1932

Abstract

Fatty acid–binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062220-112240
2023-08-21
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/nutr/43/1/annurev-nutr-062220-112240.html?itemId=/content/journals/10.1146/annurev-nutr-062220-112240&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbasi N, Long T, Li Y, Yee BA, Cho BS et al. 2020. DDX5 promotes oncogene C3 and FABP1 expressions and drives intestinal inflammation and tumorigenesis. Life Sci. Alliance 3:10e202000772
    [Google Scholar]
  2. 2.
    Abe M, Makino A, Murate M, Hullin-Matsuda F, Yanagawa M et al. 2021. PMP2/FABP8 induces PI(4,5)P2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Rep. 37:6109935
    [Google Scholar]
  3. 3.
    Al Fayi MS, Gou X, Forootan SS, Al-Jameel W, Bao Z et al. 2016. The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance. Oncotarget 7:5082783–97
    [Google Scholar]
  4. 4.
    Amber-Vitos O, Kucherenko N, Nachliel E, Gutman M, Tsfadia Y. 2015. The interaction of FABP with Kapα. PLOS ONE 10:8e0132138
    [Google Scholar]
  5. 5.
    Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA. 2014. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J. Biol. Chem. 289:2114941–54
    [Google Scholar]
  6. 6.
    Asaro A, Sinha R, Bakun M, Kalnytska O, Carlo-Spiewok A-S et al. 2021. ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling. J. Cell Sci. 134:20jcs258894
    [Google Scholar]
  7. 7.
    Babaev VR, Runner RP, Fan D, Ding L, Zhang Y et al. 2011. Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes. Arterioscler. Thromb. Vasc. Biol. 31:61283–90
    [Google Scholar]
  8. 8.
    Badiee M, Tochtrop GP. 2017. Bile acid recognition by mouse ileal bile acid binding protein. ACS Chem. Biol. 12:123049–56
    [Google Scholar]
  9. 9.
    Bai Q, Yang X, Li Q, Chen W, Tian H et al. 2022. Metastatic tumor cell-specific FABP7 promotes NSCLC metastasis via inhibiting β-catenin degradation. Cells 11:5805
    [Google Scholar]
  10. 10.
    Berger WT, Ralph BP, Kaczocha M, Sun J, Balius TE et al. 2012. Targeting fatty acid binding protein (FABP) anandamide transporters—a novel strategy for development of anti-inflammatory and anti-nociceptive drugs. PLOS ONE 7:12e50968
    [Google Scholar]
  11. 11.
    Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. 1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 13:8805–12
    [Google Scholar]
  12. 12.
    Bogdan DM, Studholme K, DiBua A, Gordon C, Kanjiya MP et al. 2022. FABP5 deletion in nociceptors augments endocannabinoid signaling and suppresses TRPV1 sensitization and inflammatory pain. Sci. Rep. 12:19241
    [Google Scholar]
  13. 13.
    Bogdan D, Falcone J, Kanjiya MP, Park SH, Carbonetti G et al. 2018. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J. Biol. Chem. 293:145295–306
    [Google Scholar]
  14. 14.
    Bosquet A, Guaita-Esteruelas S, Saavedra P, Rodríguez-Calvo R, Heras M et al. 2016. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis 249:191–99
    [Google Scholar]
  15. 15.
    Bottasso Arias NM, García M, Bondar C, Guzman L, Redondo A et al. 2015. Expression pattern of fatty acid binding proteins in celiac disease enteropathy. Mediators Inflamm. 2015:738563
    [Google Scholar]
  16. 16.
    Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR et al. 2013. Adipocyte lipid chaperone aP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17:5768–78
    [Google Scholar]
  17. 17.
    Capaldi S, Saccomani G, Fessas D, Signorelli M, Perduca M, Monaco HL. 2009. The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule. J. Mol. Biol. 385:199–116
    [Google Scholar]
  18. 18.
    Carbonetti G, Wilpshaar T, Kroonen J, Studholme K, Converso C et al. 2019. FABP5 coordinates lipid signaling that promotes prostate cancer metastasis. Sci. Rep. 9:118944
    [Google Scholar]
  19. 19.
    Cheng A, Jia W, Kawahata I, Fukunaga K. 2021. A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine 72:103582
    [Google Scholar]
  20. 20.
    Cheng A, Wang Y-F, Shinoda Y, Kawahata I, Yamamoto T et al. 2022. Fatty acid-binding protein 7 triggers α-synuclein oligomerization in glial cells and oligodendrocytes associated with oxidative stress. Acta Pharmacol. Sin. 43:3552–62
    [Google Scholar]
  21. 21.
    Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S et al. 2020. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology 158:4985–99.e9
    [Google Scholar]
  22. 22.
    Chen X, Hu S-L, Feng Y, Li P, Mao Q-S, Xue W-J. 2021. Expression of fatty acid-binding protein-3 in gastrointestinal stromal tumors and its significance for prognosis. J. Surg. Res. 260:462–66
    [Google Scholar]
  23. 23.
    Chen Y, Agellon LB. 2020. Distinct alteration of gene expression programs in the small intestine of male and female mice in response to ablation of intestinal Fabp genes. Genes 11:8943
    [Google Scholar]
  24. 24.
    Chen Y, Dai Y, Song K, Huang Y, Zhang L et al. 2021. Pre-emptive pharmacological inhibition of fatty acid-binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism. Cell Death Dis. 12:6572
    [Google Scholar]
  25. 25.
    Chiang JYL, Ferrell JM. 2020. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 318:3G554–73
    [Google Scholar]
  26. 26.
    Chiyonobu N, Shimada S, Akiyama Y, Mogushi K, Itoh M et al. 2018. Fatty acid binding protein 4 (FABP4) overexpression in intratumoral hepatic stellate cells within hepatocellular carcinoma with metabolic risk factors. Am. J. Pathol. 188:51213–24
    [Google Scholar]
  27. 27.
