1932

Abstract

Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062220-112920
2022-08-22
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/nutr/42/1/annurev-nutr-062220-112920.html?itemId=/content/journals/10.1146/annurev-nutr-062220-112920&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA et al. 2004. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31
    [Google Scholar]
  2. 2.
    Airola MV, Hannun YA. 2013. Sphingolipid metabolism and neutral sphingomyelinases. In Sphin-golipids: Basic Science and Drug Development. Handbook of Experimental PharmacologyVol. 215:ed. E Gulbins, I Petrachepp. 5776 Vienna: Springer
    [Google Scholar]
  3. 3.
    Anroedh S, Hilvo M, Akkerhuis KM, Kauhanen D, Koistinen K et al. 2018. Plasma concentrations of molecular lipid species predict long-term clinical outcome in coronary artery disease patients. J. Lipid Res. 59:1729–37
    [Google Scholar]
  4. 4.
    Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. 2019. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–35
    [Google Scholar]
  5. 5.
    Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K et al. 2010. Orm family proteins mediate sphingolipid homeostasis. Nature 463:1048–53
    [Google Scholar]
  6. 6.
    Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J et al. 2019. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25:668–80.e7
    [Google Scholar]
  7. 7.
    Burrello J, Biemmi V, Dei Cas M, Amongero M, Bolis S et al. 2020. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci. Rep. 10:16182
    [Google Scholar]
  8. 8.
    Cartier A, Hla T. 2019. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science 366:6463
    [Google Scholar]
  9. 9.
    Chaurasia B, Holland WL, Summers SA. 2018. Does this schlank make me look fat?. Trends Endocrinol. Metab. 29:597–99
    [Google Scholar]
  10. 10.
    Chaurasia B, Summers SA. 2015. Ceramides—lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26:538–50
    [Google Scholar]
  11. 11.
    Chaurasia B, Summers SA. 2021. Ceramides in metabolism: key lipotoxic players. Annu. Rev. Physiol. 83:303–30
    [Google Scholar]
  12. 12.
    Chaurasia B, Tippetts TS, Mayoral Monibas R, Liu J, Li Y et al. 2019. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365:386–92
    [Google Scholar]
  13. 13.
    Chaurasia B, Ying L, Talbot CL, Maschek JA, Cox J et al. 2021. Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes. Mol. Metab. 45:101145
    [Google Scholar]
  14. 14.
    Chiu S, Siri-Tarino P, Bergeron N, Suh JH, Krauss RM. 2020. A randomized study of the effect of replacing sugar-sweetened soda by reduced fat milk on cardiometabolic health in male adolescent soda drinkers. Nutrients 12:2405
    [Google Scholar]
  15. 15.
    Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J et al. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. PNAS 108:9613–8
    [Google Scholar]
  16. 16.
    Clarke BA, Majumder S, Zhu H, Lee YT, Kono M et al. 2019. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife 8:e51067
    [Google Scholar]
  17. 17.
    Clarke CJ, Guthrie JM, Hannun YA. 2008. Regulation of neutral sphingomyelinase-2 (nSMase2) by tumor necrosis factor–alpha involves protein kinase C-delta in lung epithelial cells. Mol. Pharmacol. 74:1022–32
    [Google Scholar]
  18. 18.
    Coen PM, Menshikova EV, Distefano G, Zheng D, Tanner CJ et al. 2015. Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64:3737–50
    [Google Scholar]
  19. 19.
    Covington JD, Johannsen DL, Coen PM, Burk DH, Obanda DN et al. 2017. Intramyocellular lipid droplet size rather than total lipid content is related to insulin sensitivity after 8 weeks of overfeeding. Obesity 25:2079–87
    [Google Scholar]
  20. 20.
    Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F et al. 2018. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175:695–708.e13
    [Google Scholar]
  21. 21.
    D'Angelo G, Uemura T, Chuang CC, Polishchuk E, Santoro M et al. 2013. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501:116–20
    [Google Scholar]
  22. 22.
