1932

Abstract

This review traces the discoveries that led to the recognition of selenium (Se) as an essential nutrient and discusses Se-responsive diseases in animals and humans in the context of current understanding of the molecular mechanisms of their pathogeneses. The article includes a comprehensive analysis of dietary sources, nutritional utilization, metabolic functions, and dietary requirements of Se across various species. We also compare the function and regulation of selenogenomes and selenoproteomes among rodents, food animals, and humans. The review addresses the metabolic impacts of high dietary Se intakes in different species and recent revelations of Se metabolites, means of increasing Se status, and the recycling of Se in food systems and ecosystems. Finally, research needs are identified for supporting basic science and practical applications of dietary Se in food, nutrition, and health across species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062320-121834
2022-08-22
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/nutr/42/1/annurev-nutr-062320-121834.html?itemId=/content/journals/10.1146/annurev-nutr-062320-121834&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Algotar AM, Hsu CH, Singh P, Stratton SP. 2013. Selenium supplementation has no effect on serum glucose levels in men at high risk of prostate cancer. J. Diabetes 5:465–70
    [Google Scholar]
  2. 2.
    Anan Y, Ohbo A, Tani Y, Ogra Y 2014. Metabolic pathway of inorganic and organic selenocompounds labeled with stable isotope in Japanese quail. Anal. Bioanal. Chem. 406:7959–66
    [Google Scholar]
  3. 3.
    Arshad M, Ebeid H, Hassan F-U. 2021. Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: a review. Biol. Trace Elem. Res. 199:3319–37
    [Google Scholar]
  4. 4.
    Arsova-Sarafinovska Z, Matevska N, Petrovski D, Banev S, Dzikova S et al. 2008. Manganese superoxide dismutase (MnSOD) genetic polymorphism is associated with risk of early-onset prostate cancer. Cell Biochem. Funct. 26:771–77
    [Google Scholar]
  5. 5.
    Arthington JD. 2015. New concepts in trace mineral supplementation of grazing cattle hydroxy sources, injectable sources and pasture application. Proceedings of the 26th Annual Florida Ruminant Nutrition Symposium104–18 Gainesville, FL: Univ. Florida
    [Google Scholar]
  6. 6.
    Bansal MP, Cook RG, Danielson KG, Medina D. 1989. A 14-kilodalton selenium-binding protein in mouse liver is fatty acid-binding protein. J. Biol. Chem. 264:13780–84
    [Google Scholar]
  7. 7.
    Barnes KM, Evenson JK, Raines AM, Sunde RA. 2009. Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. J. Nutr. 139:199–206
    [Google Scholar]
  8. 8.
    Beck MA. 2007. Selenium and vitamin E status: impact on viral pathogenicity. J. Nutr. 137:1338–40
    [Google Scholar]
  9. 9.
    Beck MA, Levander OA. 1998. Dietary oxidative stress and the potentiation of viral infection. Annu. Rev. Nutr. 18:93–116
    [Google Scholar]
  10. 10.
    Beilstein MA, Whanger PD. 1986. Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins. J. Nutr. 116:1701–10
    [Google Scholar]
  11. 11.
    Berry MJ, Banu L, Larsen PR. 1991. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–40
    [Google Scholar]
  12. 12.
    Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S et al. 1993. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J. Natl. Cancer Inst. 85:1483–92
    [Google Scholar]
  13. 13.
    Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S et al. 2016. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol. Plant. 158:80–91
    [Google Scholar]
  14. 14.
    Bowen ZH, Aldridge CL, Anderson PJ, Assal TJ, Biewick L et al. 2011. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative—2010 Annual Report Rep. 2011–1219, US Geol. Surv. Reston, VA:
    [Google Scholar]
  15. 15.
    Burk RF, Levander OA. 2005. Selenium. Modern Nutrition in Health and Disease312–25 Philadelphia: Lippincott Williams and Wilkins
    [Google Scholar]
  16. 16.
    Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW. 2006. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev. 15:804–10
    [Google Scholar]
  17. 17.
    Cantor AH, Tarino JZ. 1982. Comparative effects of inorganic and organic dietary sources of selenium on selenium levels and selenium-dependent glutathione peroxidase activity in blood of young turkeys. J. Nutr. 112:2187–96
    [Google Scholar]
  18. 18.