    Choi W-S, Xu X, Goruk S, Wang Y, Patel S et al. 2021. FABP7 facilitates uptake of docosahexaenoic acid in glioblastoma neural stem-like cells. Nutrients 13:82664
    [Google Scholar]
  28. 28.
    Cordero A, Kanojia D, Miska J, Panek WK, Xiao A et al. 2019. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene 38:376445–60
    [Google Scholar]
  29. 29.
    Dai J, Reyimu A, Sun A, Duoji Z, Zhou W et al. 2022. Establishment of prognostic risk model and drug sensitivity based on prognostic related genes of esophageal cancer. Sci. Rep. 12:18008
    [Google Scholar]
  30. 30.
    Davidson B, Hellesylt E, Holth A, Danielsen HE, Skeie-Jensen T, Katz B. 2017. Neuron navigator-2 and cyclin D2 are new candidate prognostic markers in uterine sarcoma. Virchows Arch. 471:3355–62
    [Google Scholar]
  31. 31.
    De Rosa A, Pellegatta S, Rossi M, Tunici P, Magnoni L et al. 2012. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLOS ONE 7:12e52113
    [Google Scholar]
  32. 32.
    Dharmarajan S, Newberry EP, Montenegro G, Nalbantoglu I, Davis VR et al. 2013. Liver fatty acid-binding protein (l-Fabp) modifies intestinal fatty acid composition and adenoma formation in ApcMin/+ mice. Cancer Prev. Res. 6:101026–37
    [Google Scholar]
  33. 33.
    Elmasri H, Ghelfi E, Yu C, Traphagen S, Cernadas M et al. 2012. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15:3457–68
    [Google Scholar]
  34. 34.
    Elmes MW, Prentis LE, McGoldrick LL, Giuliano CJ, Sweeney JM et al. 2019. FABP1 controls hepatic transport and biotransformation of Δ9-THC. Sci. Rep. 9:17588
    [Google Scholar]
  35. 35.
    Elsherbiny ME, Emara M, Godbout R. 2013. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog. Lipid Res. 52:4562–70
    [Google Scholar]
  36. 36.
    El Kharbili M, Aviszus K, Sasse SK, Zhao X, Serban KA et al. 2022. Macrophage programming is regulated by a cooperative interaction between fatty acid binding protein 5 and peroxisome proliferator-activated receptor γ. FASEB J. 36:5e22300
    [Google Scholar]
  37. 37.
    Erol E, Cline GW, Kim JK, Taegtmeyer H, Binas B. 2004. Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. Am. J. Physiol. Endocrinol. Metab. 287:5E977–82
    [Google Scholar]
  38. 38.
    Ertunc ME, Sikkeland J, Fenaroli F, Griffiths G, Daniels MP et al. 2015. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J. Lipid Res. 56:2423–34
    [Google Scholar]
  39. 39.
    Fan X, Xu M, Ren Q, Fan Y, Liu B et al. 2022. Downregulation of fatty acid binding protein 4 alleviates lipid peroxidation and oxidative stress in diabetic retinopathy by regulating peroxisome proliferator-activated receptor γ-mediated ferroptosis. Bioengineered 13:410540–51
    [Google Scholar]
  40. 40.
    Fauzan M, Oubraim S, Yu M, Glaser ST, Kaczocha M, Haj-Dahmane S. 2022. Fatty acid-binding protein 5 modulates brain endocannabinoid tone and retrograde signaling in the striatum. Front. Cell. Neurosci. 16:936939
    [Google Scholar]
  41. 41.
    Favretto F, Assfalg M, Gallo M, Cicero DO, D'Onofrio M, Molinari H 2013. Ligand binding promiscuity of human liver fatty acid binding protein: structural and dynamic insights from an interaction study with glycocholate and oleate. ChemBioChem 14:141807–19
    [Google Scholar]
  42. 42.
    Fiorucci S, Mencarelli A, Palladino G, Cipriani S. 2009. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30:11570–80
    [Google Scholar]
  43. 43.
    Fisher E, Grallert H, Klapper M, Pfäfflin A, Schrezenmeir J et al. 2009. Evidence for the Thr79Met polymorphism of the ileal fatty acid binding protein (FABP6) to be associated with type 2 diabetes in obese individuals. Mol. Genet. Metab. 98:4400–405
    [Google Scholar]
  44. 44.
    Floresta G, Patamia V, Zagni C, Rescifina A. 2022. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. An update from 2017 to early 2022. Eur. J. Med. Chem. 240:114604
    [Google Scholar]
  45. 45.
    Fukui N, Yamamoto H, Miyabe M, Aoyama Y, Hongo K et al. 2021. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J. Biol. Chem. 296:100663
    [Google Scholar]
  46. 46.
    Furuhashi M, Hotamisligil GS. 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7:6489–503
    [Google Scholar]
  47. 47.
    Furuhashi M. 2019. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb. 26:3216–32
    [Google Scholar]
  48. 48.
    Gajda AM, Tawfeeq HR, Lackey AI, Zhou YX, Kanaan H et al. 2022. The proximal intestinal fatty acid-binding proteins liver FABP (LFABP) and intestinal FABP (IFABP) differentially modulate whole body energy homeostasis but are not centrally involved in net dietary lipid absorption: studies of the LFABP/IFABP double knockout mouse. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1868:1159238
    [Google Scholar]
  49. 49.
    Gajda AM, Zhou YX, Agellon LB, Fried SK, Kodukula S et al. 2013. Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding. J. Biol. Chem. 288:4230330–44
    [Google Scholar]
  50. 50.