    Davis DL, Gable K, Suemitsu J, Dunn TM, Wattenberg BW. 2019. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes. J. Biol. Chem. 294:5146–56
    [Google Scholar]
  23. 23.
    Deevska GM, Sunkara M, Morris AJ, Nikolova-Karakashian MN. 2012. Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr-/- mice fed on a high-fat diet. Biosci. Rep. 32:479–90
    [Google Scholar]
  24. 24.
    Djekic D, Shi L, Calais F, Carlsson F, Landberg R et al. 2020. Effects of a lacto-ovo-vegetarian diet on the plasma lipidome and its association with atherosclerotic burden in patients with coronary artery disease-a randomized, open-label, cross-over study. Nutrients 12:113586
    [Google Scholar]
  25. 25.
    Dong Y-Q, Zhang X-Z, Sun L-L, Zhang S-Y, Liu B et al. 2017. Omega-3 PUFA ameliorates hyperhomocysteinemia-induced hepatic steatosis in mice by inhibiting hepatic ceramide synthesis. Acta Pharmacol. Sin. 38:1601–10
    [Google Scholar]
  26. 26.
    Drazba MA, Holaskova I, Sahyoun NR, Ventura Marra M. 2019. Associations of adiposity and diet quality with serum ceramides in middle-aged adults with cardiovascular risk factors. J. Clin. Med. 8:4527
    [Google Scholar]
  27. 27.
    Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A et al. 2011. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54:1147–56
    [Google Scholar]
  28. 28.
    Dubois N, Rio E, Ripoche N, Ferchaud-Roucher V, Gaugler MH et al. 2016. Plasma ceramide, a real-time predictive marker of pulmonary and hepatic metastases response to stereotactic body radiation therapy combined with irinotecan. Radiother. Oncol. 119:229–35
    [Google Scholar]
  29. 29.
    Fang S, Suh JM, Reilly SM, Yu E, Osborn O et al. 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21:159–65
    [Google Scholar]
  30. 30.
    Finicle BT, Ramirez MU, Liu G, Selwan EM, McCracken AN et al. 2018. Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6. J. Cell Sci. 131:12jcs213314
    [Google Scholar]
  31. 31.
    Fretts AM, Jensen PN, Hoofnagle A, McKnight B, Howard BV et al. 2020. Plasma ceramide species are associated with diabetes risk in participants of the Strong Heart Study. J. Nutr. 150:1214–22
    [Google Scholar]
  32. 32.
    Fretts AM, Jensen PN, Hoofnagle AN, McKnight B, Howard BV et al. 2021. Plasma ceramides containing saturated fatty acids are associated with risk of type 2 diabetes. J. Lipid Res. 62:100119
    [Google Scholar]
  33. 33.
    Fujii A, Manabe Y, Aida K, Tsuduki T, Hirata T, Sugawara T 2017. Selective absorption of dietary sphingoid bases from the intestine via efflux by P-glycoprotein in rats. J. Nutr. Sci. Vitaminol. 63:44–50
    [Google Scholar]
  34. 34.
    Fukami H, Tachimoto H, Kishi M, Kaga T, Waki H et al. 2010. Preparation of (13)C-labeled ceramide by acetic acid bacteria and its incorporation in mice. J. Lipid Res. 51:3389–95
    [Google Scholar]
  35. 35.
    Fukasawa M, Nishijima M, Hanada K. 1999. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J. Cell Biol. 144:673–85
    [Google Scholar]
  36. 36.
    Fumeron F, Nicolas A, Bastard JP, Fellahi S, Wigger L et al. 2020. Dairy consumption is associated with lower plasma dihydroceramides in women from the D.E.S.I.R. cohort. Diabetes Metab 46:144–49
    [Google Scholar]
  37. 37.
    Futerman AH, Riezman H. 2005. The ins and outs of sphingolipid synthesis. Trends Cell Biol 15:312–8
    [Google Scholar]
  38. 38.
    Gomez-Munoz A, Gangoiti P, Granado MH, Arana L, Ouro A. 2010. Ceramide-1-phosphate in cell survival and inflammatory signaling. Adv. Exp. Med. Biol. 688:118–30
    [Google Scholar]
  39. 39.
