1932

Abstract

Diet is an important determinant of health and consequently is often implicated in the development of disease, particularly gastrointestinal (GI) diseases, given the high prevalence of meal-related symptoms. The mechanisms underlying diet-driven pathophysiology are not well understood, but recent studies suggest that gut microbiota may mediate the effect of diet on GI physiology. In this review, we focus primarily on two distinct GI diseases where the role of diet has been best studied: irritable bowel syndrome and inflammatory bowel disease. We discuss how the concurrent and sequential utilization of dietary nutrients by the host and gut microbiota determines the eventual bioactive metabolite profiles in the gut and the biological effect of these metabolites on GI physiology. We highlight several concepts that can be gleaned from these findings, such as how distinct effects of an individual metabolite can influence diverse GI diseases, the effect of similar dietary interventions on multiple disease states, and the need for extensive phenotyping and data collection to help make personalized diet recommendations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061121-094908
2023-08-21
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/nutr/43/1/annurev-nutr-061121-094908.html?itemId=/content/journals/10.1146/annurev-nutr-061121-094908&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L et al. 2021. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590:151–56
    [Google Scholar]
  2. 2.
    Allam-Ndoul B, Guénard F, Barbier O, Vohl MC. 2016. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis. 15:69
    [Google Scholar]
  3. 3.
    Altun HK, Yıldız EA, Akın M. 2019. Effects of synbiotic therapy in mild-to-moderately active ulcerative colitis: a randomized placebo-controlled study. Turk. J. Gastroenterol. 30:313–20
    [Google Scholar]
  4. 4.
    Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. 2012. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143:1006–16.e4
    [Google Scholar]
  5. 5.
    Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG et al. 2020. The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients 12:2340
    [Google Scholar]
  6. 6.
    Armstrong HK, Bording-Jorgensen M, Santer DM, Zhang Z, Valcheva R et al. 2023. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164:228–40
    [Google Scholar]
  7. 7.
    Aziz I, Trott N, Briggs R, North JR, Hadjivassiliou M, Sanders DS. 2016. Efficacy of a gluten-free diet in subjects with irritable bowel syndrome–diarrhea unaware of their HLA-DQ2/8 genotype. Clin. Gastroenterol. Hepatol. 14:696–703.e1
    [Google Scholar]
  8. 8.
    Azpiroz F, Dubray C, Bernalier-Donadille A, Cardot JM, Accarino A et al. 2017. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 29:e12911
    [Google Scholar]
  9. 9.
    Bahrudin MF, Rani RA, Tamil AM, Mokhtar NM, Raja Ali RA 2020. Effectiveness of sterilized symbiotic drink containing Lactobacillus helveticus comparable to probiotic alone in patients with constipation-predominant irritable bowel syndrome. Dig. Dis. Sci. 65:541–49
    [Google Scholar]
  10. 10.
    Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. 2002. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am. J. Physiol. Gastrointest. Liver. Physiol. 282:G443–49
    [Google Scholar]
  11. 11.
    Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE et al. 2011. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease. Gut 60:923–29
    [Google Scholar]
  12. 12.
    Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. 2017. Irritable bowel syndrome: a gut microbiota–related disorder?. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G52–62
    [Google Scholar]
  13. 13.
    Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L et al. 2018. Gut microbiota–produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23:775–85.e5
    [Google Scholar]
  14. 14.
    Bogovič Matijašić B, Obermajer T, Lipoglavšek L, Sernel T, Locatelli I et al. 2016. Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: a randomized double-blind, placebo-controlled trial. J. Dairy Sci. 99:5008–21
    [Google Scholar]
  15. 15.
    Brotherton CS, Taylor AG, Bourguignon C, Anderson JG. 2014. A high-fiber diet may improve bowel function and health-related quality of life in patients with Crohn disease. Gastroenterol. Nurs. 37:206–16
    [Google Scholar]
  16. 16.
    Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R et al. 2019. Celiac disease: a comprehensive current review. BMC Med 17:142
    [Google Scholar]
  17. 17.
    Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP et al. 2016. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151:670–83
    [Google Scholar]
  18. 18.
