1932

Abstract

Nonalcoholic fatty liver disease (NAFLD), a spectrum of metabolic liver disease associated with obesity, ranges from relatively benign hepatic steatosis to nonalcoholic steatohepatitis (NASH). The latter is characterized by persistent liver injury, inflammation, and liver fibrosis, which collectively increase the risk for end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Recent work has shed new light on the pathophysiology of NAFLD/NASH, particularly the role of genetic, epigenetic, and dietary factors and metabolic dysfunctions in other tissues in driving excess hepatic fat accumulation and liver injury. In parallel, single-cell RNA sequencing studies have revealed unprecedented details of the molecular nature of liver cell heterogeneity, intrahepatic cross talk, and disease-associated reprogramming of the liver immune and stromal vascular microenvironment. This review covers the recent advances in these areas, the emerging concepts of NASH pathogenesis, and potential new therapeutic opportunities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062220-105200
2022-08-22
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/nutr/42/1/annurev-nutr-062220-105200.html?itemId=/content/journals/10.1146/annurev-nutr-062220-105200&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdul-Wahed A, Guilmeau S, Postic C. 2017. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 26:324–41
    [Google Scholar]
  2. 2.
    Aizarani N, Saviano A, Sagar Mailly L, Durand S et al. 2019. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204
    [Google Scholar]
  3. 3.
    Andres-Hernando A, Orlicky DJ, Kuwabara M, Ishimoto T, Nakagawa T et al. 2020. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction. Cell Metab. 32:117–27.e3
    [Google Scholar]
  4. 4.
    Arendt BM, Comelli EM, Ma DW, Lou W, Teterina A et al. 2015. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology 61:1565–78
    [Google Scholar]
  5. 5.
    Arriazu E, Ge X, Leung TM, Magdaleno F, Lopategi A et al. 2017. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut 66:1123–37
    [Google Scholar]
  6. 6.
    Ben-Moshe S, Itzkovitz S. 2019. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16:395–410
    [Google Scholar]
  7. 7.
    Bence KK, Birnbaum MJ. 2021. Metabolic drivers of non-alcoholic fatty liver disease. Mol. Metab. 50:101143
    [Google Scholar]
  8. 8.
    Bhatnagar S, Damron HA, Hillgartner FB. 2009. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J. Biol. Chem. 284:10023–33
    [Google Scholar]
  9. 9.
    Bhattacharjee J, Kirby M, Softic S, Miles L, Salazar-Gonzalez RM et al. 2017. Hepatic natural killer T-cell and CD8+ T-cell signatures in mice with nonalcoholic steatohepatitis. Hepatol. Commun. 1:299–310
    [Google Scholar]
  10. 10.
    Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M et al. 2021. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep 37:109844
    [Google Scholar]
  11. 11.
    Bleriot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S et al. 2021. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54:2101–16.e6
    [Google Scholar]
  12. 12.
    Breuer DA, Pacheco MC, Washington MK, Montgomery SA, Hasty AH, Kennedy AJ. 2020. CD8+ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 318:G211–24
    [Google Scholar]
  13. 13.
    Bruneau A, Hundertmark J, Guillot A, Tacke F. 2021. Molecular and cellular mediators of the gut-liver axis in the progression of liver diseases. Front. Med. 8:725390
    [Google Scholar]
  14. 14.
    Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO et al. 2020. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 31:406–21.e7
    [Google Scholar]
  15. 15.
    Calle RA, Amin NB, Carvajal-Gonzalez S, Ross TT, Bergman A et al. 2021. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 27:1836–48
    [Google Scholar]
  16. 16.
    Cho CS, Xi J, Si Y, Park SR, Hsu JE et al. 2021. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184:3559–72.e22
    [Google Scholar]
  17. 17.
    Chouchani ET, Kazak L, Spiegelman BM. 2019. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29:27–37
    [Google Scholar]
  18. 18.
    Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS et al. 2013. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G483–95
    [Google Scholar]
  19. 19.
    Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA et al. 2014. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 124:5175–90
    [Google Scholar]
  20. 20.