    Gao S, Li G, Shao Y, Wei Z, Huang S et al. 2021. FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction. Cardiovasc. Toxicol. 21:8619–29
    [Google Scholar]
  51. 51.
    Garcés Da Silva MF, Guarin YA, Carrero Y, Stekman H, Núñez Bello ML et al. 2018. Postprandial hypertriglyceridemia is associated with the variant 54 threonine FABP2 gene. J. Cardiovasc. Dev. Dis. 5:347
    [Google Scholar]
  52. 52.
    Garcia KA, Costa ML, Lacunza E, Martinez ME, Corsico B, Scaglia N. 2022. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci. 301:120621
    [Google Scholar]
  53. 53.
    Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. 2014. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63:3900–11
    [Google Scholar]
  54. 54.
    Geroldi A, Prada V, Veneri F, Trevisan L, Origone P et al. 2020. Early onset demyelinating Charcot-Marie-Tooth disease caused by a novel in-frame isoleucine deletion in peripheral myelin protein 2. J. Peripher. Nerv. Syst. 25:2102–6
    [Google Scholar]
  55. 55.
    Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H et al. 2017. Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci. Adv. 3:4e1602663
    [Google Scholar]
  56. 56.
    Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C et al. 2018. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat. Commun. 9:12923
    [Google Scholar]
  57. 57.
    Gillilan RE, Ayers SD, Noy N. 2007. Structural basis for activation of fatty acid-binding protein 4. J. Mol. Biol. 372:51246–60
    [Google Scholar]
  58. 58.
    Girona J, Rosales R, Plana N, Saavedra P, Masana L, Vallvé J-C. 2013. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. PLOS ONE 8:11e81914
    [Google Scholar]
  59. 59.
    Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C et al. 2019. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res. 32:3424–34
    [Google Scholar]
  60. 60.
    Guo Y, Duan M, Yang M. 2019. The observation of ligand-binding-relevant open states of fatty acid binding protein by molecular dynamics simulations and a Markov state model. Int. J. Mol. Sci. 20:143476
    [Google Scholar]
  61. 61.
    Guo Y, Liu Y, Zhao S, Xu W, Li Y et al. 2021. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat. Commun. 12:17094
    [Google Scholar]
  62. 62.
    Habib SM, Zwicker BL, Wykes L, Agellon LB. 2021. Sexually dimorphic response of mice to the Western-style diet caused by deficiency of fatty acid binding protein 6 (Fabp6). Physiol. Rep. 9:3e14733
    [Google Scholar]
  63. 63.
    Haj-Dahmane S, Shen R-Y, Elmes MW, Studholme K, Kanjiya MP et al. 2018. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. PNAS 115:133482–87
    [Google Scholar]
  64. 64.
    Han T-K, So W-Y. 2019. Effects of FABP2 Ala54Thr gene polymorphism on obesity and metabolic syndrome in middle-aged Korean women with abdominal obesity. Cent. Eur. J. Public Health 27:137–43
    [Google Scholar]
  65. 65.
    Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL. 2014. Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J. Biol. Chem. 289:3323168–76
    [Google Scholar]
  66. 66.
    Hertzel AV, Xu H, Downey M, Kvalheim N, Bernlohr DA. 2017. Fatty acid binding protein 4/aP2-dependent BLT1R expression and signaling. J. Lipid Res. 58:71354–61
    [Google Scholar]
  67. 67.
    Hofer P, Boeszoermenyi A, Jaeger D, Feiler U, Arthanari H et al. 2015. Fatty acid-binding proteins interact with comparative gene identification-58 linking lipolysis with lipid ligand shuttling. J. Biol. Chem. 290:3018438–53
    [Google Scholar]
  68. 68.
    Hong YB, Joo J, Hyun YS, Kwak G, Choi Y-R et al. 2016. A mutation in PMP2 causes dominant demyelinating Charcot-Marie-Tooth neuropathy. PLOS Genet. 12:2e1005829
    [Google Scholar]
  69. 69.
    Hoo RLC, Shu L, Cheng KKY, Wu X, Liao B et al. 2017. Adipocyte fatty acid binding protein potentiates toxic lipids-induced endoplasmic reticulum stress in macrophages via inhibition of Janus kinase 2-dependent autophagy. Sci. Rep. 7:40657
    [Google Scholar]
  70. 70.
    Hou Y, Wei D, Bossila EA, Zhang Z, Li S et al. 2022. FABP5 deficiency impaired macrophage inflammation by regulating AMPK/NF-κB signaling pathway. J. Immunol. 209:112181–91
    [Google Scholar]
  71. 71.
    Huang M, Narita S, Inoue T, Koizumi A, Saito M et al. 2017. Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production. Oncotarget 8:67111780–94
    [Google Scholar]
  72. 72.
    Hughes MLR, Liu B, Halls ML, Wagstaff KM, Patil R et al. 2015. Fatty acid-binding proteins 1 and 2 differentially modulate the activation of peroxisome proliferator-activated receptor α in a ligand-selective manner. J. Biol. Chem. 290:2213895–906
    [Google Scholar]
  73. 73.
    Ijiri TW, Vadnais ML, Huang AP, Lin AM, Levin LR et al. 2014. Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa?. Andrology 2:165–75
    [Google Scholar]
  74. 74.
    Islam A, Kagawa Y, Miyazaki H, Shil SK, Umaru BA et al. 2019. FABP7 protects astrocytes against ROS toxicity via lipid droplet formation. Mol. Neurobiol. 56:85763–79
    [Google Scholar]
  75. 75.
    Islam A, Kagawa Y, Sharifi K, Ebrahimi M, Miyazaki H et al. 2014. Fatty acid binding protein 3 is involved in n–3 and n–6 PUFA transport in mouse trophoblasts. J. Nutr. 144:101509–16
    [Google Scholar]
  76. 76.