    Cappello C, Tremolaterra F, Pascariello A, Ciacci C, Iovino P. 2013. A randomised clinical trial (RCT) of a symbiotic mixture in patients with irritable bowel syndrome (IBS): effects on symptoms, colonic transit and quality of life. Int. J. Colorect. Dis. 28:349–58
    [Google Scholar]
  19. 19.
    Casellas F, Borruel N, Torrejón A, Varela E, Antolin M et al. 2007. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment. Pharmacol. Ther. 25:91061–67
    [Google Scholar]
  20. 20.
    Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L et al. 2017. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut 66:1083–94
    [Google Scholar]
  21. 21.
    Castro J, Harrington AM, Hughes PA, Martin CM, Ge P et al. 2013. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology 145:1334–46.e1–11
    [Google Scholar]
  22. 22.
    Chaparro M, Garre A, Núñez Ortiz A, Diz-Lois Palomares MT, Rodríguez C et al. 2021. Incidence, clinical characteristics and management of inflammatory bowel disease in Spain: large-scale epidemiological study. J. Clin. Med. 10:2885
    [Google Scholar]
  23. 23.
    Chen H, Fu R, Dan L, Chen X, Sun Y et al. 2022. Meat consumption and all-cause mortality in 5763 patients with inflammatory bowel disease: a retrospective cohort study. eClinicalMedicine 47:101406
    [Google Scholar]
  24. 24.
    Chi L, Bian X, Gao B, Tu P, Lai Y et al. 2018. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules 23:367
    [Google Scholar]
  25. 25.
    Chiba M, Abe T, Tsuda H, Sugawara T, Tsuda S et al. 2010. Lifestyle-related disease in Crohn's disease: relapse prevention by a semi-vegetarian diet. World J. Gastroenterol. 16:2484–95
    [Google Scholar]
  26. 26.
    Chicco F, Magrì S, Cingolani A, Paduano D, Pesenti M et al. 2021. Multidimensional impact of Mediterranean diet on IBD patients. Inflamm. Bowel Dis. 27:1–9
    [Google Scholar]
  27. 27.
    Chlebicz-Wójcik A, Śliźewska K 2021. Probiotics, prebiotics, and synbiotics in the irritable bowel syndrome treatment: a review. Biomolecules 11:1154
    [Google Scholar]
  28. 28.
    Colomier E, Melchior C, Algera JP, Hreinsson JP, Störsrud S et al. 2022. Global prevalence and burden of meal-related abdominal pain. BMC Med. 20:71
    [Google Scholar]
  29. 29.
    Costea I, Mack DR, Lemaitre RN, Israel D, Marcil V et al. 2014. Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn's disease. Gastroenterology 146:929–31
    [Google Scholar]
  30. 30.
    D'Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M et al. 2017. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLOS ONE 12:e0180190
    [Google Scholar]
  31. 31.
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–21
    [Google Scholar]
  32. 32.
    Dey N, Wagner VE, Blanton LV, Cheng J, Fontana L et al. 2015. Regulators of gut motility revealed by a gnotobiotic model of diet–microbiome interactions related to travel. Cell 163:95–107
    [Google Scholar]
  33. 33.
    Dhaliwal J, Tuna M, Shah BR, Murthy S, Herrett E et al. 2021. Incidence of inflammatory bowel disease in South Asian and Chinese people: a population-based cohort study from Ontario, Canada. Clin. Epidemiol. 13:1109–18
    [Google Scholar]
  34. 34.
    Dionne J, Ford AC, Yuan Y, Chey WD, Lacy BE et al. 2018. A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low FODMAPs diet in treating symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 113:1290–300
    [Google Scholar]
  35. 35.
    Dior M, Delagrèverie H, Duboc H, Jouet P, Coffin B et al. 2016. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 28:1330–40
    [Google Scholar]
  36. 36.
    Dlugosz A, Nowak P, D'Amato M, Mohammadian Kermani G, Nyström J et al. 2015. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 27:1747–54
    [Google Scholar]
  37. 37.
