1932

Abstract

The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as , , , and potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061121-100742
2024-08-29
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/nutr/44/1/annurev-nutr-061121-100742.html?itemId=/content/journals/10.1146/annurev-nutr-061121-100742&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen JE, Maizels RM. 2011.. Diversity and dialogue in immunity to helminths. . Nat. Rev. Immunol. 11::37588
    [Crossref] [Google Scholar]
  2. 2.
    Amamou A, O'Mahony C, Leboutte M, Savoye G, Ghosh S, Marion-Letellier R. 2022.. Gut microbiota, macrophages and diet: an intriguing new triangle in intestinal fibrosis. . Microorganisms 10::490
    [Crossref] [Google Scholar]
  3. 3.
    Aravindhan V, Anand G. 2017.. Cell type-specific immunomodulation induced by helminthes: effect on metainflammation, insulin resistance and type-2 diabetes. . Am. J. Trop. Med. Hyg. 97::165061
    [Crossref] [Google Scholar]
  4. 4.
    Aravindhan V, Mohan V, Surendar J, Muralidhara Rao M, Pavankumar N, et al. 2010.. Decreased prevalence of lymphatic filariasis among diabetic subjects associated with a diminished pro-inflammatory cytokine response (CURES 83). . PLOS Negl. Trop. Dis. 4::e707
    [Crossref] [Google Scholar]
  5. 5.
    Babu S, Nutman TB. 2014.. Immunology of lymphatic filariasis. . Parasite Immunol. 36::33846
    [Crossref] [Google Scholar]
  6. 6.
    Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. 2020.. Type 2 diabetes and its impact on the immune system. . Curr. Diabetes Rev. 16::44249
    [Google Scholar]
  7. 7.
    Berbudi A, Surendar J, Ajendra J, Gondorf F, Schmidt D, et al. 2016.. Filarial infection or antigen administration improves glucose tolerance in diet-induced obese mice. . J. Innate Immun. 8::60116
    [Crossref] [Google Scholar]
  8. 8.
    Bhargava P, Li C, Stanya KJ, Jacobi D, Dai L, et al. 2012.. Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. . Nat. Med. 18::166572
    [Crossref] [Google Scholar]
  9. 9.
    Brenchley JM, Douek DC. 2012.. Microbial translocation across the GI tract. . Annu. Rev. Immunol. 30::14973
    [Crossref] [Google Scholar]
  10. 10.
    Camaya I, O'Brien B, Donnelly S. 2023.. How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk. . Front. Endocrinol. 14::1205219
    [Crossref] [Google Scholar]
  11. 11.
    Chawla A, Nguyen KD, Goh YP. 2011.. Macrophage-mediated inflammation in metabolic disease. . Nat. Rev. Immunol. 11::73849
    [Crossref] [Google Scholar]
  12. 12.
    Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, et al. 2012.. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. . Nat. Med. 18::26066
    [Crossref] [Google Scholar]
  13. 13.
    Chen Y, Lu J, Huang Y, Wang T, Xu Y, et al. 2013.. Association of previous schistosome infection with diabetes and metabolic syndrome: a cross-sectional study in rural China. . J. Clin. Endocrinol. Metab. 98::E28387
    [Crossref] [Google Scholar]
  14. 14.
    Contreras-Bolivar V, Garcia-Fontana B, Garcia-Fontana C, Munoz-Torres M. 2021.. Mechanisms involved in the relationship between vitamin D and insulin resistance: impact on clinical practice. . Nutrients 13::3491
    [Crossref] [Google Scholar]
  15. 15.
    Cortes-Selva D, Elvington AF, Ready A, Rajwa B, Pearce EJ, et al. 2018.. Schistosoma mansoni infection-induced transcriptional changes in hepatic macrophage metabolism correlate with an athero-protective phenotype. . Front. Immunol. 9::2580
    [Crossref] [Google Scholar]
  16. 16.
    Croese J, Giacomin P, Navarro S, Clouston A, McCann L, et al. 2015.. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. . J. Allergy Clin. Immunol. 135::50816
    [Crossref] [Google Scholar]
  17. 17.