    Carr S, Jia Y, Crites B, Hamilton C, Burris WR et al. 2020. Form of supplemental selenium in vitamin-mineral premixes differentially affects early luteal and gestational concentrations of progesterone, and postpartum concentrations of prolactin in beef cows. Animals 10:6967
    [Google Scholar]
  19. 19.
    Caton JS. 2009. Significance of elevated selenium in muscle tissue: functional food and nutrient reserve?. Selenium Deficiency, Toxicity, and Biofortification for Human Health57–58 Hefei, China: University of Science and Technology of China Press
    [Google Scholar]
  20. 20.
    Cerny KL, Anderson L, Burris WR, Rhoads M, Matthews JC, Bridges PJ. 2016. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 85:800–6
    [Google Scholar]
  21. 21.
    Chen LL, Huang JQ, Wu YY, Chen LB, Li SP et al. 2021. Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox. Biol. 45:102048
    [Google Scholar]
  22. 22.
    Chen LL, Huang JQ, Xiao Y, Wu YY, Ren FZ, Lei XG. 2020. Knockout of selenoprotein V affects regulation of selenoprotein expression by dietary selenium and fat intakes in mice. J. Nutr. 150:483–91
    [Google Scholar]
  23. 23.
    Chen X, Yang G, Chen J, Chen X, Wen Z, Ge K. 1980. Studies on the relations of selenium and Keshan disease. Biol. Trace Elem. Res. 2:91–107
    [Google Scholar]
  24. 24.
    Chen XD, Zhao ZP, Zhou JC, Lei XG. 2018. Evolution, regulation, and function of porcine selenogenome. Free Radic. . Biol. Med. 127:116–23
    [Google Scholar]
  25. 25.
    Chin. Med. Assoc 1979. Observations on effect of sodium selenite in prevention of Keshan disease. Chin. Med. J. 92:471–76
    [Google Scholar]
  26. 26.
    Clark LC, Combs GF Jr., Turnbull BW, Slate EH, Chalker DK et al. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. JAMA 276:1957–63
    [Google Scholar]
  27. 27.
    Cobo-Angel C, Wichtel J, Ceballos-Márquez A. 2014. Selenium in milk and human health. Anim. Front. 4:38–43
    [Google Scholar]
  28. 28.
    Combs GF Jr. 2001. Selenium in global food systems. Br. J. Nutr. 85:517–47
    [Google Scholar]
  29. 29.
    Combs GF Jr. 2015. Biomarkers of selenium status. Nutrients 7:2209–36
    [Google Scholar]
  30. 30.
    Combs GF Jr., Combs SB. 1986. The Role of Selenium in Nutrition New York: Academic
    [Google Scholar]
  31. 31.
    Combs GJ Jr., J. 2006. Selenium as a cancer preventive agent. In Selenium: Its Molecular Biology and Role in Human Healthed. DL Hatfield, U Schweizer, PA Tsuji, VN Gladyshev249–64 Boston, MA: Springer Science Business Media
    [Google Scholar]
  32. 32.
    Crouse MS, Caton JS, Cushman RA, McLean KJ, Dahlen CR et al. 2019. Moderate nutrient restriction of beef heifers alters expression of genes associated with tissue metabolism, accretion, and function in fetal liver, muscle, and cerebrum by day 50 of gestation. Transl. Anim. Sci. 3:855–66
    [Google Scholar]
  33. 33.
    CSIRO 2007. Nutrient Requirements of Domesticated Ruminants Collingwood, Australia: CSIRO Publishing
    [Google Scholar]
  34. 34.
    Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP, Horneber M. 2011. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2014:3Cd005195
    [Google Scholar]
  35. 35.
    Desta B, Maldonado G, Reid H, Puschner B, Maxwell J et al. 2011. Acute selenium toxicosis in polo ponies. J. Vet. Diagn. Investig. 23:623–28
    [Google Scholar]
  36. 36.
    Dhillon KS, Dhillon SK. 2009. Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci. Total Environ. 407:6150–56
    [Google Scholar]
  37. 37.
    Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH et al. 2006. Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. PNAS 103:8179
    [Google Scholar]
  38. 38.
    Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GF Jr., Slate EH et al. 2002. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomarkers Prev. 11:630–39
    [Google Scholar]
  39. 39.
    Duffield AJ, Thomson CD, Hill KE, Williams S 1999. An estimation of selenium requirements for New Zealanders. Am. J. Clin. Nutr. 70:896–903
    [Google Scholar]
  40. 40.
    Eckhert CD, Lockwood MK, Shen B. 1993. Influence of selenium on the microvasculature of the retina. Microvasc. Res. 45:74–82
    [Google Scholar]
  41. 41.
    EFSA Panel Addit. Prod. Subst. Anim. Feed 2013. Scientific opinion on the safety and efficacy of L-selenomethionine as feed additive for all animal species. EFSA J. 11:3219
    [Google Scholar]
  42. 42.
    Elhodaky M, Diamond AM. 2018. Selenium-binding protein 1 in human health and disease. Int. J. Mol. Sci. 19:113437
    [Google Scholar]
  43. 43.
    Elrashidi MA, Adriano DC, Workman SM, Lindsay WL. 1987. Chemical equilibria of selenium in soils: a theoretical development. Soil Sci. 144:141–52
    [Google Scholar]
  44. 44.
    Eurola M 2005. Proceedings: twenty years of selenium fertilization, September 8–9, 2005, Helsinki, Finland Agrifood Res. Rep. 69 MTT Agrifood Research Helsinki, Finland:
    [Google Scholar]
  45. 45.
    Evenson JK, Sunde RA. 1988. Selenium incorporation into selenoproteins in the Se-adequate and Se-deficient rat. Proc. Soc. Exp. Biol. Med. 187:169–80
    [Google Scholar]
  46. 46.
    Evenson JK, Sunde RA. 2021. Metabolism of tracer (75)Se selenium from inorganic and organic selenocompounds into selenoproteins in rats, and the missing (75)Se metabolites. Front. Nutr. 8:699652
    [Google Scholar]
  47. 47.
    Falk M, Bernhoft A, Reinoso-Maset E, Salbu B, Lebed P et al. 2020. Beneficial antioxidant status of piglets from sows fed selenomethionine compared with piglets from sows fed sodium selenite. J. Trace Elem. Med. Biol. 58:126439
    [Google Scholar]
  48. 48.
    Fan Y, Gao D, Zhang Y, Zhu J, Zhang F et al. 2021. Genome-wide differentially methylated region analysis to reveal epigenetic differences of articular cartilage in Kashin-Beck disease and osteoarthritis. Front. Cell Dev. Biol. 9:636291
    [Google Scholar]
  49. 49.
    Ferguson-Kohout N, Sunde RA. 1997. Dietary selenium regulation of glutathione peroxidase (GPX1) and phospholipid hydroperoxide glutathione peroxidase (GPX4) in mice. FASEB J. 11:A359
    [Google Scholar]
  50. 50.
    Fisinin VI, Papazyan TT, Surai PF. 2009. Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit. Rev. Biotechnol. 29:18–28
    [Google Scholar]
  51. 51.
    Ge K, Xue A, Bai J, Wang S 1983. Keshan disease—an endemic cardiomyopathy in China. Virchows Arch. A Pathol. Anat. Histopathol. 401:1–15
    [Google Scholar]
  52. 52.
    Genther ON, Hansen SL. 2014. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers. J. Anim. Sci. 92:695–704
    [Google Scholar]
  53. 53.
    Gissel-Nielsen G. 1998. Effects of selenium supplementation of field crops. Environmental Chemistry of Selenium99–112 New York: Dekker
    [Google Scholar]
  54. 54.
    Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA et al. 2016. Selenoprotein gene nomenclature. J. Biol. Chem. 291:24036–40
    [Google Scholar]
  55. 55.
    González-Iglesias H, Fernández-Sánchez ML, Lu Y, Fernández Menéndez S, Pergantis SA, Sanz-Medel A 2015. Elemental and molecular mass spectrometry for integrated selenosugar speciation in liver and kidney tissues of maternal feeding and supplemented rats. J. Anal. At. Spectrom. 30:267–76
    [Google Scholar]
  56. 56.
