire F. 1990. Treatment of idiopathic testicular failure with high dose testosterone undecanoate: a double-blind pilot study. Fertil. Steril. 54:4689–93
    [Google Scholar]
  9. 9.
    Dacquin R, Mee PJ, Kawaguchi J, Olmsted-Davis EA, Gallagher JA et al. 2004. Knock-in of nuclear localized β-galactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar. Dev. Dyn. 229:4826–34
    [Google Scholar]
  10. 10.
    Desbois C, Hogue DA, Karsenty G. 1994. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J. Biol. Chem. 269:21183–90
    [Google Scholar]
  11. 11.
    De Toni L, Di Nisio A, Speltra E, Santa Rocca M, Ghezzi M et al. 2016. Polymorphism rs2274911 of GPRC6A as a novel risk factor for testis failure. J. Clin. Endocrinol. Metab. 101:3953–61
    [Google Scholar]
  12. 12.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF et al. 2000. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:2197–207
    [Google Scholar]
  13. 13.
    Ducy P, Desbois C, Pinero G, Story B, Dunstan C et al. 1996. Increased bone formation in osteocalcin-deficient mice. Nature 382:6590448–52
    [Google Scholar]
  14. 14.
    Ducy P, Schinke T, Karsenty G. 2000. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:54841501–4
    [Google Scholar]
  15. 15.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA et al. 2010. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:2296–308
    [Google Scholar]
  16. 16.
    Fleisch H. 1980. Mechanisms of calcification. Adv. Exp. Med. Biol. 128:563–77
    [Google Scholar]
  17. 17.
    Furie B, Furie BC. 2008. Mechanisms of thrombus formation. N. Engl. J. Med. 359:9938–49
    [Google Scholar]
  18. 18.
    Gundberg CM. 2003. Matrix proteins. Osteoporos. Int. 5:S37–40
    [Google Scholar]
  19. 19.
    Hanson RW, Reshef L. 1997. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66:581–611
    [Google Scholar]
  20. 20.
    Hauschka PV, Lian JB, Cole DE, Gundberg CM. 1989. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69:3990–1047
    [Google Scholar]
  21. 21.
    Hayashi T, Wojtaszewski JF, Goodyear LJ. 1997. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. 273:6E1039–51
    [Google Scholar]
  22. 22.
    Jawich K, Santa Rocca M, Al Faoum S, Alhalabi M, Di Nisio A et al. 2022. RS 2247911 polymorphism of GPRCA gene and serum undercaboxylated-osteocalcin are associated with testis function. J. Endocrinol. Investig. 45:91673–82
    [Google Scholar]
  23. 23.
    Kagi L, Bettoni C, Pator-Arroyo EM, Schnitzbauer U, Hernando N, Wagner CA. 2018. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosophate, FGF23, and 1,25(OH)2D3. PLOS ONE 13:5e0195427
    [Google Scholar]
  24. 24.
    Karsenty G. 1999. The genetic transformation of bone biology. Genes Dev. 13:233037–57
    [Google Scholar]
  25. 25.
    Khrimian L, Obri A, Ramos-Brosser M, Rousseaud A, Morceau S et al. 2017. Gpr158 mediates osteocalcin's regulation of cognition. J. Exp. Med. 214:102859–73
    [Google Scholar]
  26. 26.
    Komori T. 2020. What is the function of osteocalcin?. J. Oral. Biosci. 62:3223–27
    [Google Scholar]
  27. 27.
    Kondoh K, Lu Z, Ye X, Olson DP, Lowell BB, Buck LB. 2016. A specific area of olfactory cortex involved in stress hormone responses to predator odours. Nature 532:797103–6
    [Google Scholar]
  28. 28.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD et al. 2007. Endocrine regulation of energy metabolism by the skeleton. Cell 130:3456–69
    [Google Scholar]
  29. 29.
    Lian JB, Gundberg CM. 1988. Osteocalcin. Biochemical considerations and clinical applications. Clin. Orthop. Relat. Res. 226:267–91
    [Google Scholar]
  30. 30.
    Lin X, Parker L, McLennan E, Hayes A, McConnell G et al. 2018. Uncarboxylated osteocalcin enhances glucose uptake ex vivo in insulin-stimulated mouse oxidative but not glycolytic muscle. . Calcif. Tissue Int. 103:2198–205
    [Google Scholar]
  31. 31.
    Lin X, Parker L, McLennan E, Hayes A, McConnell G et al. 2019. Uncarboxylated osteocalcin enhances glucose uptake ex vivo in insulin-stimulated mouse oxidative but not glycolytic muscle. J. Bone Miner. Res. 34:81517–30
    [Google Scholar]
  32. 32.
    Mera P, Laue K, Ferron M, Confavreux C, Wei J et al. 2017. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 25:1218
    [Google Scholar]
  33. 33.