    Dalmas E, Lehmann FM, Dror E, Wueest S, Thienel C, et al. 2017.. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. . Immunity 47::92842.e7
    [Crossref] [Google Scholar]
  18. 18.
    Danilowicz-Luebert E, O'Regan NL, Steinfelder S, Hartmann S. 2011.. Modulation of specific and allergy-related immune responses by helminths. . J. Biomed. Biotechnol. 2011::821578
    [Google Scholar]
  19. 19.
    Das UN. 2021.. Genes, genetic polymorphism, diet, soluble mediators, and their role in the pathobiology of type 2 diabetes mellitus and hypertension. . Am. J. Hypertens. 34::58387
    [Crossref] [Google Scholar]
  20. 20.
    Dasan B, Rajamanickam A, Munisankar S, Menon PA, Ahamed SF, et al. 2023.. Hookworm infection induces glycometabolic modulation in South Indian individuals with type 2 diabetes. . IJID Reg. 9::1824
    [Crossref] [Google Scholar]
  21. 21.
    de Ruiter K, Tahapary DL, Sartono E, Soewondo P, Supali T, et al. 2017.. Helminths, hygiene hypothesis and type 2 diabetes. . Parasite Immunol. 39::e12404
    [Crossref] [Google Scholar]
  22. 22.
    de Ruiter K, Tahapary DL, Wammes LJ, Wiria AE, Hamid F, et al. 2017.. The effect of three-monthly albendazole treatment on Th2 responses: differential effects on IgE and IL-5. . Parasite Immunol. 39::e12428
    [Crossref] [Google Scholar]
  23. 23.
    Donath MY, Dinarello CA, Mandrup-Poulsen T. 2019.. Targeting innate immune mediators in type 1 and type 2 diabetes. . Nat. Rev. Immunol. 19::73446
    [Crossref] [Google Scholar]
  24. 24.
    Dubey P, Thakur V, Chattopadhyay M. 2020.. Role of minerals and trace elements in diabetes and insulin resistance. . Nutrients 12::1864
    [Crossref] [Google Scholar]
  25. 25.
    Fernandez-Millan E, Guillen C. 2022.. Multi-organ crosstalk with endocrine pancreas: a focus on how gut microbiota shapes pancreatic beta-cells. . Biomolecules 12::104
    [Crossref] [Google Scholar]
  26. 26.
    Gao YR, Zhang RH, Li R, Tang CL, Pan Q, Pen P. 2021.. The effects of helminth infections against type 2 diabetes. . Parasitol. Res. 120::193542
    [Crossref] [Google Scholar]
  27. 27.
    Gause WC, Wynn TA, Allen JE. 2013.. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. . Nat. Rev. Immunol. 13::60714
    [Crossref] [Google Scholar]
  28. 28.
    Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, et al. 2012.. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. . PLOS Pathog. 8::e1002520
    [Crossref] [Google Scholar]
  29. 29.
    Genser L, Aguanno D, Soula HA, Dong L, Trystram L, et al. 2018.. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. . J. Pathol. 246::21730
    [Crossref] [Google Scholar]
  30. 30.
    Gol S, Pena RN, Rothschild MF, Tor M, Estany J. 2018.. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. . Sci. Rep. 8::14336
    [Crossref] [Google Scholar]
  31. 31.
    Guigas B, Molofsky AB. 2015.. A worm of one's own: how helminths modulate host adipose tissue function and metabolism. . Trends Parasitol. 31::43541
    [Crossref] [Google Scholar]
  32. 32.
    Hajhashemy Z, Shahdadian F, Ziaei R, Saneei P. 2021.. Serum vitamin D levels in relation to abdominal obesity: a systematic review and dose-response meta-analysis of epidemiologic studies. . Obes. Rev. 22::e13134
    [Crossref] [Google Scholar]
  33. 33.
    Hays R, Esterman A, Giacomin P, Loukas A, McDermott R. 2015.. Does Strongyloides stercoralis infection protect against type 2 diabetes in humans? Evidence from Australian Aboriginal adults. . Diabetes Res. Clin. Pract. 107::35561
    [Crossref] [Google Scholar]
  34. 34.