    Iso T, Maeda K, Hanaoka H, Suga T, Goto K et al. 2013. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol. 33:112549–57
    [Google Scholar]
  77. 77.
    Josephrajan A, Hertzel AV, Bohm EK, McBurney MW, Imai S-I et al. 2019. Unconventional secretion of adipocyte fatty acid binding protein 4 is mediated by autophagic proteins in a sirtuin-1-dependent manner. Diabetes 68:91767–77
    [Google Scholar]
  78. 78.
    Kaczocha M, Glaser ST, Deutsch DG. 2009. Identification of intracellular carriers for the endocannabinoid anandamide. PNAS 106:156375–80
    [Google Scholar]
  79. 79.
    Kaczocha M, Glaser ST, Maher T, Clavin B, Hamilton J et al. 2015. Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/N-acylethanolamine-dependent mechanisms. Mol. Pain 11:52
    [Google Scholar]
  80. 80.
    Kaczocha M, Haj-Dahmane S. 2021. Mechanisms of endocannabinoid transport in the brain. Br. J. Pharmacol. 179:174300–10
    [Google Scholar]
  81. 81.
    Kagawa Y, Umaru BA, Kanamori M, Zama R, Shil SK et al. 2022. Nuclear FABP7 regulates cell proliferation of wild-type IDH1 glioma through caveolae formation. Mol. Oncol. 16:1289–306
    [Google Scholar]
  82. 82.
    Kagawa Y, Umaru BA, Shima H, Ito R, Zama R et al. 2020. FABP7 regulates acetyl-CoA metabolism through the interaction with ACLY in the nucleus of astrocytes. Mol. Neurobiol. 57:124891–910
    [Google Scholar]
  83. 83.
    Kajimoto K, Minami Y, Harashima H. 2014. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes. FEBS Open Bio. 4:602–10
    [Google Scholar]
  84. 84.
    Kato T, Yoshioka H, Owada Y, Kinouchi H. 2020. Roles of fatty acid binding protein 7 in ischemic neuronal injury and ischemia-induced neurogenesis after transient forebrain ischemia. Brain Res. 1736:146795
    [Google Scholar]
  85. 85.
    Kawahata I, Sekimori T, Wang H, Wang Y, Sasaoka T et al. 2021. Dopamine D2 long receptors are critical for caveolae-mediated α-synuclein uptake in cultured dopaminergic neurons. Biomedicines 9:149
    [Google Scholar]
  86. 86.
    Khalifa O, Al-Akl NS, Errafii K, Arredouani A. 2022. Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/β-catenin signaling pathway. Sci. Rep. 12:12226
    [Google Scholar]
  87. 87.
    Killoy KM, Harlan BA, Pehar M, Vargas MR. 2020. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia 68:122693–704
    [Google Scholar]
  88. 88.
    Kim HM, Lee YK, Kim ES, Koo JS. 2020. Energy transfer from adipocytes to cancer cells in breast cancer. Neoplasma 67:5992–1001
    [Google Scholar]
  89. 89.
    Kim JT, Li C, Weiss HL, Zhou Y, Liu C et al. 2019. Regulation of ketogenic enzyme HMGCS2 by Wnt/β-catenin/PPARγ pathway in intestinal cells. Cells 8:91106
    [Google Scholar]
  90. 90.
    Kobayashi S, Phung HT, Tayama S, Kagawa Y, Miyazaki H et al. 2021. Fatty acid-binding protein 3 regulates differentiation of IgM-producing plasma cells. FEBS J. 288:41130–41
    [Google Scholar]
  91. 91.
    Kobayashi S, Tayama S, Phung HT, Kagawa Y, Miyazaki H et al. 2020. Fatty acid-binding protein 5 limits ILC2-mediated allergic lung inflammation in a murine asthma model. Sci. Rep. 10:116617
    [Google Scholar]
  92. 92.
    Kralisch S, Klöting N, Ebert T, Kern M, Hoffmann A et al. 2015. Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo. Obesity 23:51007–13
    [Google Scholar]
  93. 93.
    Ku C-Y, Liu Y-H, Lin H-Y, Lu S-C, Lin J-Y. 2016. Liver fatty acid-binding protein (l-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget 7:1418229–46
    [Google Scholar]
  94. 94.
    Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I 2020. Fatty acid binding protein 7 mediates linoleic acid-induced cell death in triple negative breast cancer cells by modulating 13-HODE. Biochimie 179:23–31
    [Google Scholar]
  95. 95.
    Kwong SC, Jamil AHA, Rhodes A, Taib NA, Chung I. 2019. Metabolic role of fatty acid binding protein 7 in mediating triple-negative breast cancer cell death via PPAR-α signaling. J. Lipid Res. 60:111807–17
    [Google Scholar]
  96. 96.
    Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM et al. 2020. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 318:3G518–30
    [Google Scholar]
  97. 97.
    Lai MP, Katz FS, Bernard C, Storch J, Stark RE. 2020. Two fatty acid-binding proteins expressed in the intestine interact differently with endocannabinoids. Protein Sci. 29:71606–17
    [Google Scholar]
  98. 98.
    Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U et al. 2009. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res. 105:4326–34
    [Google Scholar]
  99. 99.
    Lee C-H, Lui DTW, Lam KSL. 2021. Adipocyte fatty acid-binding protein, cardiovascular diseases and mortality. Front. Immunol. 12:589206
    [Google Scholar]
  100. 100.
    Lee GS, Pan Y, Scanlon MJ, Porter CJH, Nicolazzo JA. 2018. Fatty acid-binding protein 5 mediates the uptake of fatty acids, but not drugs, into human brain endothelial cells. J. Pharm. Sci. 107:41185–93
    [Google Scholar]
  101. 101.
    Lee S-A, Yang KJZ, Brun P-J, Silvaroli JA, Yuen JJ et al. 2020. Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. Sci. Adv. 6:11eaay8937
    [Google Scholar]
  102. 102.