    Gonzalez FJ, Jiang C, Patterson AD. 2016. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151:845–59
    [Google Scholar]
  40. 40.
    Graessler J, Bornstein TD, Goel D, Bhalla VP, Lohmann T et al. 2014. Lipidomic profiling before and after Roux-en-Y gastric bypass in obese patients with diabetes. Pharmacogenom. J. 14:201–7
    [Google Scholar]
  41. 41.
    Grammatikos G, Schoell N, Ferreirós N, Bon D, Herrmann E et al. 2016. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. Oncotarget 7:18095–105
    [Google Scholar]
  42. 42.
    Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL. 2008. Ceramide starves cells to death by downregulating nutrient transporter proteins. PNAS 105:17402–7
    [Google Scholar]
  43. 43.
    Gui YK, Li Q, Liu L, Zeng P, Ren RF et al. 2020. Plasma levels of ceramides relate to ischemic stroke risk and clinical severity. Brain Res. Bull. 158:122–27
    [Google Scholar]
  44. 44.
    Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Mazière AM et al. 2007. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179:101–15
    [Google Scholar]
  45. 45.
    Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM et al. 2010. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51:3074–87
    [Google Scholar]
  46. 46.
    Hammerschmidt P, Ostkotte D, Nolte H, Gerl MJ, Jais A et al. 2019. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177:1536–52
    [Google Scholar]
  47. 47.
    Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P et al. 2009. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. PNAS 106:8186–91
    [Google Scholar]
  48. 48.
    Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–9
    [Google Scholar]
  49. 49.
    Harmon JM, Bacikova D, Gable K, Gupta SD, Han G et al. 2013. Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. J. Biol. Chem. 288:10144–53
    [Google Scholar]
  50. 50.
    Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR et al. 2009. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58:337–43
    [Google Scholar]
  51. 51.
    Havulinna AS, Sysi-Aho M, Hilvo M, Kauhanen D, Hurme R et al. 2016. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36:2424–30
    [Google Scholar]
  52. 52.
    Heilbronn LK, Coster AC, Campbell LV, Greenfield JR, Lange K et al. 2013. The effect of short-term overfeeding on serum lipids in healthy humans. Obesity 21:e649–59
    [Google Scholar]
  53. 53.
    Heneghan HM, Huang H, Kashyap SR, Gornik HL, McCullough AJ et al. 2013. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg. Obes. Relat. Dis. 9:100–7
    [Google Scholar]
  54. 54.
    Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I et al. 2020. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 41:371–80
    [Google Scholar]
  55. 55.
    Hilvo M, Salonurmi T, Havulinna AS, Kauhanen D, Pedersen ER et al. 2018. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 61:1424–34
    [Google Scholar]
  56. 56.
    Hilvo M, Vasile VC, Donato LJ, Hurme R, Laaksonen R. 2020. Ceramides and ceramide scores: clinical applications for cardiometabolic risk stratification. Front. Endocrinol. 11:570628
    [Google Scholar]
  57. 57.
    Hilvo M, Wallentin L, Ghukasyan Lakic T, Held C, Kauhanen D et al. 2020. Prediction of residual risk by ceramide-phospholipid score in patients with stable coronary heart disease on optimal medical therapy. J. Am. Heart Assoc. 9:e015258
    [Google Scholar]
  58. 58.
    Hojjati MR, Li Z, Zhou H, Tang S, Huan C et al. 2005. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280:10284–9
    [Google Scholar]
  59. 59.
    Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM et al. 2007. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–79
    [Google Scholar]
  60. 60.
    Holland WL, Miller RA, Wang ZV, Sun K, Barth BM et al. 2011. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17:55–63
    [Google Scholar]
  61. 61.
    Hornemann T, Richard S, Rütti MF, Wei Y, von Eckardstein A. 2006. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281:37275–81
    [Google Scholar]
  62. 62.
    Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR et al. 2011. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity 19:2235–40
    [Google Scholar]
  63. 63.