    Hays R, Esterman A, McDermott R. 2015.. Type 2 diabetes mellitus is associated with Strongyloides stercoralis treatment failure in Australian Aboriginals. . PLOS Negl. Trop. Dis. 9::e0003976
    [Crossref] [Google Scholar]
  35. 35.
    Hesham MS, Edariah AB, Norhayati M. 2004.. Intestinal parasitic infections and micronutrient deficiency: a review. . Med. J. Malaysia 59::28493
    [Google Scholar]
  36. 36.
    Hewitson JP, Grainger JR, Maizels RM. 2009.. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. . Mol. Biochem. Parasitol. 167::111
    [Crossref] [Google Scholar]
  37. 37.
    Hotamisligil GS. 2006.. Inflammation and metabolic disorders. . Nature 444::86067
    [Crossref] [Google Scholar]
  38. 38.
    Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. 2008.. Helminth infections: the great neglected tropical diseases. . J. Clin. Investig. 118::131121
    [Crossref] [Google Scholar]
  39. 39.
    Htun NSN, Odermatt P, Paboriboune P, Sayasone S, Vongsakid M, et al. 2018.. Association between helminth infections and diabetes mellitus in adults from the Lao People's Democratic Republic: a cross-sectional study. . Infect. Dis. Poverty 7::105
    [Crossref] [Google Scholar]
  40. 40.
    Hübner MP, Shi Y, Torrero MN, Mueller E, Larson D, et al. 2012.. Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β. . J. Immunol. 188::55968
    [Crossref] [Google Scholar]
  41. 41.
    Hussaarts L, Garcia-Tardon N, van Beek L, Heemskerk MM, Haeberlein S, et al. 2015.. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. . FASEB J. 29::302739
    [Crossref] [Google Scholar]
  42. 42.
    Ing R, Su Z, Scott ME, Koski KG. 2000.. Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein-malnourished mice. . PNAS 97::707883
    [Crossref] [Google Scholar]
  43. 43.
    Kang SA, Choi JH, Baek KW, Lee DI, Jeong MJ, Yu HS. 2021.. Trichinella spiralis infection ameliorated diet-induced obesity model in mice. . Int. J. Parasitol. 51::6371
    [Crossref] [Google Scholar]
  44. 44.
    Khudhair Z, Alhallaf R, Eichenberger RM, Field M, Krause L, et al. 2022.. Administration of hookworm excretory/secretory proteins improves glucose tolerance in a mouse model of type 2 diabetes. . Biomolecules 12::637
    [Crossref] [Google Scholar]
  45. 45.
    Khudhair Z, Alhallaf R, Eichenberger RM, Whan J, Kupz A, et al. 2020.. Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of type 2 diabetes. . Front. Endocrinol. 11::606530
    [Crossref] [Google Scholar]
  46. 46.
    Koski KG, Scott ME. 2001.. Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. . Annu. Rev. Nutr. 21::297321
    [Crossref] [Google Scholar]
  47. 47.
    Kostov K. 2019.. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling. . Int. J. Mol. Sci. 20::1351
    [Crossref] [Google Scholar]
  48. 48.
    Kwiat VR, Reis G, Valera IC, Parvatiyar K, Parvatiyar MS. 2022.. Autoimmunity as a sequela to obesity and systemic inflammation. . Front. Physiol. 13::887702
    [Crossref] [Google Scholar]
  49. 49.
    Levy M, Blacher E, Elinav E. 2017.. Microbiome, metabolites and host immunity. . Curr. Opin. Microbiol. 35::815
    [Crossref] [Google Scholar]
  50. 50.
    Li WZ, Stirling K, Yang JJ, Zhang L. 2020.. Gut microbiota and diabetes: from correlation to causality and mechanism. . World J. Diabetes 11::293308
    [Crossref] [Google Scholar]
  51. 51.
    Llinas-Caballero K, Caraballo L. 2022.. Helminths and bacterial microbiota: the interactions of two of humans' “old friends. .” Int. J. Mol. Sci. 23::13358
    [Crossref] [Google Scholar]
  52. 52.