    Dong C, Chan MS, Jantchou P, Racine A, Oldenburg B et al. 2022. Meat intake is associated with a higher risk of ulcerative colitis in a large European prospective cohort study. J. Crohn's Colitis 16:1187–96
    [Google Scholar]
  38. 38.
    Dunn KA, Moore-Connors J, Macintyre B, Stadnyk AW, Thomas NA et al. 2016. Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn's disease. Inflamm. Bowel Dis. 22:2853–62
    [Google Scholar]
  39. 39.
    Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P et al. 2022. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat. Microbiol. 7:680–94
    [Google Scholar]
  40. 40.
    El-Ayache N, Galligan JJ. 2019. 5-HT3 receptor signaling in serotonin transporter-knockout rats: a female sex–specific animal model of visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 316:G132–43
    [Google Scholar]
  41. 41.
    El Amrousy D, Elashry H, Salamah A, Maher S, Abd-Elsalam SM, Hasan M. 2022. Adherence to the Mediterranean diet improved clinical scores and inflammatory markers in children with active inflammatory bowel disease: a randomized trial. J. Inflamm. Res. 15:2075–86
    [Google Scholar]
  42. 42.
    El-Salhy M, Otterasen Ystad S, Mazzawi T, Gunderson D 2017. Dietary fiber in irritable bowel syndrome. Int. J. Mol. Med. 40:607–13
    [Google Scholar]
  43. 43.
    Faghfoori Z, Navai L, Shakerhosseini R, Somi MH, Nikniaz Z, Norouzi MF. 2011. Effects of an oral supplementation of germinated barley foodstuff on serum tumour necrosis factor α, interleukin-6 and -8 in patients with ulcerative colitis. Ann. Clin. Biochem. 48:233–37
    [Google Scholar]
  44. 44.
    Faghfoori Z, Shakerhosseini R, Navai L, Somi MH, Nikniaz Z, Abadi A. 2014. Effects of an oral supplementation of germinated barley foodstuff on serum CRP level and clinical signs in patients with ulcerative colitis. Health Promot. Perspect. 4:116–21
    [Google Scholar]
  45. 45.
    Farhangi MA, Vajdi M. 2020. Novel findings of the association between gut microbiota–derived metabolite trimethylamine N-oxide and inflammation: results from a systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 60:2801–23
    [Google Scholar]
  46. 46.
    Farid A, Hesham M, El-Dewak M, Amin A. 2020. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm. J. 28:1290–300
    [Google Scholar]
  47. 47.
    Fernández-Bañares F, Hinojosa J, Sánchez-Lombraña JL, Navarro E, Martínez-Salmerón JF et al. 1999. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Am. J. Gastroenterol. 94:427–33
    [Google Scholar]
  48. 48.
    Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV et al. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242–49
    [Google Scholar]
  49. 49.
    GBD 2017 Inflamm. Bowel Dis. Collab 2020. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5:17–30
    [Google Scholar]
  50. 50.
    Gearry RB, Irving PM, Barrett JS, Nathan DM, Shepherd SJ, Gibson PR. 2009. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease—a pilot study. J. Crohn's Colitis 3:8–14
    [Google Scholar]
  51. 51.
    Ghosh S, Molcan E, Decoffe D, Dai C, Gibson DL. 2013. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br. J. Nutr. 110:515–23
    [Google Scholar]
  52. 52.
    Gorjão R, Verlengia R, Lima TM, Soriano FG, Boaventura MFC et al. 2006. Effect of docosahexaenoic acid–rich fish oil supplementation on human leukocyte function. Clin. Nutr. 25:923–38
    [Google Scholar]
  53. 53.
    Grad S, Dumitrascu DL. 2020. Irritable bowel syndrome subtypes: new names for old medical conditions. Dig. Dis. 38:122–27
    [Google Scholar]
  54. 54.
    Guo M, Liu X, Tan Y, Kang F, Zhu X et al. 2021. Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct. 12:9380–90
    [Google Scholar]
  55. 55.
    Hallert C, Björck I, Nyman M, Pousette A, Grännö C, Svensson H. 2003. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm. Bowel Dis. 9:116–21
    [Google Scholar]
  56. 56.
    Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. 2014. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146:67–75.e5
    [Google Scholar]
  57. 57.
    Hanawa Y, Higashiyama M, Kurihara C, Tanemoto R, Ito S et al. 2021. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J. Gastroenterol. Hepatol. 36:3140–48
    [Google Scholar]
  58. 58.
    Hansen R, Mahdi G, McIntyre K, Macfarlane GT, Macfarlane S, Wilson DC. 2011. Synbiotics for inflammatory bowel disease: useful in adults but problematic in paediatrics. Arch. Dis. Child 96:A18–19
    [Google Scholar]
  59. 59.
    He T, Priebe MG, Harmsen HJM, Stellaard F, Sun X et al. 2006. Colonic fermentation may play a role in lactose intolerance in humans. J. Nutr. 136:58–63
    [Google Scholar]
  60. 60.
    He T, Venema K, Priebe MG, Welling GW, Brummer RJM, Vonk RJ. 2008. The role of colonic metabolism in lactose intolerance. Eur. J. Clin. Investig. 38:541–47
    [Google Scholar]
  61. 61.
    Heerasing N, Thompson B, Hendy P, Heap GA, Walker G et al. 2017. Exclusive enteral nutrition provides an effective bridge to safer interval elective surgery for adults with Crohn's disease. Aliment. Pharmacol. Ther. 45:660–69
    [Google Scholar]
  62. 62.
    Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD. 2014. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm. Bowel Dis. 20:1194–97
    [Google Scholar]
  63. 63.
    Heuschkel RB, Menache CC, Megerian JT, Baird AE. 2000. Enteral nutrition and corticosteroids in the treatment of acute Crohn's disease in children. J. Pediatr. Gastroenterol. Nutr. 31:8–15
    [Google Scholar]
  64. 64.
    Hou JK, Bincy A, El-Serag H. 2011. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106:563–73
    [Google Scholar]
  65. 65.
    Hrncirova L, Machova V, Trckova E, Krejsek J, Hrncir T 2019. Food preservatives induce proteobacteria dysbiosis in human-microbiota associated Nod2-deficient mice. Microorganisms 7:383
    [Google Scholar]
  66. 66.
    Huaman JW, Mego M, Manichanh C, Canellas N, Canueto D et al. 2018. Effects of prebiotics versus a diet low in FODMAPs in patients with functional gut disorders. Gastroenterology 155:1004–7
    [Google Scholar]
  67. 67.
    Jalandra R, Dalal N, Yadav AK, Verma D, Sharma M et al. 2021. Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl. Microbiol. Biotechnol. 105:7651–60
    [Google Scholar]
  68. 68.
    Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault M-C, Carbonnel F. 2010. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105:2195–201
    [Google Scholar]
  69. 69.
    Jess T, Frisch M, Simonsen J. 2013. Trends in overall and cause-specific mortality among patients with inflammatory bowel disease from 1982 to 2010. Clin. Gastroenterol. Hepatol. 11:43–48
    [Google Scholar]
  70. 70.
    Johnson T, Macdonald S, Hill SM, Thomas A, Murphy MS. 2006. Treatment of active Crohn's disease in children using partial enteral nutrition with liquid formula: a randomised controlled trial. Gut 55:356–61
    [Google Scholar]
  71. 71.
    Joossens M, De Preter V, Ballet V, Verbeke K, Rutgeerts P, Vermeire S 2012. Effect of oligofructose-enriched inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn's disease: results from a double-blinded randomised controlled trial. Gut 61:958
    [Google Scholar]
  72. 72.
    Kanauchi O, Oshima T, Andoh A, Shioya M, Mitsuyama K. 2008. Germinated barley foodstuff ameliorates inflammation in mice with colitis through modulation of mucosal immune system. Scand. J. Gastroenterol. 43:1346–52
    [Google Scholar]
  73. 73.
    Kaplan GG, Ng SC. 2017. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152:313–21.e2
    [Google Scholar]
  74. 74.
    Kasti A, Petsis K, Lambrinou S, Katsas K, Nikolaki M et al. 2022. A combination of Mediterranean and low-FODMAP diets for managing IBS symptoms?. Ask your gut! Microorganisms 10:751
    [Google Scholar]
  75. 75.