    Daemen S, Gainullina A, Kalugotla G, He L, Chan MM et al. 2021. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 34:108626
    [Google Scholar]
  21. 21.
    Dall M, Hassing AS, Treebak JT. 2022. NAD+ and NAFLD: caution, causality and careful optimism. J. Physiol. 600:1135–54
    [Google Scholar]
  22. 22.
    Deczkowska A, David E, Ramadori P, Pfister D, Safran M et al. 2021. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27:1043–54
    [Google Scholar]
  23. 23.
    den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R et al. 2015. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64:2398–408
    [Google Scholar]
  24. 24.
    Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Fotuhi Siahpirani A et al. 2015. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 21:637–46
    [Google Scholar]
  25. 25.
    Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP et al. 2019. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29:1832–47.e8
    [Google Scholar]
  26. 26.
    Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q et al. 2006. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245–58
    [Google Scholar]
  27. 27.
    Donne R, Saroul-Ainama M, Cordier P, Celton-Morizur S, Desdouets C. 2020. Polyploidy in liver development, homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 17:391–405
    [Google Scholar]
  28. 28.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115:1343–51
    [Google Scholar]
  29. 29.
    Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A et al. 2021. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592:444–49
    [Google Scholar]
  30. 30.
    Falcon A, Doege H, Fluitt A, Tsang B, Watson N et al. 2010. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab. 299:E384–93
    [Google Scholar]
  31. 31.
    Feng D, Liu T, Sun Z, Bugge A, Mullican SE et al. 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331:1315–19
    [Google Scholar]
  32. 32.
    Ferré P, Phan F, Foufelle F. 2021. SREBP-1c and lipogenesis in the liver: an update. Biochem. J. 478:3723–39
    [Google Scholar]
  33. 33.
    Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. 2019. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 5:e127737
    [Google Scholar]
  34. 34.
    Furuta K, Guo Q, Pavelko KD, Lee JH, Robertson KD et al. 2021. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J. Clin. Investig. 131:e143690
    [Google Scholar]
  35. 35.
    Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X et al. 2016. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 126:859–64
    [Google Scholar]
  36. 36.
    Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X et al. 2016. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63:1190–204
    [Google Scholar]
  37. 37.
    Gomes AL, Teijeiro A, Buren S, Tummala KS, Yilmaz M et al. 2016. Metabolic inflammation–associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30:161–75
    [Google Scholar]
  38. 38.
    Govaere O, Cockell S, Tiniakos D, Queen R, Younes R et al. 2020. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 12:eaba4448
    [Google Scholar]
  39. 39.
    Guan D, Xiong Y, Borck PC, Jang C, Doulias PT et al. 2018. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174:831–42.e12
    [Google Scholar]
  40. 40.
    Guo L, Zhang P, Chen Z, Xia H, Li S et al. 2017. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J. Clin. Investig. 127:4449–61
    [Google Scholar]
  41. 41.
    Haas JT, Vonghia L, Mogilenko DA, Verrijken A, Molendi-Coste O et al. 2019. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat. Metab. 1:604–14
    [Google Scholar]
  42. 42.
    Halpern KB, Shenhav R, Massalha H, Toth B, Egozi A et al. 2018. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36:962–70
    [Google Scholar]
  43. 43.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–56
    [Google Scholar]
  44. 44.
    Han J, Wang Y. 2018. mTORC1 signaling in hepatic lipid metabolism. Protein Cell 9:145–51
    [Google Scholar]
  45. 45.
    Han YH, Shin KO, Kim JY, Khadka DB, Kim HJ et al. 2019. A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. J. Clin. Investig. 129:1684–98
    [Google Scholar]
  46. 46.
    Hancock AS, Du A, Liu J, Miller M, May CL. 2010. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol. Endocrinol. 24:1605–14
    [Google Scholar]
  47. 47.
    Hansel C, Erschfeld S, Baues M, Lammers T, Weiskirchen R et al. 2019. The inhibitory T cell receptors PD1 and 2B4 are differentially regulated on CD4 and CD8 T cells in a mouse model of non-alcoholic steatohepatitis. Front. Pharmacol. 10:244
    [Google Scholar]
  48. 48.