    Lumb FE, Crowe J, Doonan J, Suckling CJ, Selman C, et al. 2019.. Synthetic small molecule analogues of the immunomodulatory Acanthocheilonema viteae product ES-62 promote metabolic homeostasis during obesity in a mouse model. . Mol. Biochem. Parasitol. 234::111232
    [Crossref] [Google Scholar]
  53. 53.
    Lumeng CN, Bodzin JL, Saltiel AR. 2007.. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. . J. Clin. Investig. 117::17584
    [Crossref] [Google Scholar]
  54. 54.
    Luo X, Zhu Y, Liu R, Song J, Zhang F, et al. 2017.. Praziquantel treatment after Schistosoma japonicum infection maintains hepatic insulin sensitivity and improves glucose metabolism in mice. . Parasit. Vectors 10::453
    [Crossref] [Google Scholar]
  55. 55.
    Machado ER, Matos NO, Rezende SM, Carlos D, Silva TC, et al. 2018.. Host-parasite interactions in individuals with type 1 and 2 diabetes result in higher frequency of Ascaris lumbricoides and Giardia lamblia in type 2 diabetic individuals. . J. Diabetes Res. 2018::4238435
    [Crossref] [Google Scholar]
  56. 56.
    Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th Ed. Sci. Comm. 2021.. IDF Diabetes Atlas. Brussels:: Int. Diabetes Fed. , 10th ed.. https://diabetesatlas.org
    [Google Scholar]
  57. 57.
    Marzook A, Tomas A, Jones B. 2021.. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. . Front. Endocrinol. 12::678055
    [Crossref] [Google Scholar]
  58. 58.
    Mayendraraj A, Rosenkilde MM, Gasbjerg LS. 2022.. GLP-1 and GIP receptor signaling in beta cells—a review of receptor interactions and co-stimulation. . Peptides 151::170749
    [Crossref] [Google Scholar]
  59. 59.
    McGuire E, Welch C, Melzer M. 2019.. Is Strongyloides seropositivity associated with diabetes mellitus? A retrospective case-control study in an East London NHS Trust. . Trans. R. Soc. Trop. Med. Hyg. 113::18994
    [Crossref] [Google Scholar]
  60. 60.
    Mendonca SC, Gonçalves-Pires MDRF, Rodrigues RM, Ferreira A Jr., Costa-Cruz JM. 2006.. Is there an association between positive Strongyloides stercoralis serology and diabetes mellitus?. Acta Trop. 99::1025
    [Crossref] [Google Scholar]
  61. 61.
    Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. 2018.. Metabolic crosstalk between host and parasitic pathogens. . In Metabolic Interaction in Infection, , 42158. Cham, Switz.: Springer
    [Crossref] [Google Scholar]
  62. 62.
    Morimoto M, Azuma N, Kadowaki H, Abe T, Suto Y. 2017.. Regulation of type 2 diabetes by helminth-induced Th2 immune response. . J. Vet. Med. Sci. 78::185564
    [Crossref] [Google Scholar]
  63. 63.
    Moyat M, Coakley G, Harris NL. 2019.. The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. . Clin. Transl. Immunol. 8::e01089
    [Crossref] [Google Scholar]
  64. 64.
    Nazligul Y, Sabuncu T, Ozbilge H. 2001.. Is there a predisposition to intestinal parasitosis in diabetic patients?. Diabetes Care 24::15034
    [Crossref] [Google Scholar]
  65. 65.
    Obi PO, Bydak B, Safdar A, Saleem A. 2020.. Extracellular vesicles and circulating miRNAs—exercise-induced mitigation of obesity and associated metabolic diseases. . In Pathophysiology of Obesity-Induced Health Complications, ed. P Tappia, B Ramjiawan, N Dhalla , pp. 5980. Cham, Switzerland:: Springer
    [Google Scholar]
  66. 66.
    Odegaard JI, Chawla A. 2011.. Alternative macrophage activation and metabolism. . Annu. Rev. Pathol. Mech. Dis. 6::27597
    [Crossref] [Google Scholar]
  67. 67.