    Lerche S, Zimmermann M, Wurster I, Roeben B, Fries FL et al. 2022. CSF and serum levels of inflammatory markers in PD: sparse correlation, sex differences and association with neurodegenerative biomarkers. Front. Neurol. 13:834580
    [Google Scholar]
  103. 103.
    Liang X, Gupta K, Quintero JR, Cernadas M, Kobzik L et al. 2019. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J. 33:33562–74
    [Google Scholar]
  104. 104.
    Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD et al. 2005. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. PNAS 102:165814–19
    [Google Scholar]
  105. 105.
    Lin C-H, Chang H-H, Lai C-R, Wang H-H, Tsai W-C et al. 2022. Fatty acid binding protein 6 inhibition decreases cell cycle progression, migration and autophagy in bladder cancers. Int. J. Mol. Sci. 23:42154
    [Google Scholar]
  106. 106.
    Liu R-Z, Choi W-S, Jain S, Dinakaran D, Xu X et al. 2020. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol. Oncol. 14:123100–20
    [Google Scholar]
  107. 107.
    Liu R-Z, Godbout R. 2020. An amplified fatty acid-binding protein gene cluster in prostate cancer: emerging roles in lipid metabolism and metastasis. Cancers 12:123823
    [Google Scholar]
  108. 108.
    Liu R-Z, Graham K, Glubrecht DD, Lai R, Mackey JR, Godbout R. 2012. A fatty acid-binding protein 7/RXRβ pathway enhances survival and proliferation in triple-negative breast cancer. J. Pathol. 228:3310–21
    [Google Scholar]
  109. 109.
    Liu R-Z, Li X, Godbout R. 2008. A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis. Genomics 92:6436–45
    [Google Scholar]
  110. 110.
    Liu Z, Gao Z, Li B, Li J, Ou Y et al. 2022. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology 11:12085432
    [Google Scholar]
  111. 111.
    Li HY, Lv BB, Bi YH. 2018. FABP4 accelerates glioblastoma cell growth and metastasis through Wnt10b signalling. Eur. Rev. Med. Pharmacol. Sci. 22:227807–18
    [Google Scholar]
  112. 112.
    Lock FE, Rebollo R, Miceli-Royer K, Gagnier L, Kuah S et al. 2014. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. PNAS 111:34E3534–43
    [Google Scholar]
  113. 113.
    Lopes-Coelho F, André S, Félix A, Serpa J. 2018. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol. Cell. Endocrinol. 462:Part B93–106
    [Google Scholar]
  114. 114.
    Lv Q, Wang G, Zhang Y, Han X, Li H et al. 2019. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int. J. Oncol. 54:41221–32
    [Google Scholar]
  115. 115.
    Maekawa M, Ohnishi T, Toyoshima M, Shimamoto-Mitsuyama C, Hamazaki K et al. 2020. A potential role of fatty acid binding protein 4 in the pathophysiology of autism spectrum disorder. Brain Commun. 2:2fcaa145
    [Google Scholar]
  116. 116.
    Martin GG, Chung S, Landrock D, Landrock KK, Huang H et al. 2016. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J. Neurochem. 138:3407–22
    [Google Scholar]
  117. 117.
    Ma R, Wang L, Yuan F, Wang S, Liu Y et al. 2018. FABP7 promotes cell proliferation and survival in colon cancer through MEK/ERK signaling pathway. Biomed. Pharmacother. 108:119–29
    [Google Scholar]
  118. 118.
    Martínez-Micaelo N, Rodríguez-Calvo R, Guaita-Esteruelas S, Heras M, Girona J, Masana L. 2019. Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864:3234–44
    [Google Scholar]
  119. 119.
    McDermott LC, Storch J. 2021. Proteins and disease—structural insight and functional diversity of mammalian fatty acid binding proteins in health and disease. Encyclopedia of Biological Chemistry III J Jez 63–76. Amsterdam: Elsevier
    [Google Scholar]
  120. 120.
    McIntosh AL, Huang H, Landrock D, Martin GG, Li S et al. 2018. Impact of FABP1 gene ablation on uptake and degradation of endocannabinoids in mouse hepatocytes. Lipids 53:6561–80
    [Google Scholar]
  121. 121.
    McKillop IH, Girardi CA, Thompson KJ. 2019. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell. Signal. 62:109336
    [Google Scholar]
  122. 122.
    Melville D, Gorur A, Schekman R. 2019. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol. Biol. Cell 30:3387–99
    [Google Scholar]
  123. 123.
    Miao L, Zhuo Z, Tang J, Huang X, Liu J et al. 2021. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression. Clin. Transl. Med. 11:4e395
    [Google Scholar]
  124. 124.
    Mita R, Beaulieu MJ, Field C, Godbout R. 2010. Brain fatty acid-binding protein and omega-3/omega-6 fatty acids: mechanistic insight into malignant glioma cell migration. J. Biol. Chem. 285:4737005–15
    [Google Scholar]
  125. 125.
    Mita T, Furuhashi M, Hiramitsu S, Ishii J, Hoshina K et al. 2015. FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity 23:2359–67
    [Google Scholar]
  126. 126.
    Moore SM, Holt VV, Malpass LR, Hines IN, Wheeler MD. 2015. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages. Mol. Immunol. 67:2, Part B265–75
    [Google Scholar]
  127. 127.
    Mukherjee A, Chiang C-Y, Daifotis HA, Nieman KM, Fahrmann JF et al. 2020. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res 80:81748–61
    [Google Scholar]
  128. 128.
    Nam KH. 2021. Crystal structure of human brain-type fatty acid-binding protein FABP7 complexed with palmitic acid. Acta Crystallogr. D Struct. Biol. 77:Part 7954–65
    [Google Scholar]
  129. 129.
    Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. 2022. A dichotomous role for FABP7 in sleep and Alzheimer's disease pathogenesis: a hypothesis. Front. Neurosci. 16:798994
    [Google Scholar]
  130. 130.
    Newberry EP, Xie Y, Lodeiro C, Solis R, Moritz W et al. 2019. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB J. 33:34610–25
    [Google Scholar]
  131. 131.
    Noy N. 2016. Non-classical transcriptional activity of retinoic acid. Subcell. Biochem. 81:179–99
    [Google Scholar]
  132. 132.
    O'Sullivan SE, Kaczocha M. 2020. FABP5 as a novel molecular target in prostate cancer. Drug Discov. Today 25:112056–61
    [Google Scholar]
  133. 133.
    Ockner RK, Manning JA, Poppenhausen RB, Ho WK. 1972. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:404356–58
    [Google Scholar]
  134. 134.
    Ockner RK, Manning JA. 1974. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J. Clin. Investig. 54:2326–38
    [Google Scholar]
  135. 135.
    Ogawa E, Owada Y, Ikawa S, Adachi Y, Egawa T et al. 2011. Epidermal FABP (FABP5) regulates keratinocyte differentiation by 13(S)-HODE-mediated activation of the NF-κB signaling pathway. J. Investig. Dermatol. 131:3604–12
    [Google Scholar]
  136. 136.
    Oresti GM, García-López J, Aveldaño MI, Del Mazo J. 2013. Cell-type-specific regulation of genes involved in testicular lipid metabolism: fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2. Reproduction 146:5471–80
    [Google Scholar]
  137. 137.
    Pai F-C, Huang H-W, Tsai Y-L, Tsai W-C, Cheng Y-C et al. 2021. Inhibition of FABP6 reduces tumor cell invasion and angiogenesis through the decrease in MMP-2 and VEGF in human glioblastoma cells. Cells 10:102782
    [Google Scholar]
  138. 138.
    Pan L, Xiao H, Liao R, Chen Q, Peng C et al. 2018. Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma. Biomed. Pharmacother. 106:68–76
    [Google Scholar]
  139. 139.
    Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJH, Nicolazzo JA. 2015. Fatty acid-binding protein 5 facilitates the blood-brain barrier transport of docosahexaenoic acid. Mol. Pharm. 12:124375–85
    [Google Scholar]
  140. 140.
    Paskevicius T, Jung J, Pujol M, Eggleton P, Qin W et al. 2020. The FABP5/calnexin complex is a prerequisite for sensitization of mice to experimental autoimmune encephalomyelitis. FASEB J. 34:1216662–75
    [Google Scholar]
  141. 141.
    Patil R, Laguerre A, Wielens J, Headey SJ, Williams ML et al. 2014. Characterization of two distinct modes of drug binding to human intestinal fatty acid binding protein. ACS Chem. Biol. 9:112526–34
    [Google Scholar]
  142. 142.
    Patil R, Mohanty B, Liu B, Chandrashekaran IR, Headey SJ et al. 2019. A ligand-induced structural change in fatty acid-binding protein 1 is associated with potentiation of peroxisome proliferator-activated receptor α agonists. J. Biol. Chem. 294:103720–34
    [Google Scholar]
  143. 143.
    Praslickova D, Torchia EC, Sugiyama MG, Magrane EJ, Zwicker BL et al. 2012. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine. PLOS ONE 7:12e50810
    [Google Scholar]
  144. 144.
    Prentice KJ, Saksi J, Robertson LT, Lee GY, Inouye KE et al. 2021. A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature 600:7890720–26
    [Google Scholar]
  145. 145.
    Protopapas N, Hamilton LE, Warkentin R, Xu W, Sutovsky P, Oko R. 2019. The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents. Biol. Reprod. 100:61461–72
    [Google Scholar]
  146. 146.
    Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR et al. 2017. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:121587–94
    [Google Scholar]
  147. 147.
    Rui Q, Ni H, Lin X, Zhu X, Li D et al. 2019. Astrocyte-derived fatty acid-binding protein 7 protects blood-brain barrier integrity through a caveolin-1/MMP signaling pathway following traumatic brain injury. Exp. Neurol. 322:113044
    [Google Scholar]
  148. 148.
    Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M et al. 2020. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. J. Biol. Chem. 295:268692–705
    [Google Scholar]
  149. 149.
    Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. 1999. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res. 85:4329–37
    [Google Scholar]
  150. 150.
    Schlottmann I, Ehrhart-Bornstein M, Wabitsch M, Bornstein SR, Lamounier-Zepter V. 2014. Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes. Int. J. Obes. 38:91221–27
    [Google Scholar]
  151. 151.
    Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KSD et al. 2010. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev. Biol. 348:2177–89
    [Google Scholar]
  152. 152.
    Senga S, Kawaguchi K, Kobayashi N, Ando A, Fujii H. 2018. A novel fatty acid-binding protein 5-estrogen-related receptor α signaling pathway promotes cell growth and energy metabolism in prostate cancer cells. Oncotarget 9:6031753–70
    [Google Scholar]
  153. 153.
    Seo J, Yun J, Fukuda J, Chun Y-S. 2021. Tumor-intrinsic FABP5 is a novel driver for colon cancer cell growth via the HIF-1 signaling pathway. Cancer Genet. 258–259:151–56
    [Google Scholar]
  154. 154.
    Shibue K, Yamane S, Harada N, Hamasaki A, Suzuki K et al. 2015. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. Am. J. Physiol. Endocrinol. Metab. 308:7E583–91
    [Google Scholar]
  155. 155.
    Shinoda Y, Wang Y, Yamamoto T, Miyachi H, Fukunaga K. 2020. Analysis of binding affinity and docking of novel fatty acid-binding protein (FABP) ligands. J. Pharmacol. Sci. 143:4264–71
    [Google Scholar]
  156. 156.