    Harms M, Seale P. 2013. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19:1252–63
    [Google Scholar]
  49. 49.
    Heier EC, Meier A, Julich-Haertel H, Djudjaj S, Rau M et al. 2017. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J. Hepatol. 66:1241–50
    [Google Scholar]
  50. 50.
    Heinrich B, Brown ZJ, Diggs LP, Vormehr M, Ma C et al. 2021. Steatohepatitis impairs T-cell-directed immunotherapies against liver tumors in mice. Gastroenterology 160:331–45.e6
    [Google Scholar]
  51. 51.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–85
    [Google Scholar]
  52. 52.
    Herman MA, Birnbaum MJ. 2021. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 33:2329–54
    [Google Scholar]
  53. 53.
    Hernandez-Alvarez MI, Sebastian D, Vives S, Ivanova S, Bartoccioni P et al. 2019. Deficient endoplasmic reticulum–mitochondrial phosphatidylserine transfer causes liver disease. Cell 177:881–95.e17
    [Google Scholar]
  54. 54.
    Heydari M, Cornide-Petronio ME, Jimenez-Castro MB, Peralta C 2020. Data on adiponectin from 2010 to 2020: therapeutic target and prognostic factor for liver diseases?. Int. J. Mol. Sci. 21:5242
    [Google Scholar]
  55. 55.
    Hill DA, Lim HW, Kim YH, Ho WY, Foong YH et al. 2018. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. PNAS 115:E5096–105
    [Google Scholar]
  56. 56.
    Horton JD, Goldstein JL, Brown MS. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109:1125–31
    [Google Scholar]
  57. 57.
    Hou J, Zhang J, Cui P, Zhou Y, Liu C et al. 2021. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis. J. Clin. Investig. 131:e135197
    [Google Scholar]
  58. 58.
    Hoyles L, Fernandez-Real JM, Federici M, Serino M, Abbott J et al. 2018. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24:1070–80
    [Google Scholar]
  59. 59.
    Ibrahim SH. 2021. Sinusoidal endotheliopathy in nonalcoholic steatohepatitis: therapeutic implications. Am. J. Physiol. Gastrointest. Liver Physiol. 321:G67–74
    [Google Scholar]
  60. 60.
    Inverso D, Shi J, Lee KH, Jakab M, Ben-Moshe S et al. 2021. A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie-Wnt signaling axis in the liver. Dev. Cell 56:1677–93.e10
    [Google Scholar]
  61. 61.
    Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B et al. 2019. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178:686–98.e14
    [Google Scholar]
  62. 62.
    Jiang L, Su H, Wu X, Shen H, Kim MH et al. 2020. Leptin receptor–expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nat. Commun. 11:1517
    [Google Scholar]
  63. 63.
    Jo H, Choe SS, Shin KC, Jang H, Lee JH et al. 2013. Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 57:1366–77
    [Google Scholar]
  64. 64.
    Kanamori Y, Tanaka M, Itoh M, Ochi K, Ito A et al. 2021. Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH. iScience 24:102032
    [Google Scholar]
  65. 65.
    Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD et al. 2011. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes 60:177–88
    [Google Scholar]
  66. 66.
    Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H et al. 2019. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16:145–59
    [Google Scholar]
  67. 67.
    Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S et al. 2017. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6
    [Google Scholar]
  68. 68.
    Kim HS, Xiao C, Wang RH, Lahusen T, Xu X et al. 2010. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12:224–36
    [Google Scholar]
  69. 69.
    Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D et al. 2018. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175:133–45.e15
    [Google Scholar]
  70. 70.
    Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y et al. 2021. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat. Commun. 12:4474
    [Google Scholar]
  71. 71.
    Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T et al. 2008. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 21:507–11
    [Google Scholar]
  72. 72.
    Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E. 2019. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11:e9302
    [Google Scholar]
  73. 73.
    Krenkel O, Hundertmark J, Abdallah AT, Kohlhepp M, Puengel T et al. 2019. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69:551–63
    [Google Scholar]
  74. 74.
    Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A et al. 2011. Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab. 13:389–400
    [Google Scholar]
  75. 75.
    Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. 2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–35
    [Google Scholar]
  76. 76.