    Hyde R, Hajduch E, Powell DJ, Taylor PM, Hundal HS. 2005. Ceramide down-regulates System A amino acid transport and protein synthesis in rat skeletal muscle cells. FASEB J 19:461–63
    [Google Scholar]
  64. 64.
    Iqbal J, Walsh MT, Hammad SM, Cuchel M, Tarugi P et al. 2015. Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but not glycosylceramide. J. Biol. Chem. 290:25863–75
    [Google Scholar]
  65. 65.
    Jenkins RW, Canals D, Hannun YA. 2009. Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21:836–46
    [Google Scholar]
  66. 66.
    Jensen PN, Fretts AM, Yu C, Hoofnagle AN, Umans JG et al. 2019. Circulating sphingolipids, fasting glucose, and impaired fasting glucose: the Strong Heart Family Study. EBioMedicine 41:44–49
    [Google Scholar]
  67. 67.
    Jiang C, Xie C, Li F, Zhang L, Nichols RG et al. 2015. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Investig. 125:386–402
    [Google Scholar]
  68. 68.
    Jiang M, Li C, Liu Q, Wang A, Lei M 2019. Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with non-alcoholic fatty liver disease. Front. Endocrinol. 10:665
    [Google Scholar]
  69. 69.
    Jin J, Lu Z, Li Y, Cowart LA, Lopes-Virella MF, Huang Y 2018. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLOS ONE 13:e0193343
    [Google Scholar]
  70. 70.
    Johnson EL, Heaver SL, Waters JL, Kim BI, Bretin A et al. 2020. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat. Commun. 11:2471
    [Google Scholar]
  71. 71.
    Kayser BD, Lhomme M, Dao MC, Ichou F, Bouillot JL et al. 2017. Serum lipidomics reveals early differential effects of gastric bypass compared with banding on phospholipids and sphingolipids independent of differences in weight loss. Int. J. Obes. 41:917–25
    [Google Scholar]
  72. 72.
    Kayser BD, Prifti E, Lhomme M, Belda E, Dao MC et al. 2019. Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics 15:140
    [Google Scholar]
  73. 73.
    Kien CL, Bunn JY, Poynter ME, Stevens R, Bain J et al. 2013. A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes 62:1054–63
    [Google Scholar]
  74. 74.
    Kitatani K, Idkowiak-Baldys J, Hannun YA. 2008. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–8
    [Google Scholar]
  75. 75.
    Kitatani K, Sheldon K, Rajagopalan V, Anelli V, Jenkins RW et al. 2009. Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation. J. Biol. Chem. 284:12972–8
    [Google Scholar]
  76. 76.
    Knapp P, Bodnar L, Błachnio-Zabielska A, Reszeć J, Świderska M, Chabowski A. 2021. Blood bioactive sphingolipids in patients with advanced serous epithelial ovarian cancer—mass spectrometry analysis. Arch. Med. Sci. 17:53–61
    [Google Scholar]
  77. 77.
    Krautbauer S, Meier EM, Rein-Fischboeck L, Pohl R, Weiss TS et al. 2016. Ceramide and polyunsaturated phospholipids are strongly reduced in human hepatocellular carcinoma. Biochim. Biophys. Acta 1861:1767–74
    [Google Scholar]
  78. 78.
    Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T et al. 2016. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37:1967–76
    [Google Scholar]
  79. 79.
    Lankinen M, Schwab U, Erkkila A, Seppanen-Laakso T, Hannila ML et al. 2009. Fatty fish intake decreases lipids related to inflammation and insulin signaling—a lipidomics approach. PLOS ONE 4:e5258
    [Google Scholar]
  80. 80.
    Lankinen M, Schwab U, Kolehmainen M, Paananen J, Nygren H et al. 2016. A healthy Nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J. Nutr. 146:662–72
    [Google Scholar]
  81. 81.
    Lankinen M, Schwab U, Kolehmainen M, Paananen J, Poutanen K et al. 2011. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study. PLOS ONE 6:e22646
    [Google Scholar]
  82. 82.