    Gries CL, Scott ML. 1972. Pathology of selenium deficiency in the chick. J. Nutr. 102:1287–96
    [Google Scholar]
  57. 57.
    Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC et al. 2013. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLOS ONE 8:e58188
    [Google Scholar]
  58. 58.
    Hariharan S, Dharmaraj S. 2020. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 28:667–95
    [Google Scholar]
  59. 59.
    Hartikainen H, Xue T, Piironen V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200
    [Google Scholar]
  60. 60.
    Hatfield D, Gladyshev VN. 2009. The outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology. Mol. Interventions 9:118–21
    [Google Scholar]
  61. 61.
    Hawkes WC, Alkan Z, Wong K. 2009. Selenium supplementation does not affect testicular selenium status or semen quality in North American men. J. Androl. 30:5525–33
    [Google Scholar]
  62. 62.
    Helzlsouer K, Jacobs R, Morris S 1985. Acute selenium intoxication in the United-States. Fed. Proc. 44:1670
    [Google Scholar]
  63. 63.
    Hill KE, Zhou J, Austin LM, Motley AK, Ham AJ et al. 2007. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J. Biol. Chem. 282:10972–80
    [Google Scholar]
  64. 64.
    Hintze KJ, Lardy GP, Marchello MJ, Finley JW. 2001. Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. J. Agric. Food Chem. 49:1062–67
    [Google Scholar]
  65. 65.
    Hintze KJ, Lardy GP, Marchello MJ, Finley JW. 2002. Selenium accumulation in beef: effect of dietary selenium and geographical area of animal origin. J. Agric. Food Chem. 50:3938–42
    [Google Scholar]
  66. 66.
    Hu Y, Benya RV, Carroll RE, Diamond AM. 2005. Allelic loss of the gene for the GPX1 selenium-containing protein is a common event in cancer. J. Nutr. 135:3021S–24S
    [Google Scholar]
  67. 67.
    Huang J-Q, Li D-L, Zhao H, Sun L, Xia X et al. 2011. The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J. Nutr. 141:91605–10
    [Google Scholar]
  68. 68.
    Huang J-Q, Wang Y-Y, Wang Q-Y, Xiao C, Ren F-Z, Lei XG 2016. Digital gene expression (DGE) analysis of nutritional pancreatic atrophy of chicks induced by the Se/vitamin E deficiencies. FASEB J. 30:S11170.1
    [Google Scholar]
  69. 69.
    Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG 2015. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic. . Biol. Med. 83:129–38
    [Google Scholar]
  70. 70.
    Huang JQ, Zhou JC, Wu YY, Ren FZ, Lei XG. 2018. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic. . Biol. Med. 127:108–15
    [Google Scholar]
  71. 71.
    Hurst R, Collings R, Harvey LJ, King M, Hooper L et al. 2013. EURRECA—estimating selenium requirements for deriving dietary reference values. Crit. Rev. Food Sci. Nutr. 53:1077–96
    [Google Scholar]
  72. 72.
    Inst. Med 2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids Washington, DC: National Academies Press
    [Google Scholar]
  73. 73.
    Ivancic J Jr., Weiss WP. 2001. Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. J. Dairy Sci. 84:225–32
    [Google Scholar]
  74. 74.
    Jackson MI, Combs GF. 2008. Selenium and anticarcinogenesis: underlying mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 11:718–26
    [Google Scholar]
  75. 75.
    Jackson T, Carmichael-Wyatt R, Deters E, Messersmith E, VanValin K et al. 2020. Comparison of multiple single-use, pulse-dose trace mineral products provided as injectable, oral drench, oral paste, or bolus on circulating and liver trace mineral concentrations of beef steers. Appl. Anim. Sci. 36:26–35
    [Google Scholar]
  76. 76.
    Jacobs ET, Lance P, Mandarino LJ, Ellis NA, Chow HS et al. 2019. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res. Care 7:e000613
    [Google Scholar]
  77. 77.
    Janghorbani M, Rockway S, Mooers CS, Roberts EM, Ting BT, Sitrin MD. 1990. Effect of chronic selenite supplementation on selenium excretion and organ accumulation in rats. J. Nutr. 120:274–79
    [Google Scholar]
  78. 78.