    Lamming DW, Sabatini DM. 2013. A central role for mTOR in lipid homeostasis. Cell Metab. 18:465–69
    [Google Scholar]
  77. 77.
    Langlet F, Haeusler RA, Linden D, Ericson E, Norris T et al. 2017. Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171:824–35.e18
    [Google Scholar]
  78. 78.
    Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. 2018. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 69:927–47
    [Google Scholar]
  79. 79.
    Lee AH, Scapa EF, Cohen DE, Glimcher LH. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–96
    [Google Scholar]
  80. 80.
    Lee JH, Wada T, Febbraio M, He J, Matsubara T et al. 2010. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 139:653–63
    [Google Scholar]
  81. 81.
    Lee YJ, Ko EH, Kim JE, Kim E, Lee H et al. 2012. Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. PNAS 109:13656–61
    [Google Scholar]
  82. 82.
    Lefebvre P, Lalloyer F, Bauge E, Pawlak M, Gheeraert C et al. 2017. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight 2:e92264
    [Google Scholar]
  83. 83.
    Lefere S, Tacke F. 2019. Macrophages in obesity and non-alcoholic fatty liver disease: crosstalk with metabolism. JHEP Rep 1:30–43
    [Google Scholar]
  84. 84.
    Lefere S, Van de Velde F, Devisscher L, Bekaert M, Raevens S et al. 2017. Serum vascular cell adhesion molecule-1 predicts significant liver fibrosis in non-alcoholic fatty liver disease. Int. J. Obes. 41:1207–13
    [Google Scholar]
  85. 85.
    Li S, Brown MS, Goldstein JL. 2010. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. PNAS 107:3441–46
    [Google Scholar]
  86. 86.
    Li S, Liu C, Li N, Hao T, Han T et al. 2008. Genome-wide coactivation analysis of PGC-1α identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8:105–17
    [Google Scholar]
  87. 87.
    Liang N, Damdimopoulos A, Goni S, Huang Z, Vedin LL et al. 2019. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat. Commun. 10:1684
    [Google Scholar]
  88. 88.
    Liu G, Zhou L, Zhang H, Chen R, Zhang Y et al. 2017. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat. Commun. 8:14824
    [Google Scholar]
  89. 89.
    Liu Y, Dou X, Zhou WY, Ding M, Liu L et al. 2021. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver–adipose tissue crosstalk. Hepatology 74:1864–83
    [Google Scholar]
  90. 90.
    Liu Y, Jiang L, Sun C, Ireland N, Shah YM et al. 2018. Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nat. Commun. 9:2751
    [Google Scholar]
  91. 91.
    Liu Y, Lin H, Jiang L, Shang Q, Yin L et al. 2020. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. J. Clin. Investig. 130:2992–3004
    [Google Scholar]
  92. 92.
    Longuet C, Sinclair EM, Maida A, Baggio LL, Maziarz M et al. 2008. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8:359–71
    [Google Scholar]
  93. 93.
    Loomba R, Friedman SL, Shulman GI. 2021. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184:2537–64
    [Google Scholar]
  94. 94.
    Luo X, Li H, Ma L, Zhou J, Guo X et al. 2018. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology 155:1971–84.e4
    [Google Scholar]
  95. 95.
    Luo Y, Wadhawan S, Greenfield A, Decato BE, Oseini AM et al. 2021. SOMAscan proteomics identifies serum biomarkers associated with liver fibrosis in patients with NASH. Hepatol. Commun. 5:760–73
    [Google Scholar]
  96. 96.
    Malehmir M, Pfister D, Gallage S, Szydlowska M, Inverso D et al. 2019. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat. Med. 25:641–55
    [Google Scholar]
  97. 97.
    McGettigan B, McMahan R, Orlicky D, Burchill M, Danhorn T et al. 2019. Dietary lipids differentially shape nonalcoholic steatohepatitis progression and the transcriptome of Kupffer cells and infiltrating macrophages. Hepatology 70:67–83
    [Google Scholar]
  98. 98.
    Molgora M, Esaulova E, Vermi W, Hou J, Chen Y et al. 2020. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182:886–900.e17
    [Google Scholar]
  99. 99.