    Laviad EL, Kelly S, Merrill AH Jr., Futerman AH. 2012. Modulation of ceramide synthase activity via dimerization. J. Biol. Chem. 287:21025–33
    [Google Scholar]
  83. 83.
    Le Barz M, Vors C, Combe E, Joumard-Cubizolles L, Lecomte M et al. 2021. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 6:10e146161
    [Google Scholar]
  84. 84.
    Lee MT, Le HH, Johnson EL 2021. Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome. J. Lipid Res. 62:100034
    [Google Scholar]
  85. 85.
    Lemaitre RN, Jensen PN, Hoofnagle A, McKnight B, Fretts AM et al. 2019. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ. Heart Fail. 12:e005708
    [Google Scholar]
  86. 86.
    Lemaitre RN, Yu C, Hoofnagle A, Hari N, Jensen P et al. 2018. Circulating sphingolipids, insulin, HOMA-IR and HOMA-B: the Strong Heart Family Study. Diabetes 67:81663–72
    [Google Scholar]
  87. 87.
    Levy M, Futerman AH. 2010. Mammalian ceramide synthases. IUBMB Life 62:347–56
    [Google Scholar]
  88. 88.
    Lindqvist HM, Bärebring L, Gjertsson I, Jylhä A, Laaksonen R et al. 2021. A randomized controlled dietary intervention improved the serum lipid signature towards a less atherogenic profile in patients with rheumatoid arthritis. Metabolites 11:9632
    [Google Scholar]
  89. 89.
    Lopez X, Goldfine AB, Holland WL, Gordillo R, Scherer PE. 2013. Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J. Pediatr. Endocrinol. Metab. 26:995–8
    [Google Scholar]
  90. 90.
    Luukkonen PK, Sadevirta S, Zhou Y, Kayser B, Ali A et al. 2018. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41:1732–39
    [Google Scholar]
  91. 91.
    Mah M, Febbraio M, Turpin-Nolan S. 2021. Circulating ceramides—are origins important for sphingolipid biomarkers and treatments?. Front. Endocrinol. 12:684448
    [Google Scholar]
  92. 92.
    Malik VS, Guasch-Ferre M, Hu FB, Townsend MK, Zeleznik OA et al. 2019. Identification of plasma lipid metabolites associated with nut consumption in US men and women. J. Nutr. 149:1215–21
    [Google Scholar]
  93. 93.
    Mathews AT, Famodu OA, Olfert MD, Murray PJ, Cuff CF et al. 2017. Efficacy of nutritional interventions to lower circulating ceramides in young adults: FRUVEDomic pilot study. Physiol. Rep. 5:13e13329
    [Google Scholar]
  94. 94.
    Meikle PJ, Barlow CK, Mellett NA, Mundra PA, Bonham MP et al. 2015. Postprandial plasma phospholipids in men are influenced by the source of dietary fat. J. Nutr. 145:2012–18
    [Google Scholar]
  95. 95.
    Mikhalkova D, Holman SR, Jiang H, Saghir M, Novak E et al. 2018. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity 26:284–90
    [Google Scholar]
  96. 96.
    Mizutani Y, Kihara A, Igarashi Y. 2004. Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett 563:93–97
    [Google Scholar]
  97. 97.
    Morigny P, Zuber J, Haid M, Kaltenecker D, Riols F et al. 2020. High levels of modified ceramides are a defining feature of murine and human cancer cachexia. J. Cachexia Sarcopenia Muscle 11:1459–75
    [Google Scholar]
  98. 98.
    Moro K, Kawaguchi T, Tsuchida J, Gabriel E, Qi Q et al. 2018. Ceramide species are elevated in human breast cancer and are associated with less aggressiveness. Oncotarget 9:19874–90
    [Google Scholar]
  99. 99.
    Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J et al. 2011. Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J. Lipid Res. 52:68–77
    [Google Scholar]
  100. 100.
    Nagahashi M, Kim EY, Yamada A, Ramachandran S, Allegood JC et al. 2013. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J 27:1001–11
    [Google Scholar]
  101. 101.