    Kedia S, Ahuja V. 2018. Is the emergence of inflammatory bowel disease a prime example of “the third epidemiological transition”?. Indian J. Gastroenterol. 37:183–85
    [Google Scholar]
  76. 76.
    Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71
    [Google Scholar]
  77. 77.
    Keszthelyi D, Troost FJ, Masclee AA. 2009. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 21:1239–49
    [Google Scholar]
  78. 78.
    Khademi Z, Milajerdi A, Bagher L, Esmaillzadeh A. 2021. Dietary intake of total carbohydrates, sugar and sugar-sweetened beverages, and risk of inflammatory bowel disease: a systematic review and meta-analysis of prospective cohort studies. Front. Nutr. 8:707795
    [Google Scholar]
  79. 79.
    Kok CR, Hutkins R. 2018. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 76:Suppl. 14–15
    [Google Scholar]
  80. 80.
    Koochakpoor G, Salari-Moghaddam A, Keshteli AH, Esmaillzadeh A, Adibi P. 2021. Association of coffee and caffeine intake with irritable bowel syndrome in adults. Front. Nutr. 8:632469
    [Google Scholar]
  81. 81.
    Lamas B, Hernandez-Galan L, Galipeau HJ, Constante M, Clarizio A et al. 2020. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci. Transl. Med. 12:eaba0624
    [Google Scholar]
  82. 82.
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22:598–605
    [Google Scholar]
  83. 83.
    Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A et al. 2019. The food additive maltodextrin promotes endoplasmic reticulum stress–driven mucus depletion and exacerbates intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 7:457–73
    [Google Scholar]
  84. 84.
    Lebwohl B, Rubio-Tapia A. 2021. Epidemiology, presentation, and diagnosis of celiac disease. Gastroenterology 160:63–75
    [Google Scholar]
  85. 85.
    Levine A, Wine E, Assa A, Sigall Boneh R, Shaoul R et al. 2019. Crohn's disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157:440–50.e8
    [Google Scholar]
  86. 86.
    Levrat MA, Remesy C, Demigne C. 1991. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J. Nutr. 121:1730–37
    [Google Scholar]
  87. 87.
    Lewis JD, Sandler RS, Brotherton C, Brensinger C, Li H et al. 2021. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn's disease. Gastroenterology 161:837–52.e9
    [Google Scholar]
  88. 88.
    Li G, Young KD. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159:402–10
    [Google Scholar]
  89. 89.
    Li WT, Luo QQ, Wang B, Chen X, Yan XJ et al. 2019. Bile acids induce visceral hypersensitivity via mucosal mast cell–to–nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis. FASEB J. 33:2435–50
    [Google Scholar]
  90. 90.
    Liu X, Wu Y, Li F, Zhang D. 2015. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr. Res. 35:753–58
    [Google Scholar]
  91. 91.
    Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A et al. 2018. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology 154:1037–46.e2
    [Google Scholar]
  92. 92.
    Locke GR 3rd, Zinsmeister AR, Talley NJ, Fett SL, Melton LJ 2000. Risk factors for irritable bowel syndrome: role of analgesics and food sensitivities. Am. J. Gastroenterol. 95:157–65
    [Google Scholar]
  93. 93.
    MacLellan A, Connors J, Grant S, Cahill L, Langille MGI, Van Limbergen J. 2017. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn's disease: a review. Nutrients 9:447
    [Google Scholar]
  94. 94.
    Makharia A, Catassi C, Makharia GK. 2015. The overlap between irritable bowel syndrome and non-celiac gluten sensitivity: a clinical dilemma. Nutrients 7:10417–26
    [Google Scholar]
  95. 95.
    Mars RAT, Yang Y, Ward T, Houtti M, Priya S et al. 2020. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182:1460–73.e17
    [Google Scholar]
  96. 96.
    Menta PL, Andrade ME, Leocardio P, Fraga J, Silva M et al. 2018. Gluten intake increases bacterial translocation and aggravates intestinal inflammation in experimental colitis. Clin. Nutr. 37:Suppl. 1S69
    [Google Scholar]
  97. 97.