    Montagner A, Polizzi A, Fouche E, Ducheix S, Lippi Y et al. 2016. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65:1202–14
    [Google Scholar]
  100. 100.
    Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M et al. 2011. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 25:2538–50
    [Google Scholar]
  101. 101.
    Mori MA, Ludwig RG, Garcia-Martin R, Brandao BB, Kahn CR. 2019. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30:656–73
    [Google Scholar]
  102. 102.
    Mulder K, Patel AA, Kong WT, Piot C, Halitzki E et al. 2021. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54:1883–900.e5
    [Google Scholar]
  103. 103.
    Munoz-Rojas AR, Mathis D. 2021. Tissue regulatory T cells: regulatory chameleons. Nat. Rev. Immunol. 21:597–611
    [Google Scholar]
  104. 104.
    Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A et al. 2019. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol. Syst. Biol. 15:e8793
    [Google Scholar]
  105. 105.
    Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D 2008. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 7:520–32
    [Google Scholar]
  106. 106.
    Papazyan R, Sun Z, Kim YH, Titchenell PM, Hill DA et al. 2016. Physiological suppression of lipotoxic liver damage by complementary actions of HDAC3 and SCAP/SREBP. Cell Metab. 24:863–74
    [Google Scholar]
  107. 107.
    Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L et al. 2021. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep 3:100278
    [Google Scholar]
  108. 108.
    Perry RJ, Camporez JP, Kursawe R, Titchenell PM, Zhang D et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745–58
    [Google Scholar]
  109. 109.
    Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L et al. 2020. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 579:279–83
    [Google Scholar]
  110. 110.
    Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. 2015. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347:1253–56
    [Google Scholar]
  111. 111.
    Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A et al. 2019. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 68:533–46
    [Google Scholar]
  112. 112.
    Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M et al. 2021. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592:450–56
    [Google Scholar]
  113. 113.
    Preidis GA, Kim KH, Moore DD. 2017. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance. J. Clin. Investig. 127:1193–201
    [Google Scholar]
  114. 114.
    Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9:327–38
    [Google Scholar]
  115. 115.
    Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP et al. 2019. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575:512–18
    [Google Scholar]
  116. 116.
    Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. 2020. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17:457–72
    [Google Scholar]
  117. 117.
    Ramos VM, Kowaltowski AJ, Kakimoto PA. 2021. Autophagy in hepatic steatosis: a structured review. Front. Cell Dev. Biol. 9:657389
    [Google Scholar]
  118. 118.
    Rau M, Schilling AK, Meertens J, Hering I, Weiss J et al. 2016. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol. 196:97–105
    [Google Scholar]
  119. 119.
    Remmerie A, Martens L, Thone T, Castoldi A, Seurinck R et al. 2020. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53:641–57.e14
    [Google Scholar]
  120. 120.
    Ren H, Hu F, Wang D, Kang X, Feng X et al. 2021. Sirtuin 2 prevents liver steatosis and metabolic disorders by deacetylation of hepatocyte nuclear factor 4α. Hepatology 74:723–40
    [Google Scholar]
  121. 121.
    Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM et al. 2000. Regulation of mouse sterol regulatory element–binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev 14:2819–30
    [Google Scholar]
  122. 122.
    Richter ML, Deligiannis IK, Yin K, Danese A, Lleshi E et al. 2021. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat. Commun. 12:4264
    [Google Scholar]
  123. 123.
    Rosenthal SB, Liu X, Ganguly S, Dhar D, Pasillas MP et al. 2021. Heterogeneity of HSCs in a mouse model of NASH. Hepatology 74:667–85
    [Google Scholar]
  124. 124.
    Rui L. 2014. Energy metabolism in the liver. Compr. Physiol. 4:177–97
    [Google Scholar]
  125. 125.
    Rui L. 2017. Brown and beige adipose tissues in health and disease. Compr. Physiol. 7:1281–306
    [Google Scholar]
  126. 126.
    Santos-Baez LS, Ginsberg HN 2021. Nonalcohol fatty liver disease: balancing supply and utilization of triglycerides. Curr. Opin. Lipidol. 32:200–6
    [Google Scholar]
  127. 127.