    Odegaard JI, Chawla A. 2013.. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. . Science 339::17277
    [Crossref] [Google Scholar]
  68. 68.
    Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. 2022.. Comorbidities involving parasitic diseases: a look at the benefits and complications. . Exp. Biol. Med. 247::181926
    [Crossref] [Google Scholar]
  69. 69.
    Oyebode OA, Erukainure OL, Sanni O, Islam MS. 2022.. Crassocephalum rubens (Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats. . Drug Chem. Toxicol. 45::48190
    [Crossref] [Google Scholar]
  70. 70.
    Pace F, Carvalho BM, Zanotto TM, Santos A, Guadagnini D, et al. 2018.. Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism. . Pharmacol. Res. 132::3346
    [Crossref] [Google Scholar]
  71. 71.
    Pearce EJ, Kane CM, Sun J, Taylor JJ, McKee AS, Cervi L. 2004.. Th2 response polarization during infection with the helminth parasite Schistosoma mansoni. . Immunol. Rev. 201::11726
    [Crossref] [Google Scholar]
  72. 72.
    Pickup JC, Mattock MB, Chusney GD, Burt D. 1997.. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. . Diabetologia 40::128692
    [Crossref] [Google Scholar]
  73. 73.
    Pierce D, Merone L, Lewis C, Rahman T, Croese J, et al. 2019.. Safety and tolerability of experimental hookworm infection in humans with metabolic disease: study protocol for a phase 1b randomised controlled clinical trial. . BMC Endocr. Disord. 19::136
    [Crossref] [Google Scholar]
  74. 74.
    Pierce DR, McDonald M, Merone L, Becker L, Thompson F, et al. 2023.. Effect of experimental hookworm infection on insulin resistance in people at risk of type 2 diabetes. . Nat. Commun. 14::4503
    [Crossref] [Google Scholar]
  75. 75.
    PrayGod G, Filteau S, Range N, Ramaiya K, Jeremiah K, et al. 2022.. The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: a cross-sectional study in Tanzania. . PLOS ONE 17::e0262860
    [Crossref] [Google Scholar]
  76. 76.
    Priya TK, Jayaseelan V, Krishnamoorthy Y, Sakthivel M, Majella MG. 2020.. Patient's experiences and satisfaction in diabetes care and out-of-pocket expenditure for follow-up care among diabetes patients in urban Puducherry, South India. . J. Patient Exp. 7::144549
    [Crossref] [Google Scholar]
  77. 77.
    Rajamanickam A, Munisankar S, Bhootra Y, Dolla C, Thiruvengadam K, et al. 2019.. Metabolic consequences of concomitant Strongyloides stercoralis infection in patients with type 2 diabetes mellitus. . Clin. Infect. Dis. 69::697704
    [Crossref] [Google Scholar]
  78. 78.
    Rajamanickam A, Munisankar S, Dolla C, Menon PA, Thiruvengadam K, et al. 2020.. Helminth infection modulates systemic pro-inflammatory cytokines and chemokines implicated in type 2 diabetes mellitus pathogenesis. . PLOS Negl. Trop. Dis. 14::e0008101
    [Crossref] [Google Scholar]
  79. 79.
    Rajamanickam A, Munisankar S, Menon PA, Dolla C, Nutman TB, Babu S. 2020.. Helminth mediated attenuation of systemic inflammation and microbial translocation in helminth-diabetes comorbidity. . Front. Cell. Infect. Microbiol. 10::431
    [Crossref] [Google Scholar]
  80. 80.
    Rajamanickam A, Munisankar S, Menon PA, Nutman TB, Babu S. 2021.. Diminished circulating levels of angiogenic factors and RAGE ligands in helminth-diabetes comorbidity and reversal following anthelmintic treatment. . J. Infect. Dis. 224::161422
    [Crossref] [Google Scholar]
  81. 81.
    Rajamanickam A, Munisankar S, Thiruvengadam K, Menon PA, Dolla C, et al. 2020.. Impact of helminth infection on metabolic and immune homeostasis in non-diabetic obesity. . Front. Immunol. 11::2195
    [Crossref] [Google Scholar]
  82. 82.
    Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, et al. 2016.. Helminth infection promotes colonization resistance via type 2 immunity. . Science 352::60812
    [Crossref] [Google Scholar]
  83. 83.
    Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, et al. 2010.. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. . PNAS 107::2261722
    [Crossref] [Google Scholar]
  84. 84.
    Rohm TV, Meier DT, Olefsky JM, Donath MY. 2022.. Inflammation in obesity, diabetes, and related disorders. . Immunity 55::3155
    [Crossref] [Google Scholar]
  85. 85.
    Rutkowski JM, Stern JH, Scherer PE. 2015.. The cell biology of fat expansion. . J. Cell Biol. 208::50112
    [Crossref] [Google Scholar]
  86. 86.
    Rytter MJ, Kolte L, Briend A, Friis H, Christensen VB. 2014.. The immune system in children with malnutrition—a systematic review. . PLOS ONE 9::e105017
    [Crossref] [Google Scholar]
  87. 87.
    Salvador F, Galvis D, Trevino B, Sulleiro E, Sanchez-Montalva A, et al. 2023.. Imported Strongyloides stercoralis infection and diabetes mellitus and other metabolic diseases: Is there any association?. Trop. Med. Int. Health 28::23236
    [Crossref] [Google Scholar]
  88. 88.
    Shea-Donohue T, Qin B, Smith A. 2017.. Parasites, nutrition, immune responses and biology of metabolic tissues. . Parasite Immunol. 39::e12422
    [Crossref] [Google Scholar]
  89. 89.
    Shen SW, Lu Y, Li F, Shen ZH, Xu M, et al. 2015.. The potential long-term effect of previous schistosome infection reduces the risk of metabolic syndrome among Chinese men. . Parasite Immunol. 37::33339
    [Crossref] [Google Scholar]
  90. 90.
    Shimokawa C, Obi S, Shibata M, Olia A, Imai T, et al. 2019.. Suppression of obesity by an intestinal helminth through interactions with intestinal microbiota. . Infect. Immunity 87::e00042-19
    [Crossref] [Google Scholar]
  91. 91.
    Sibi JM, Mohan V, Munisankar S, Babu S, Aravindhan V. 2021.. Augmented innate and adaptive immune responses under conditions of diabetes-filariasis comorbidity. . Front. Immunol. 12::716515
    [Crossref] [Google Scholar]
  92. 92.
    Silas E, Ndlovu S, Tshilwane SI, Mukaratirwa S. 2021.. Immunological and pathophysiological outcomes of helminth infections and type 2 diabetes comorbidity studies in humans and experimental animals—a scoping review. . Appl. Sci. 11::8079
    [Crossref] [Google Scholar]
  93. 93.
    Strachan DP. 1989.. Hay fever, hygiene, and household size. . BMJ 299::125960
    [Crossref] [Google Scholar]
  94. 94.
    Su CW, Chen CY, Li Y, Long SR, Massey W, et al. 2018.. Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. . Sci. Rep. 8::4607
    [Crossref] [Google Scholar]
  95. 95.
    Tang CL, Yu XH, Li Y, Zhang RH, Xie J, Liu ZM. 2019.. Schistosoma japonicum soluble egg antigen protects against type 2 diabetes in Leprdb/db mice by enhancing regulatory T cells and Th2 cytokines. . Front. Immunol. 10::1471
    [Crossref] [Google Scholar]
  96. 96.
    Thabet HS, Saleh NK, Thabet SS, Abdel-Aziz M, Kalleny NK. 2008.. Decreased basal non-insulin-stimulated glucose uptake by diaphragm in streptozotocin-induced diabetic mice infected with Schistosoma mansoni. . Parasitol. Res. 103::595601
    [Crossref] [Google Scholar]
  97. 97.
    Tilg H, Zmora N, Adolph TE, Elinav E. 2020.. The intestinal microbiota fuelling metabolic inflammation. . Nat. Rev. Immunol. 20::4054
    [Crossref] [Google Scholar]
  98. 98.