    Nature Biotechnology Editorial Board 2010. Biomarkers on a roll. Nat. Biotechnol. 28:431–31
    [Google Scholar]
  102. 102.
    Nilsson A. 1968. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta 164:575–84
    [Google Scholar]
  103. 103.
    Norris GH, Blesso CN. 2017. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr. Rev. 75:274–85
    [Google Scholar]
  104. 104.
    Norris GH, Milard M, Michalski MC, Blesso CN. 2019. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J. Nutr. Biochem. 73:108224
    [Google Scholar]
  105. 105.
    Ottestad I, Hassani S, Borge GI, Kohler A, Vogt G et al. 2012. Fish oil supplementation alters the plasma lipidomic profile and increases long-chain PUFAs of phospholipids and triglycerides in healthy subjects. PLOS ONE 7:e42550
    [Google Scholar]
  106. 106.
    Özer H, Aslan İ, Oruç MT, Çöpelci Y, Afşar E et al. 2018. Early postoperative changes of sphingomyelins and ceramides after laparoscopic sleeve gastrectomy. Lipids Health Disease 17:269
    [Google Scholar]
  107. 107.
    Park TS, Hu Y, Noh HL, Drosatos K, Okajima K et al. 2008. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 49:2101–12
    [Google Scholar]
  108. 108.
    Peterson LR, Xanthakis V, Duncan MS, Gross S, Friedrich N et al. 2018. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7:10e007931
    [Google Scholar]
  109. 109.
    Poss AM, Maschek JA, Cox JE, Hauner BJ, Hopkins PN et al. 2019. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Investig. 130:31363–76
    [Google Scholar]
  110. 110.
    Poss AM, Summers SA. 2020. Too much of a good thing? An evolutionary theory to explain the role of ceramides in NAFLD. Front. Endocrinol. 11:505
    [Google Scholar]
  111. 111.
    Powell DJ, Hajduch E, Kular G, Hundal HS. 2003. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 23:7794–808
    [Google Scholar]
  112. 112.
    Promrat K, Longato L, Wands JR, de la Monte SM. 2011. Weight loss amelioration of non-alcoholic steatohepatitis linked to shifts in hepatic ceramide expression and serum ceramide levels. Hepatol. Res. 41:754–62
    [Google Scholar]
  113. 113.
    Raichur S, Wang ST, Chan PW, Li Y, Ching J et al. 2014. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20:687–95
    [Google Scholar]
  114. 114.
    Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. 2021. The impact of dietary sphingolipids on intestinal microbiota and gastrointestinal immune homeostasis. Front. Immunol. 12:635704
    [Google Scholar]
  115. 115.
    Rosqvist F, Kullberg J, Stahlman M, Cedernaes J, Heurling K et al. 2019. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. J. Clin. Endocrinol. Metab. 104:6207–19
    [Google Scholar]
  116. 116.
    Ryan D, Heaner M. 2014. Guidelines 2013 for managing overweight and obesity in adults. Preface to the full report. Obesity 22:Suppl. 2S1–3
    [Google Scholar]
  117. 117.
    Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A. 2000. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol. Cell. Neurosci. 15:156–69
    [Google Scholar]
  118. 118.
    Sato M, Markiewicz M, Yamanaka M, Bielawska A, Mao C et al. 2003. Modulation of transforming growth factor-beta (TGF-beta) signaling by endogenous sphingolipid mediators. J. Biol. Chem. 278:9276–82
    [Google Scholar]
  119. 119.
    Scherer M, Bottcher A, Schmitz G, Liebisch G. 2011. Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry. Biochim. Biophys. Acta 1811:68–75
    [Google Scholar]
  120. 120.
    Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR et al. 2021. Dietary fat and protein intake in relation to plasma sphingolipids as determined by a large-scale lipidomic analysis. Metabolites 11:293
    [Google Scholar]
  121. 121.
    Separovic D, Shields AF, Philip PA, Bielawski J, Bielawska A et al. 2017. Altered levels of serum ceramide, sphingosine and sphingomyelin are associated with colorectal cancer: a retrospective pilot study. Anticancer Res 37:1213–18
    [Google Scholar]
  122. 122.