    Schoiswohl G, Stefanovic-Racic M, Menke MN, Wills RC, Surlow BA et al. 2015. Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 156:3610–24
    [Google Scholar]
  128. 128.
    Schultz JR, Tu H, Luk A, Repa JJ, Medina JC et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev 14:2831–38
    [Google Scholar]
  129. 129.
    Schwabe RF, Tabas I, Pajvani UB. 2020. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158:1913–28
    [Google Scholar]
  130. 130.
    Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ et al. 2020. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52:1057–74.e7
    [Google Scholar]
  131. 131.
    Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. 2020. Nonalcoholic steatohepatitis: a review. JAMA 323:1175–83
    [Google Scholar]
  132. 132.
    Shen H, Ji Y, Xiong Y, Kim H, Zhong X et al. 2019. Medullary thymic epithelial NF-κB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. PNAS 116:19090–97
    [Google Scholar]
  133. 133.
    Shen H, Jiang L, Lin JD, Omary MB, Rui L. 2019. Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J. Clin. Investig. 130:2305–17
    [Google Scholar]
  134. 134.
    Shen H, Sheng L, Xiong Y, Kim YH, Jiang L et al. 2017. Thymic NF-κB-inducing kinase (NIK) regulates CD4+ T cell–elicited liver injury and fibrosis in mice. J. Hepatol. 67:100–9
    [Google Scholar]
  135. 135.
    Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B et al. 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12:654–61
    [Google Scholar]
  136. 136.
    Shimomura I, Bashmakov Y, Horton JD. 1999. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 274:30028–32
    [Google Scholar]
  137. 137.
    Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M et al. 2020. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Investig. 130:1453–60
    [Google Scholar]
  138. 138.
    Softic S, Cohen DE, Kahn CR. 2016. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61:1282–93
    [Google Scholar]
  139. 139.
    Srivastava J, Robertson CL, Ebeid K, Dozmorov M, Rajasekaran D et al. 2017. A novel role of astrocyte elevated gene-1 (AEG-1) in regulating nonalcoholic steatohepatitis (NASH). Hepatology 66:466–80
    [Google Scholar]
  140. 140.
    Sun C, Jiang L, Liu Y, Shen H, Weiss SJ et al. 2016. Adipose Snail1 regulates lipolysis and lipid partitioning by suppressing adipose triacylglycerol lipase expression. Cell Rep. 17:2015–27
    [Google Scholar]
  141. 141.
    Sun G, Jin H, Zhang C, Meng H, Zhao X et al. 2018. OX40 regulates both innate and adaptive immunity and promotes nonalcoholic steatohepatitis. Cell Rep. 25:3786–99.e4
    [Google Scholar]
  142. 142.
    Sun Z, Miller RA, Patel RT, Chen J, Dhir R et al. 2012. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18:934–42
    [Google Scholar]
  143. 143.
    Sunny NE, Parks EJ, Browning JD, Burgess SC. 2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14:804–10
    [Google Scholar]
  144. 144.
    Sutti S, Albano E. 2020. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 17:81–92
    [Google Scholar]
  145. 145.
    Tardelli M, Bruschi FV, Trauner M. 2020. The role of metabolic lipases in the pathogenesis and management of liver disease. Hepatology 72:1117–26
    [Google Scholar]
  146. 146.
    Terkelsen MK, Bendixen SM, Hansen D, Scott EAH, Moeller AF et al. 2020. Transcriptional dynamics of hepatic sinusoid–associated cells after liver injury. Hepatology 72:2119–33
    [Google Scholar]
  147. 147.
    Tran S, Baba I, Poupel L, Dussaud S, Moreau M et al. 2020. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53:627–40.e5
    [Google Scholar]
  148. 148.
    Tsuchida T, Friedman SL. 2017. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14:397–411
    [Google Scholar]
  149. 149.
    Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A et al. 2014. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–94
    [Google Scholar]
  150. 150.
    Ulrich JD, Ulland TK, Colonna M, Holtzman DM. 2017. Elucidating the role of TREM2 in Alzheimer's disease. Neuron 94:237–48
    [Google Scholar]
  151. 151.