    Miao Z, Lin JS, Mao Y, Chen GD, Zeng FF et al. 2020. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident type 2 diabetes: a prospective cohort study. Diabetes Care 43:2435–43
    [Google Scholar]
  98. 98.
    Min YW, Park SU, Jang YS, Kim YH, Rhee PL et al. 2012. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis. World J. Gastroenterol. 18:4563–69
    [Google Scholar]
  99. 99.
    Moayyedi P, Quigley EM, Lacy BE, Lembo AJ, Saito YA et al. 2014. The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 109:1367–74
    [Google Scholar]
  100. 100.
    Molinaro A, Wahlström A, Marschall HU. 2018. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29:31–41
    [Google Scholar]
  101. 101.
    Monsbakken KW, Vandvik PO, Farup PG. 2006. Perceived food intolerance in subjects with irritable bowel syndrome—etiology, prevalence and consequences. Eur. J. Clin. Nutr. 60:667–72
    [Google Scholar]
  102. 102.
    Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML et al. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–13
    [Google Scholar]
  103. 103.
    Mutalib M, Bezanti K, Elawad M, Kiparissi F. 2016. The role of exclusive enteral nutrition in the management of orofacial granulomatosis in children. World J. Pediatr. 12:421–24
    [Google Scholar]
  104. 104.
    Naimi S, Viennois E, Gewirtz AT, Chassaing B 2021. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9:66
    [Google Scholar]
  105. 105.
    Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S et al. 2021. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374:n1554
    [Google Scholar]
  106. 106.
    Navas-López VM, Blasco-Alonso J, Lacasa Maseri S, Girón Fernández-Crehuet F, Serrano Nieto MJ et al. 2015. [Exclusive enteral nutrition continues to be first line therapy for pediatric Crohn's disease in the era of biologics.]. Anal. Pediatr. 83:47–54 ( in Spanish )
    [Google Scholar]
  107. 107.
    Ng SC, Bernstein CN, Vatn MH, Lakatos PL, Loftus EV et al. 2013. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62:630–49
    [Google Scholar]
  108. 108.
    Nickerson KP, McDonald C. 2012. Crohn's disease–associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLOS ONE 7:e52132
    [Google Scholar]
  109. 109.
    Nie JY, Zhao Q 2017. Beverage consumption and risk of ulcerative colitis. Medicine 96:e9070
    [Google Scholar]
  110. 110.
    Niv E, Halak A, Tiommny E, Yanai H, Strul H et al. 2016. Randomized clinical study: partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome. Nutr. Metab. 13:10
    [Google Scholar]
  111. 111.
    Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, Burton D, Carlson P et al. 2010. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin. Gastroenterol. Hepatol. 8:159–65
    [Google Scholar]
  112. 112.
    Pearl DS, Masoodi M, Eiden M, Brümmer J, Gullick D et al. 2014. Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J. Crohn's Colitis 8:70–79
    [Google Scholar]
  113. 113.
    Pecora F, Persico F, Gismondi P, Fornaroli F, Iuliano S et al. 2020. Gut microbiota in celiac disease: Is there any role for probiotics?. Front. Immunol. 11:957
    [Google Scholar]
  114. 114.
    Pedersen N, Ankersen DV, Felding M, Wachmann H, Végh Z et al. 2017. Low-FODMAP diet reduces irritable bowel symptoms in patients with inflammatory bowel disease. World J. Gastroenterol. 23:3356–66
    [Google Scholar]
  115. 115.
    Pendyala S, Walker JM, Holt PR. 2012. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142:1100–1.e2
    [Google Scholar]
  116. 116.
    Perrin A-E, Dallongeville J, Ducimetière P, Ruidavets J-B, Schlienger J-L et al. 2005. Interactions between traditional regional determinants and socio-economic status on dietary patterns in a sample of French men. Br. J. Nutr. 93:109–14
    [Google Scholar]
  117. 117.
    Perrin P, Pierre F, Patry Y, Champ M, Berreur M et al. 2001. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut 48:53–61
    [Google Scholar]
  118. 118.