    Shioda N, Yabuki Y, Kobayashi Y, Onozato M, Owada Y, Fukunaga K. 2014. FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity. J. Biol. Chem. 289:2718957–65
    [Google Scholar]
  157. 157.
    Shrestha S, Sunaga H, Hanaoka H, Yamaguchi A, Kuwahara S et al. 2018. Circulating FABP4 is eliminated by the kidney via glomerular filtration followed by megalin-mediated reabsorption. Sci. Rep. 8:116451
    [Google Scholar]
  158. 158.
    Shu L, Hoo RLC, Wu X, Pan Y, Lee IPC et al. 2017. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nat. Commun. 8:14147
    [Google Scholar]
  159. 159.
    Siddiqi S, Mansbach CM. 2012. Phosphorylation of Sar1b protein releases liver fatty acid-binding protein from multiprotein complex in intestinal cytosol enabling it to bind to endoplasmic reticulum (ER) and bud the pre-chylomicron transport vesicle. J. Biol. Chem. 287:1310178–88
    [Google Scholar]
  160. 160.
    Slipicevic A, Jørgensen K, Skrede M, Rosnes AKR, Trøen G et al. 2008. The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells. BMC Cancer 8:276
    [Google Scholar]
  161. 161.
    Smathers RL, Petersen DR. 2011. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum. Genom. 5:3170–91
    [Google Scholar]
  162. 162.
    Spector AA, Kim H-Y. 2015. Cytochrome p450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:4356–65
    [Google Scholar]
  163. 163.
    Steen KA, Xu H, Bernlohr DA. 2017. FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol. Cell. Biol. 37:2e00282–16
    [Google Scholar]
  164. 164.
    Stettner M, Zenker J, Klingler F, Szepanowski F, Hartung H-P et al. 2018. The role of peripheral myelin protein 2 in remyelination. Cell. Mol. Neurobiol. 38:2487–96
    [Google Scholar]
  165. 165.
    Storch J, Corsico B. 2008. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu. Rev. Nutr. 28:73–95
    [Google Scholar]
  166. 166.
    Storch J, Thumser AE. 2010. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285:4332679–83
    [Google Scholar]
  167. 167.
    Sun F, Chen G, Yang Y, Lei M. 2021. Fatty acid-binding protein 4 silencing protects against lipopolysaccharide-induced cardiomyocyte hypertrophy and apoptosis by inhibiting the Toll-like receptor 4-nuclear factor-κB pathway. J. Int. Med. Res. 49:3300060521998233
    [Google Scholar]
  168. 168.
    Sun Z, Guo Y, Zhang D, Zhang G, Zhang Y, Wang X. 2022. FABP7 inhibits proliferation and invasion abilities of cutaneous squamous cell carcinoma cells via the notch signaling pathway. Oncol. Lett. 24:2254
    [Google Scholar]
  169. 169.
    Syamsunarno MRAA, Iso T, Hanaoka H, Yamaguchi A, Obokata M et al. 2013. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLOS ONE 8:11e79386
    [Google Scholar]
  170. 170.
    Syamsunarno MRAA, Iso T, Yamaguchi A, Hanaoka H, Putri M et al. 2014. Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress. PLOS ONE 9:6e90825
    [Google Scholar]
  171. 171.
    Tang Z, Shen Q, Xie H, Zhou X, Li J et al. 2016. Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer (NSCLC). Oncotarget 7:2946253–62
    [Google Scholar]
  172. 172.
    Tian W, Shi J, Qin J, Jin G, Han X, Li H 2018. Brain lipid binding protein mediates the proliferation of human glioblastoma cells by regulating ERK1/2 signaling pathway in vitro. In Vitro Cell. Dev. Biol. Anim. 54:2156–62
    [Google Scholar]
  173. 173.
    Tian W, Zhang W, Zhang Y, Zhu T, Hua Y et al. 2020. FABP4 promotes invasion and metastasis of colon cancer by regulating fatty acid transport. Cancer Cell Int. 20:512
    [Google Scholar]
  174. 174.
    Toke O. 2022. Structural and dynamic determinants of molecular recognition in bile acid-binding proteins. Int. J. Mol. Sci. 23:1505
    [Google Scholar]
  175. 175.
    Turpin ER, Fang H-J, Thomas NR, Hirst JD. 2013. Cooperativity and site selectivity in the ileal lipid binding protein. Biochemistry 52:274723–33
    [Google Scholar]
  176. 176.
    Umaru BA, Kagawa Y, Shil SK, Arakawa N, Pan Y et al. 2021. Ligand bound fatty acid binding protein 7 (FABP7) drives melanoma cell proliferation via modulation of Wnt/β-catenin signaling. Pharm. Res. 38:3479–90
    [Google Scholar]
  177. 177.
    Uusitalo M, Klenow MB, Laulumaa S, Blakeley MP, Simonsen AC et al. 2021. Human myelin protein P2: from crystallography to time-lapse membrane imaging and neuropathy-associated variants. FEBS J. 288:236716–35
    [Google Scholar]
  178. 178.
    Valizadeh M, Aghasizadeh M, Nemati M, Hashemi M, Aghaee-Bakhtiari SH et al. 2021. The association between a fatty acid binding protein 1 (FABP1) gene polymorphism and serum lipid abnormalities in the MASHAD cohort study. Prostaglandins Leukot. Essent. Fatty Acids 172:102324
    [Google Scholar]
  179. 179.
    Villeneuve J, Bassaganyas L, Lepreux S, Chiritoiu M, Costet P et al. 2018. Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J. Cell Biol. 217:2649–65
    [Google Scholar]
  180. 180.