    Jensen LS, Colnago GL, Takahashi K, Akiba Y. 1986. Dietary selenium status and plasma thyroid hormones in chicks. Biol. Trace Elem. Res. 10:11–18
    [Google Scholar]
  79. 79.
    Jia J. 2007. Effect of different source selenium on piglets of sows tissue selenium deposition and blood biochemical parameters MSc Thesis Sichuan Agriculture University Ya'an, Sichuan, China:
    [Google Scholar]
  80. 80.
    Katarzyna B, Taylor RM, Szpunar J, Lobinski R, Sunde RA. 2020. Identification and determination of selenocysteine, selenosugar, and other selenometabolites in turkey liver. Metallomics 12:758–66
    [Google Scholar]
  81. 81.
    Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. 2002. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. PNAS 99:15932–36
    [Google Scholar]
  82. 82.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O et al. 2003. Characterization of mammalian selenoproteomes. Science 300:1439–43
    [Google Scholar]
  83. 83.
    Labunskyy VM, Hatfield DL, Gladyshev VN. 2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94:739–77
    [Google Scholar]
  84. 84.
    Lee J, Finley JW, Harnly J. 2005. Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. J. Agricult. Food Chem. 53:239105–11
    [Google Scholar]
  85. 85.
    Lei XG, Dann HM, Ross DA, Cheng WH, Combs GF, Roneker KR. 1998. Dietary selenium supplementation is required to support full expression of three selenium-dependent glutathione peroxidases in various tissues of weanling pigs. J. Nutr. 128:130–35
    [Google Scholar]
  86. 86.
    Lei XG, Evenson JK, Thompson KM, Sunde RA. 1995. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125:1438–46
    [Google Scholar]
  87. 87.
    Li H-F, McGrath SP, Zhao F-J. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist 178:192–102
    [Google Scholar]
  88. 88.
    Li JG, Zhou JC, Zhao H, Lei XG, Xia XJ et al. 2011. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast. Meat Sci. 87:95–100
    [Google Scholar]
  89. 89.
    Li JL, Sunde RA. 2016. Selenoprotein transcript level and enzyme activity as biomarkers for selenium status and selenium requirements of chickens (Gallus gallus). PLOS ONE 11:e0152392
    [Google Scholar]
  90. 90.
    Li S, Gao F, Huang J, Wu Y, Wu S, Lei XG. 2018. Regulation and function of avian selenogenome. Biochim. Biophys. Acta Gen. Subj. 1862:2473–79
    [Google Scholar]
  91. 91.
    Liang Y, Lin S-L, Wang C-W, Yao H-D, Zhang Z-W, Xu S-W. 2014. Effect of selenium on selenoprotein expression in the adipose tissue of chickens. Biol. Trace Elem. Res. 160:41–48
    [Google Scholar]
  92. 92.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM et al. 2009. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51
    [Google Scholar]
  93. 93.
    Liu T, Yang T, Pan T, Liu C, Li S 2018. Effect of low-selenium/high-fat diet on pig peripheral blood lymphocytes: perspectives from selenoproteins, heat shock proteins, and cytokines. Biol. Trace Elem. Res. 183:102–13
    [Google Scholar]
  94. 94.
    Liu X, He S, Peng J, Guo X, Tan W. 2019. Expression profile analysis of selenium-related genes in peripheral blood mononuclear cells of patients with Keshan disease. Biomed. Res. Int. 2019:4352905
    [Google Scholar]
  95. 95.
    Liu Y, Zhao H, Zhang Q, Tang J, Li K et al. 2012. Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J. Nutr. 142:1410–16
    [Google Scholar]
  96. 96.
    Long J, Liu Y, Zhou X, He L. 2020. Dietary serine supplementation regulates selenoprotein transcription and selenoenzyme activity in pigs. Biol. Trace Elem. Res. 199:148–53
    [Google Scholar]
  97. 97.
    Lu Y, Pergantis SA. 2009. Selenosugar determination in porcine liver using multidimensional HPLC with atomic and molecular mass spectrometry. Metallomics 1:346–52
    [Google Scholar]
  98. 98.
    Lu Z, Wang P, Teng T, Shi B, Shan A, Lei XG. 2019. Effects of dietary selenium deficiency or excess on selenoprotein gene expression in the spleen tissue of pigs. Animals 9:1122
    [Google Scholar]
  99. 99.
    MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A et al. 2010. Acute selenium toxicity associated with a dietary supplement. Arch. Intern. Med. 170:256–61
    [Google Scholar]
  100. 100.
    Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH et al. 2012. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLOS ONE 7:e33066
    [Google Scholar]
  101. 101.
    Mariotti M, Santesmasses D, Capella-Gutierrez S, Mateo A, Arnan C et al. 2015. Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res. 25:1256–67
    [Google Scholar]
  102. 102.
    McAdam PA, Levander OA. 1987. Chronic toxicity and retention of dietary selenium fed to rats as D- or L-selenomethionine, selenite, or selenate. Nutr. Res. 7:601–10
    [Google Scholar]
  103. 103.
    McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P et al. 2004. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. PNAS 101:8852–57
    [Google Scholar]
  104. 104.
    McConnell KP, Hoffman JL. 1972. Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis. FEBS Lett. 24:60–62
    [Google Scholar]
  105. 105.
    McDowell LR. 1996. Feeding minerals to cattle on pasture. Anim. Feed Sci. Technol. 60:247–71
    [Google Scholar]
  106. 106.
    Mehdi Y, Dufrasne I. 2016. Selenium in cattle: a review. Molecules 21:4545
    [Google Scholar]
  107. 107.
    Mehdi Y, Hornick JL, Istasse L, Dufrasne I. 2013. Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–311
    [Google Scholar]
  108. 108.
    Michalczuk M, Batorska M, Sikorska U, Bień D, Urban J et al. 2021. Selenium and the health status, production results, and product quality in poultry. Anim. Sci. J. 92:e13662
    [Google Scholar]
  109. 109.
    Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N et al. 2010. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 12:483–95
    [Google Scholar]
  110. 110.
    Morrison DG, Dishart MK, Medina D. 1988. Intracellular 58-kd selenoprotein levels correlate with inhibition of DNA synthesis in mammary epithelial cells. Carcinogenesis 9:1801–10
    [Google Scholar]
  111. 111.
    Murawaki Y, Tsuchiya H, Kanbe T, Harada K, Yashima K et al. 2008. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett. 259:218–30
    [Google Scholar]
  112. 112.
    Natl. Acad. Sci. Eng. Med. 2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  113. 113.
    Natl. Res. Council. 1982. Nutrient Requirements of Mink and Foxes: Second Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  114. 114.
    Natl. Res. Counc. 1983. Selenium in Nutrition: Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  115. 115.
    Natl. Res. Counc. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  116. 116.
    Natl. Res. Counc. 1995. Nutrient Requirements of Laboratory Animals: Fourth Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  117. 117.
    Natl. Res. Counc. 2001. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  118. 118.
    Natl. Res. Council. 2003. Nutrient Requirements of Nonhuman Primates: Second Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  119. 119.
    Natl. Res. Counc. 2005. Mineral Tolerance of Animals: Second Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  120. 120.
    Natl. Res. Council. 2006. Nutrient Requirements of Dogs and Cats Washington, DC: National Academies Press
    [Google Scholar]
  121. 121.
    Natl. Res. Council. 2007. Nutrient Requirements of Horses: Sixth Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  122. 122.
    Natl. Res. Counc. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids Washington, DC: National Academies Press
    [Google Scholar]
  123. 123.
    Natl. Res. Council. 2011. Nutrient Requirements of Fish and Shrimp Washington, DC: National Academies Press
    [Google Scholar]
  124. 124.
    Natl. Res. Council. 2012. Nutrient Requirements of Swine: Eleventh Revised Edition Washington, DC: National Academies Press
    [Google Scholar]
  125. 125.
    Nys Y, Schlegel P, Durosoy S, Jondreville C, Narcy A. 2018. Adapting trace mineral nutrition of birds for optimising the environment and poultry product quality. World's Poultry Sci. J. 74:225–38
    [Google Scholar]
  126. 126.
    Omaye ST, Tappel AL. 1974. Effect of dietary selenium on glutathione peroxidase in the chick. J. Nutr. 104:747–53
    [Google Scholar]
  127. 127.