    Tracey EF, McDermott RA, McDonald MI. 2016.. Do worms protect against the metabolic syndrome? A systematic review and meta-analysis. . Diabetes Res. Clin. Pract. 120::20920
    [Crossref] [Google Scholar]
  99. 99.
    van der Zande HJP, Gonzalez MA, de Ruiter K, Wilbers RHP, Garcia-Tardon N, et al. 2021.. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. . FASEB J. 35::e21331
    [Google Scholar]
  100. 100.
    Venugopal PG, Nutman TB, Semnani RT. 2009.. Activation and regulation of Toll-like receptors (TLRs) by helminth parasites. . Immunol. Res. 43::25263
    [Crossref] [Google Scholar]
  101. 101.
    Weisshof R, Chermesh I. 2015.. Micronutrient deficiencies in inflammatory bowel disease. . Curr. Opin. Clin. Nutr. Metab. Care 18::57681
    [Crossref] [Google Scholar]
  102. 102.
    Wiria AE, Hamid F, Wammes LJ, Prasetyani MA, Dekkers OM, et al. 2015.. Infection with soil-transmitted helminths is associated with increased insulin sensitivity. . PLOS ONE 10::e0127746
    [Crossref] [Google Scholar]
  103. 103.
    Wiria AE, Sartono E, Supali T, Yazdanbakhsh M. 2014.. Helminth infections, type-2 immune response, and metabolic syndrome. . PLOS Pathog. 10::e1004140
    [Crossref] [Google Scholar]
  104. 104.
    Wondmkun YT. 2020.. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. . Diabetes Metab. Syndr. Obes. 13::361116
    [Crossref] [Google Scholar]
  105. 105.
    Wong T, Hildebrandt MA, Thrasher SM, Appleton JA, Ahima RS, Wu GD. 2007.. Divergent metabolic adaptations to intestinal parasitic nematode infection in mice susceptible or resistant to obesity. . Gastroenterology 133::197988
    [Crossref] [Google Scholar]
  106. 106.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, et al. 2011.. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. . Science 332::24347
    [Crossref] [Google Scholar]
  107. 107.
    Yang Z, Grinchuk V, Smith A, Qin B, Bohl JA, et al. 2013.. Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity. . Infect. Immun. 81::190514
    [Crossref] [Google Scholar]
  108. 108.
    Yingklang M, Chaidee A, Dangtakot R, Jantawong C, Haonon O, et al. 2022.. Association of Strongyloides stercoralis infection and type 2 diabetes mellitus in northeastern Thailand: impact on diabetic complication-related renal biochemical parameters. . PLOS ONE 17::e0269080
    [Crossref] [Google Scholar]
  109. 109.
    Yuan X, Wang R, Han B, Sun C, Chen R, et al. 2022.. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. . Nat. Commun. 13::6356
    [Crossref] [Google Scholar]
  110. 110.
    Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A. 2006.. Parasitic worms and inflammatory diseases. . Parasite Immunol. 28::51523
    [Crossref] [Google Scholar]
  111. 111.
    Zaccone P, Hall SW. 2012.. Helminth infection and type 1 diabetes. . Rev. Diabet. Stud. 9::27286
    [Crossref] [Google Scholar]
  112. 112.
    Zhao X, An X, Yang C, Sun W, Ji H, Lian F. 2023.. The crucial role and mechanism of insulin resistance in metabolic disease. . Front. Endocrinol. 14::1149239
    [Crossref] [Google Scholar]
  113. 113.
    Zhou YD, Liang FX, Tian HR, Luo D, Wang YY, Yang SR. 2023.. Mechanisms of gut microbiota-immune-host interaction on glucose regulation in type 2 diabetes. . Front. Microbiol. 14::1121695
    [Crossref] [Google Scholar]
  114. 114.
    Zinsou JF, Janse JJ, Honpkehedji YY, Dejon-Agobe JC, Garcia-Tardon N, et al. 2020.. Schistosoma haematobium infection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals. . PLOS Negl. Trop. Dis. 14::e0008464
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-nutr-061121-100742
Loading
/content/journals/10.1146/annurev-nutr-061121-100742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error