    Preidis GA, Weizman AV, Kashyap PC, Morgan RL. 2020. AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology 159:708–38.e4
    [Google Scholar]
  119. 119.
    Prince AC, Myers CE, Joyce T, Irving P, Lomer M, Whelan K. 2016. Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 22:1129–36
    [Google Scholar]
  120. 120.
    Raboni S, Bettati S, Mozzarelli A. 2009. Tryptophan synthase: a mine for enzymologists. Cell Mol. Life Sci. 66:2391–403
    [Google Scholar]
  121. 121.
    Racine A, Carbonnel F, Chan SSM, Hart AR, Bueno-de-Mesquita HB et al. 2016. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm. Bowel Dis. 22:345–54
    [Google Scholar]
  122. 122.
    Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR et al. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29:1395–403
    [Google Scholar]
  123. 123.
    Rej A, Sanders DS, Shaw CC, Buckle R, Trott N et al. 2022. Efficacy and acceptability of dietary therapies in non-constipated irritable bowel syndrome: a randomized trial of traditional dietary advice, the low FODMAP diet, and the gluten-free diet. Clin. Gastroenterol. Hepatol. 20:2876–87.e15
    [Google Scholar]
  124. 124.
    Roberts CL, Keita ÅV, Duncan SH, O'Kennedy N, Söderholm JD et al. 2010. Translocation of Crohn's disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59:1331–39
    [Google Scholar]
  125. 125.
    Rogha M, Esfahani MZ, Zargarzadeh AH. 2014. The efficacy of a synbiotic containing Bacillus coagulans in treatment of irritable bowel syndrome: a randomized placebo-controlled trial. Gastroenterol. Hepatol. Bed Bench 7:156–63
    [Google Scholar]
  126. 126.
    Rufino MN, da Costa AL, Jorge EN, Paiano VF, Camparoto ML et al. 2022. Synbiotics improve clinical indicators of ulcerative colitis: systematic review with meta-analysis. Nutr. Rev. 80:157–64
    [Google Scholar]
  127. 127.
    Scaioli E, Sartini A, Bellanova M, Campieri M, Festi D et al. 2018. Eicosapentaenoic acid reduces fecal levels of calprotectin and prevents relapse in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 16:1268–75.e2
    [Google Scholar]
  128. 128.
    Selmin OI, Papoutsis AJ, Hazan S, Smith C, Greenfield N et al. 2021. n-6 high fat diet induces gut microbiome dysbiosis and colonic inflammation. Int. J. Mol. Sci. 22:6919
    [Google Scholar]
  129. 129.
    Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS et al. 2009. Maresins: novel macrophage mediators with potent anti-inflammatory and proresolving actions. J. Exp. Med. 206:15–23
    [Google Scholar]
  130. 130.
    Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S et al. 2020. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Front. Nutr. 7:6
    [Google Scholar]
  131. 131.
    Shen L, Yang Y, Ou T, Key CCC, Tong SH et al. 2017. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J. Lipid Res. 58:1808–21
    [Google Scholar]
  132. 132.
    Singh P, Grabauskas G, Zhou SY, Gao J, Zhang Y, Owyang C. 2021. High FODMAP diet causes barrier loss via lipopolysaccharide-mediated mast cell activation. JCI Insight 6:e146529
    [Google Scholar]
  133. 133.
    Skagen K, Trøseid M, Ueland T, Holm S, Abbas A et al. 2016. The carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 247:64–69
    [Google Scholar]
  134. 134.
    Skrzydło-Radomańska B, Prozorow-Król B, Cichoż-Lach H, Majsiak E, Bierla JB et al. 2020. The effectiveness of synbiotic preparation containing Lactobacillus and Bifidobacterium probiotic strains and short chain fructooligosaccharides in patients with diarrhea predominant irritable bowel syndrome—a randomized double-blind, placebo-controlled study. Nutrients 12:1999
    [Google Scholar]
  135. 135.
    Sloan TJ, Jalanka J, Major GAD, Krishnasamy S, Pritchard S et al. 2018. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLOS ONE 13:e0201410
    [Google Scholar]
  136. 136.