    Wang Y, Wahafu A, Wu W, Xiang J, Huo L et al. 2021. FABP5 enhances malignancies of lower-grade gliomas via canonical activation of NF-κB signaling. J. Cell. Mol. Med. 25:94487–500
    [Google Scholar]
  181. 181.
    Wirth K, Shinoda S, Sato-Dahlman M, Dickey DM, Bernlohr DA et al. 2022. Fatty acid binding protein 4 regulates pancreatic cancer cell proliferation via activation of nuclear factor E2-related factor 2. Surg. Obes. Relat. Dis. 18:4485–93
    [Google Scholar]
  182. 182.
    Wu G, Tawfeeq HR, Lackey AI, Zhou Y, Sifnakis Z et al. 2022. Gut microbiota and phenotypic changes induced by ablation of liver- and intestinal-type fatty acid-binding proteins. Nutrients 14:91762
    [Google Scholar]
  183. 183.
    Wu LE, Samocha-Bonet D, Whitworth PT, Fazakerley DJ, Turner N et al. 2014. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol. Metab. 3:4465–73
    [Google Scholar]
  184. 184.
    Wu T, Tian J, Cutler RG, Telljohann RS, Bernlohr DA et al. 2010. Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE-19 cells. Lab. Investig. 90:6963–65
    [Google Scholar]
  185. 185.
    Xiao T, Fan J-S, Zhou H, Lin Q, Yang D. 2016. Local unfolding of fatty acid binding protein to allow ligand entry for binding. Angew. Chem. Int. Ed. 55:246869–72
    [Google Scholar]
  186. 186.
    Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L et al. 2022. The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases. Front. Cell Dev. Biol. 10:857919
    [Google Scholar]
  187. 187.
    Xu H, Diolintzi A, Storch J. 2019. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr. Opin. Clin. Nutr. Metab. Care 22:6407–12
    [Google Scholar]
  188. 188.
    Xu H, Gajda AM, Zhou YX, Panetta C, Sifnakis Z et al. 2019. Muscle metabolic reprogramming underlies the resistance of liver fatty acid-binding protein (LFABP)-null mice to high-fat feeding-induced decline in exercise capacity. J. Biol. Chem. 294:4215358–72
    [Google Scholar]
  189. 189.
    Xu H, Hertzel AV, Steen KA, Bernlohr DA. 2016. Loss of fatty acid binding protein 4/aP2 reduces macrophage inflammation through activation of SIRT3. Mol. Endocrinol. 30:3325–34
    [Google Scholar]
  190. 190.
    Xu H, Hertzel AV, Steen KA, Wang Q, Suttles J, Bernlohr DA. 2015. Uncoupling lipid metabolism from inflammation through fatty acid binding protein-dependent expression of UCP2. Mol. Cell. Biol. 35:61055–65
    [Google Scholar]
  191. 191.
    Xu X, Li L, Zhang Y, Lu X, Lin W et al. 2020. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLOS ONE 15:10e0240616
    [Google Scholar]
  192. 192.
    Xu X, Wang Y, Choi W-S, Sun X, Godbout R. 2021. Super resolution microscopy reveals DHA-dependent alterations in glioblastoma membrane remodelling and cell migration. Nanoscale 13:219706–22
    [Google Scholar]
  193. 193.
    Yang H, Deng Q, Ni T, Liu Y, Lu L et al. 2021. Targeted inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int. J. Biol. Sci. 17:154207–22
    [Google Scholar]
  194. 194.
    Yang S, Kobayashi S, Sekino K, Kagawa Y, Miyazaki H et al. 2021. Fatty acid-binding protein 5 controls lung tumor metastasis by regulating the maturation of natural killer cells in the lung. FEBS Lett. 595:131797–805
    [Google Scholar]
  195. 195.
    Yan F, Shen N, Pang JX, Zhao N, Zhang YW et al. 2018. A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target. Leukemia 32:4865–73
    [Google Scholar]
  196. 196.
    Yan T, Luo Y, Yan N, Hamada K, Zhao N et al. 2022. Intestinal peroxisome proliferator-activated receptor α-fatty acid binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology 77:239–55
    [Google Scholar]
  197. 197.
    Yim AKY, Wang PL, Bermingham JR, Hackett A, Strickland A et al. 2022. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat. Neurosci. 25:2238–51
    [Google Scholar]
  198. 198.
    Zenker J, Stettner M, Ruskamo S, Domènech-Estévez E, Baloui H et al. 2014. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia 62:91502–12
    [Google Scholar]
  199. 199.
    Zhang Y, Hao J, Zeng J, Li Q, Rao E et al. 2018. Epidermal FABP prevents chemical-induced skin tumorigenesis by regulation of TPA-induced IFN/p53/SOX2 pathway in keratinocytes. J. Investig. Dermatol. 138:91925–34
    [Google Scholar]
  200. 200.
    Zhang Y, Rao E, Zeng J, Hao J, Sun Y et al. 2017. Adipose fatty acid binding protein promotes saturated fatty acid-induced macrophage cell death through enhancing ceramide production. J. Immunol. 198:2798–807
    [Google Scholar]
  201. 201.
    Zhao G, Wu M, Wang X, Du Z, Zhang G. 2017. Effect of FABP5 gene silencing on the proliferation, apoptosis and invasion of human gastric SGC-7901 cancer cells. Oncol. Lett. 14:44772–78
    [Google Scholar]
  202. 202.
    Zhuang L, Li C, Chen Q, Jin Q, Wu L et al. 2019. Fatty acid-binding protein 3 contributes to ischemic heart injury by regulating cardiac myocyte apoptosis and MAPK pathways. Am. J. Physiol. Heart Circ. Physiol. 316:5H971–84
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062220-112240
Loading
/content/journals/10.1146/annurev-nutr-062220-112240
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error