    Morrison NA, Shine J, Gragonas JC, Verkest V, McMenemy ML, Eisman JA. 1989. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 246:49341158–61
    [Google Scholar]
  34. 34.
    Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N et al. 2017. MC4R-dependent suppression of appetite by bone-derived lipocalin2. Nature 543:7645385–90
    [Google Scholar]
  35. 35.
    Munoz MT, Argente J. 2002. Anorexia nervosa in female adolescents: endocrine and bone mineral density disturbances. Eur. J. Endocrinol. 147:3275–86
    [Google Scholar]
  36. 36.
    Oury F, Ferron M, Huizhen W, Confavreux C, Xu L et al. 2015. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Investig. 125:52180
    [Google Scholar]
  37. 37.
    Oury F, Sumara G, Sumara O, Ferron M, Chang H et al. 2011. Endocrine regulation of male fertility by the skeleton. Cell 144:4796–809
    [Google Scholar]
  38. 38.
    Pauli D, Mahowald AP. 1990. Germ-line sex determination in Drosophila melanogaster. Trends Genet. 6:8259–64
    [Google Scholar]
  39. 39.
    Pedersen BK, Febbraio M. 2006. Exercise and interleukin-6 action. . Expert Rev. Endocrinol. Metab. 1:3319–21
    [Google Scholar]
  40. 40.
    Pedersen BK, Febbraio MA. 2008. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88:41379–406
    [Google Scholar]
  41. 41.
    Pi M, Faber P, Ekema G, Jackson PD, Ting A et al. 2005. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J. Biol. Chem. 280:4040201–9
    [Google Scholar]
  42. 42.
    Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC et al. 2016. Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157:51866–80
    [Google Scholar]
  43. 43.
    Pi M, Xu F, Ye R, Nishimoto SK, Kesterson RA et al. 2020. Humanized GPRC6AKGKY is a gain-of-function polymorphism in mice. Sci. Rep. 10:111143
    [Google Scholar]
  44. 44.
    Price PA. 1988. Role of vitamin-K-dependent proteins in bone metabolism. Annu. Rev. Nutr. 8:565–83
    [Google Scholar]
  45. 45.
    Prie D, Friedlander G. 2010. Reciprocal control of 1,25-dihydroxivitamin D and FGF23 formation involving the FGF23/Klotho system. Clin. J. Am. Soc. Nephrol. 5:91717–22
    [Google Scholar]
  46. 46.
    Qian Z, Li H, Yang H, Yang Q, Lu Z et al. 2021. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Sci. Adv. 7:43eabi5811
    [Google Scholar]
  47. 47.
    Reid IR, Chapman GE, Fraser TR, Davies AD, Surus AS et al. 1986. Low serum osteocalcin levels in glucocorticoid-treated asthmatics. J. Clin. Endocrinol. Metab. 62:2379–83
    [Google Scholar]
  48. 48.
    Rigotti NA, Neer RM, Skates SJ, Herzog DB, Nussbaum SR. 1991. The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 265:91133–38
    [Google Scholar]
  49. 49.
    Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. 1984. Osteoporosis in women with anorexia nervosa. N. Engl. J. Med. 311:251601–6
    [Google Scholar]
  50. 50.
    Sabek OM, Nishimoto SK, Fraga D, Tejpal N, Ricordi C, Gaber AO. 2015. Osteocalcin effect on human β-cells mass and function. Endocrinology 156:93137–46
    [Google Scholar]
  51. 51.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L et al. 2002. Leptin regulates bone formation via the sympathetic nervous system. Cell 111:3305–17
    [Google Scholar]
  52. 52.
    Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science 289:54841504–8
    [Google Scholar]
  53. 53.
    Termine JD. 1988. Non-collagen proteins in bone. Ciba Found. Symp. 136:178–202
    [Google Scholar]
  54. 54.
    Timothy MK, Pedersen BK, Lieberman DE. 2022. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 4:2170–79
    [Google Scholar]
  55. 55.
    Urist MR. 1964. Recent advances in physiology of calcification. J. Bone Joint Surg. Am. 46:4889–900
    [Google Scholar]
  56. 56.
    Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H et al. 2014. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J. Clin. Investig. 124:41781–93
    [Google Scholar]
  57. 57.
    Wei J, Hanna T, Suda N, Karsenty G, Patricia D. 2014. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:31021–31
    [Google Scholar]
  58. 58.
    Yadav VK, Berger JM, Singh P, Nagarajan P, Karsenty G. 2022. Embryonic osteocalcin signaling determines lifelong adrenal steroidogenesis and homeostasis in the mouse. J. Clin. Investig. 132:4e153752
    [Google Scholar]
  59. 59.
    Yeap BB. 2011. Osteocalcin: an endocrine link between bone and glucose metabolism. Expert Rev. Endocrinol. Metab. 6:2177–85
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-061121-091348
Loading
/content/journals/10.1146/annurev-nutr-061121-091348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error