    So D, Whelan K, Rossi M, Morrison M, Holtmann G et al. 2018. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107:965–83
    [Google Scholar]
  137. 137.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–15
    [Google Scholar]
  138. 138.
    Staudacher HM, Lomer MCE, Farquharson FM, Louis P, Fava F et al. 2017. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: a randomized controlled trial. Gastroenterology 153:936–47
    [Google Scholar]
  139. 139.
    Sun H, Ma Y, An S, Wang Z 2021. Altered gene expression signatures by calcitonin gene–related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol. Motil. 33:e14073
    [Google Scholar]
  140. 140.
    Svahn SL, Gutiérrez S, Ulleryd MA, Nookaew I, Osla V et al. 2019. Dietary polyunsaturated fatty acids promote neutrophil accumulation in the spleen by altering chemotaxis and delaying cell death. Infect. Immun. 87:e00270
    [Google Scholar]
  141. 141.
    Szilagyi A, Ishayek N. 2018. Lactose intolerance, dairy avoidance, and treatment options. Nutrients 10:1994
    [Google Scholar]
  142. 142.
    Tjonneland A, Overvad K, Bergmann MM, Nagel G, Linseisen J et al. 2009. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58:1606–11
    [Google Scholar]
  143. 143.
    Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I et al. 2015. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277:717–26
    [Google Scholar]
  144. 144.
    Uebanso T, Ohnishi A, Kitayama R, Yoshimoto A, Nakahashi M et al. 2017. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients 9:560
    [Google Scholar]
  145. 145.
    Vernocchi P, Del Chierico F, Putignani L. 2020. Gut microbiota metabolism and interaction with food components. Int. J. Mol. Sci. 21:3688
    [Google Scholar]
  146. 146.
    Wall CL, Day AS, Gearry RB. 2013. Use of exclusive enteral nutrition in adults with Crohn's disease: a review. World J. Gastroenterol. 19:7652–60
    [Google Scholar]
  147. 147.
    Watson H, Mitra S, Croden FC, Taylor M, Wood HM et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67:1974–83
    [Google Scholar]
  148. 148.
    Wiese DM, Horst SN, Brown CT, Allaman MM, Hodges ME et al. 2016. Serum fatty acids are correlated with inflammatory cytokines in ulcerative colitis. PLOS ONE 11:e0156387
    [Google Scholar]
  149. 149.
    Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M et al. 2014. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503
    [Google Scholar]
  150. 150.
    Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. 2007. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 132:615–27
    [Google Scholar]
  151. 151.
    Yamamoto T, Shiraki M, Nakahigashi M, Umegae S, Matsumoto K. 2013. Enteral nutrition to suppress postoperative Crohn's disease recurrence: a five-year prospective cohort study. Int. J. Colorect. Dis. 28:335–40
    [Google Scholar]
  152. 152.
    Yang Q, Gao X, Chen H, Li M, Wu X et al. 2017. Efficacy of exclusive enteral nutrition in complicated Crohn's disease. Scand. J. Gastroenterol. 52:995–1001
    [Google Scholar]
  153. 153.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27
    [Google Scholar]
  154. 154.
    Zheng X, Huang F, Zhao A, Lei S, Zhang Y et al. 2017. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 15:120
    [Google Scholar]
  155. 155.
    Zielińska M, Fichna J, Bashashati M, Habibi S, Sibaev A et al. 2017. G protein–coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. Neurogastroenterol. Motil. 29:e13025
    [Google Scholar]
  156. 156.
    Zimmermann J, De Fazio L, Kaden-Volynets V, Hitzmann B, Bischoff SC. 2022. Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis. Dig. Dis. Sci. 67:4422–33
    [Google Scholar]
  157. 157.
    Zito FP, Polese B, Vozzella L, Gala A, Genovese D et al. 2016. Good adherence to Mediterranean diet can prevent gastrointestinal symptoms: a survey from southern Italy. World J. Gastrointest. Pharmacol. Ther. 7:564–71
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-061121-094908
Loading
/content/journals/10.1146/annurev-nutr-061121-094908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error