    Uriarte I, Fernandez-Barrena MG, Monte MJ, Latasa MU, Chang HC et al. 2013. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut 62:899–910
    [Google Scholar]
  152. 152.
    Vandel J, Dubois-Chevalier J, Gheeraert C, Derudas B, Raverdy V et al. 2021. Hepatic molecular signatures highlight the sexual dimorphism of nonalcoholic steatohepatitis (NASH). Hepatology 73:920–36
    [Google Scholar]
  153. 153.
    von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A et al. 2013. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab. 17:436–47
    [Google Scholar]
  154. 154.
    Wang GX, Zhao XY, Lin JD. 2015. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol. Metab. 26:231–37
    [Google Scholar]
  155. 155.
    Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A et al. 2014. The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20:1436–43
    [Google Scholar]
  156. 156.
    Wang H, Zhang H, Wang Y, Brown ZJ, Xia Y et al. 2021. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J. Hepatol. 75:1271–83
    [Google Scholar]
  157. 157.
    Wang XA, Zhang R, Jiang D, Deng W, Zhang S et al. 2013. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 58:603–16
    [Google Scholar]
  158. 158.
    Wang Y, Viscarra J, Kim SJ, Sul HS. 2015. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16:678–89
    [Google Scholar]
  159. 159.
    Wang ZY, Keogh A, Waldt A, Cuttat R, Neri M et al. 2021. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci. Rep. 11:19396
    [Google Scholar]
  160. 160.
    Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ. 2016. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 157:570–85
    [Google Scholar]
  161. 161.
    Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y et al. 2014. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26:549–64
    [Google Scholar]
  162. 162.
    Xiong X, Kuang H, Ansari S, Liu T, Gong J et al. 2019. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75:644–60.e5
    [Google Scholar]
  163. 163.
    Xiong X, Kuang H, Liu T, Lin JD. 2020. A single-cell perspective of the mammalian liver in health and disease. Hepatology 71:1467–73
    [Google Scholar]
  164. 164.
    Xiong X, Wang Q, Wang S, Zhang J, Liu T et al. 2019. Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi. Mol. Metab. 20:128–37
    [Google Scholar]
  165. 165.
    Yang J, Fu Z, Zhang X, Xiong M, Meng L, Zhang Z. 2020. TREM2 ectodomain and its soluble form in Alzheimer's disease. J. Neuroinflamm. 17:204
    [Google Scholar]
  166. 166.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101
    [Google Scholar]
  167. 167.
    Yu Y, Liu Y, An W, Song J, Zhang Y, Zhao X 2019. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J. Clin. Investig. 129:546–55
    [Google Scholar]
  168. 168.
    Zhang D, Tong X, Nelson BB, Jin E, Sit J et al. 2018. The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARα pathway. Hepatology 68:883–96
    [Google Scholar]
  169. 169.
    Zhang H, Ma Y, Cheng X, Wu D, Huang X et al. 2021. Targeting epigenetically maladapted vascular niche alleviates liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 13:eabd1206
    [Google Scholar]
  170. 170.
    Zhang Q, He Y, Luo N, Patel SJ, Han Y et al. 2019. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179:829–45.e20
    [Google Scholar]
  171. 171.
    Zhang X, Wang Y, Liu P. 2017. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease. Protein Cell 8:4–13
    [Google Scholar]
  172. 172.
    Zhao S, Jang C, Liu J, Uehara K, Gilbert M et al. 2020. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579:586–91
    [Google Scholar]
  173. 173.
    Zhou J, Zhai Y, Mu Y, Gong H, Uppal H et al. 2006. A novel pregnane X receptor–mediated and sterol regulatory element–binding protein–independent lipogenic pathway. J. Biol. Chem. 281:15013–20
    [Google Scholar]
  174. 174.
    Zhou W, Gross KM, Kuperwasser C. 2019. Molecular regulation of Snai2 in development and disease. J. Cell Sci. 132:jcs235127
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062220-105200
Loading
/content/journals/10.1146/annurev-nutr-062220-105200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error