    Serra M, Saba JD. 2010. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50:349–62
    [Google Scholar]
  123. 123.
    Siddique MM, Li Y, Chaurasia B, Kaddai VA, Summers SA. 2015. Dihydroceramides: from bit players to lead actors. J. Biol. Chem. 290:15371–79
    [Google Scholar]
  124. 124.
    Siddique MM, Li Y, Wang L, Ching J, Mal M et al. 2013. Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Mol. Cell. Biol. 33:2353–69
    [Google Scholar]
  125. 125.
    Siskind LJ, Kolesnick RN, Colombini M. 2002. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277:26796–803
    [Google Scholar]
  126. 126.
    Skotland T, Sagini K, Sandvig K, Llorente A. 2020. An emerging focus on lipids in extracellular vesicles. Adv. Drug Deliv. Rev. 159:308–21
    [Google Scholar]
  127. 127.
    Sociale M, Wulf AL, Breiden B, Klee K, Thielisch M et al. 2018. Ceramide synthase schlank is a transcriptional regulator adapting gene expression to energy requirements. Cell Rep 22:967–78
    [Google Scholar]
  128. 128.
    Stoffel W, Dittmar K, Wilmes R. 1975. Sphingolipid metabolism in Bacteroideaceae. Hoppe Seylers Z. Physiol. Chem. 356:715–25
    [Google Scholar]
  129. 129.
    Straub LG, Scherer PE. 2019. Metabolic messengers: adiponectin. Nat. Metab. 1:334–39
    [Google Scholar]
  130. 130.
    Sud M, Fahy E, Cotter D, Brown A, Dennis EA et al. 2007. LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:D527–32
    [Google Scholar]
  131. 131.
    Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M. 2003. Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J. Nutr. 133:2777–82
    [Google Scholar]
  132. 132.
    Summers SA. 2018. Could ceramides become the new cholesterol?. Cell Metab 27:276–80
    [Google Scholar]
  133. 133.
    Summers SA, Birnbaum MJ. 1997. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem. Soc. Trans. 25:981–88
    [Google Scholar]
  134. 134.
    Summers SA, Chaurasia B, Holland WL. 2019. Metabolic messengers: ceramides. Nat. Metab. 1:1051–58
    [Google Scholar]
  135. 135.
    Summers SA, Garza LA, Zhou H, Birnbaum MJ. 1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18:5457–64
    [Google Scholar]
  136. 136.
    Tarasov K, Ekroos K, Suoniemi M, Kauhanen D, Sylvanne T et al. 2014. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 99:e45–52
    [Google Scholar]
  137. 137.
    Tidhar R, Zelnik ID, Volpert G, Ben-Dor S, Kelly S et al. 2018. Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 293:9912–21
    [Google Scholar]
  138. 138.
    Trieu K, Bhat S, Dai Z, Leander K, Gigante B et al. 2021. Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: a cohort study, systematic review, and meta-analysis. PLOS Med 18:e1003763
    [Google Scholar]
  139. 139.
    Tuccinardi D, Di Mauro A, Lattanzi G, Rossini G, Monte L et al. 2021. An extra virgin olive oil–enriched chocolate spread positively modulates insulin-resistance markers compared with a palm oil–enriched one in healthy young adults: a double-blind, cross-over, randomized controlled trial. Diabetes Metab. Res. Rev. 38:2e3492
    [Google Scholar]
  140. 140.
    Tuccinardi D, Farr OM, Upadhyay J, Oussaada SM, Klapa MI et al. 2019. Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese people: a cross-over, randomized, double-blind, controlled inpatient physiology study. Diabetes Obes. Metab. 21:2086–95
    [Google Scholar]
  141. 141.
    Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S et al. 2014. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20:678–86
    [Google Scholar]
  142. 142.
    Turpin-Nolan SM, Hammerschmidt P, Chen W, Jais A, Timper K et al. 2019. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep 26:1–10.e7
    [Google Scholar]
  143. 143.
    Valentino TR, Rule BD, Mobley CB, Nikolova-Karakashian M, Vechetti IJ. 2021. Skeletal muscle cell growth alters the lipid composition of extracellular vesicles. Membranes 11:8619
    [Google Scholar]
  144. 144.
    Van Veldhoven PP. 2000. [28]Sphingosine-1-phosphate lyase. Methods Enzymol 311:244–54
    [Google Scholar]
  145. 145.
    Vance DE, Vance JE. 1996. Biochemistry of Lipids, Lipoproteins and Membranes Amsterdam: Elsevier
    [Google Scholar]
  146. 146.
    Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 129:1239–50
    [Google Scholar]
  147. 147.
    Walker ME, Xanthakis V, Peterson LR, Duncan MS, Lee J et al. 2020. Dietary patterns, ceramide ratios, and risk of all-cause and cause-specific mortality: the Framingham Offspring Study. J. Nutr. 150:112994–3004
    [Google Scholar]
  148. 148.
    Wang DD, Toledo E, Hruby A, Rosner BA, Willett WC et al. 2017. Plasma ceramides, Mediterranean diet, and incident cardiovascular disease in the PREDIMED trial (Prevencion con Dieta Mediterranea). Circulation 135:2028–40
    [Google Scholar]
  149. 149.
    Wang X, Wang Y, Xu J, Xue C. 2021. Sphingolipids in food and their critical roles in human health. Crit. Rev. Food Sci. Nutr. 61:462–91
    [Google Scholar]
  150. 150.
    Wang Y, Niu Y, Zhang Z, Gable K, Gupta SD et al. 2021. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat. Struct. Mol. Biol. 28:240–48
    [Google Scholar]
  151. 151.
    Wasilewska N, Bobrus-Chociej A, Harasim-Symbor E, Tarasow E, Wojtkowska M et al. 2018. Increased serum concentration of ceramides in obese children with nonalcoholic fatty liver disease. Lipids Health Dis 17:216
    [Google Scholar]
  152. 152.
    Wigger L, Cruciani-Guglielmacci C, Nicolas A, Denom J, Fernandez N et al. 2017. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep 18:2269–79
    [Google Scholar]
  153. 153.
    Wu J, Liu F, Nilsson A, Duan RD. 2004. Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G967–73
    [Google Scholar]
  154. 154.
    Xia JY, Holland WL, Kusminski CM, Sun K, Sharma AX et al. 2015. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab 22:266–78
    [Google Scholar]
  155. 155.
    Xie C, Jiang C, Shi J, Gao X, Sun D et al. 2017. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66:613–26
    [Google Scholar]
  156. 156.
    Yamashita S, Kinoshita M, Miyazawa T. 2021. Dietary sphingolipids contribute to health via intestinal maintenance. Int. J. Mol. Sci. 22:137052
    [Google Scholar]
  157. 157.
    Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M et al. 2007. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J. Mol. Biol. 370:870–86
    [Google Scholar]
  158. 158.
    Yu Y, Guo S, Feng Y, Feng L, Cui Y et al. 2014. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. Lipids 49:183–90
    [Google Scholar]
  159. 159.
    Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K et al. 2008. Analysis of sphingolipid classes and their contents in meals. Biosci. Biotechnol. Biochem. 72:222–25
    [Google Scholar]
  160. 160.
    Zelnik ID, Kim JL, Futerman AH. 2021. The complex tail of circulating sphingolipids in atherosclerosis and cardiovascular disease. J. Lipid Atheroscler. 10:268–81
    [Google Scholar]
  161. 161.
    Zhou H, Summers SA, Birnbaum MJ, Pittman RN. 1998. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 273:16568–75
    [Google Scholar]
  162. 162.
    Zigdon H, Kogot-Levin A, Park JW, Goldschmidt R, Kelly S et al. 2013. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288:4947–56
    [Google Scholar]
  163. 163.
    Zinda MJ, Vlahos CJ, Lai MT. 2001. Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87mg cells. Biochem. Biophys. Res. Commun. 280:1107–15
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062220-112920
Loading
/content/journals/10.1146/annurev-nutr-062220-112920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error