    Ort JF, Latshaw JD. 1978. The toxic level of sodium selenite in the diet of laying chickens. J. Nutr. 108:1114–20
    [Google Scholar]
  128. 128.
    Park K, Rimm EB, Siscovick DS, Spiegelman D, Manson JE et al. 2012. Toenail selenium and incidence of type 2 diabetes in U.S. men and women. Diabetes Care 35:1544–51
    [Google Scholar]
  129. 129.
    Patterson BH, Levander OA, Helzlsouer K, McAdam PA, Lewis SA et al. 1989. Human selenite metabolism: a kinetic model. Am. J. Physiol. 257:R556–67
    [Google Scholar]
  130. 130.
    Pfister JA, Davis TZ, Hall JO. 2013. Effect of selenium concentration on feed preferences by cattle and sheep. J. Anim. Sci. 91:5970–80
    [Google Scholar]
  131. 131.
    Pilon-Smits E, Quinn C. 2010. Selenium metabolism in plants. 17225–41
  132. 132.
    Pogge DJ, Richter EL, Drewnoski ME, Hansen SL. 2012. Mineral concentrations of plasma and liver after injection with a trace mineral complex differ among Angus and Simmental cattle. J. Anim. Sci. 90:2692–98
    [Google Scholar]
  133. 133.
    Provenza FD. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48:2–17
    [Google Scholar]
  134. 134.
    Pumford NR, Martin BM, Hinson JA. 1992. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem. Biophys. Res. Commun. 182:1348–55
    [Google Scholar]
  135. 135.
    Raines AM, Sunde RA. 2011. Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents. BMC Genom. 12:26
    [Google Scholar]
  136. 136.
    Rajpathak S, Rimm E, Morris JS, Hu F. 2005. Toenail selenium and cardiovascular disease in men with diabetes. J. Am. Coll. Nutr. 24:250–56
    [Google Scholar]
  137. 137.
    Ratnasinghe D, Tangrea JA, Andersen MR, Barrett MJ, Virtamo J et al. 2000. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 60:6381–83
    [Google Scholar]
  138. 138.
    Reed JJ, Ward MA, Vonnahme KA, Neville TL, Julius SL et al. 2007. Effects of selenium supply and dietary restriction on maternal and fetal body weight, visceral organ mass and cellularity estimates, and jejunal vascularity in pregnant ewe lambs. J. Anim. Sci. 85:2721–33
    [Google Scholar]
  139. 139.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–90
    [Google Scholar]
  140. 140.
    Santesmasses D, Mariotti M, Gladyshev VN. 2020. Tolerance to selenoprotein loss differs between human and mouse. Mol. Biol. Evol. 37:341–54
    [Google Scholar]
  141. 141.
    Sayehmiri K, Azami M, Mohammadi Y, Soleymani A, Tardeh Z. 2018. The association between selenium and prostate cancer: a systematic review and meta-analysis. Asian Pac. . J. Cancer Prev. 19:1431–37
    [Google Scholar]
  142. 142.
    Schroeder HA. 1967. Effects of selenate, selenite and tellurite on the growth and early survival of mice and rats. J. Nutr. 92:334–38
    [Google Scholar]
  143. 143.
    Schubert A, Holden JM, Wolf WR. 1987. Selenium content of a core group of foods based on a critical evaluation of published analytical data. J. Am. Diet. Assoc. 87:285–99
    [Google Scholar]
  144. 144.
    Schwarz K, Bieri JG, Briggs GM, Scott ML. 1957. Prevention of exudative diathesis in chicks by factor 3 and selenium. Proc. Soc. Exp. Biol. Med. 95:621–25
    [Google Scholar]
  145. 145.
    Schwarz K, Foltz CM. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79:3292–93
    [Google Scholar]
  146. 146.
    Schweizer U, Fradejas-Villar N. 2016. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J. 30:3669–81
    [Google Scholar]
  147. 147.
    Sci. Comm. Food. 2006. Tolerable upper intake levels for vitamins and minerals Rep. Eur. Food Saf. Auth. Parma, Italy:
    [Google Scholar]
  148. 148.
    Scott ML, Olson G, Krook L, Brown WR. 1967. Selenium-responsive myopathies of myocardium of smooth muscle in the young poult. J. Nutr. 91:573–83
    [Google Scholar]
  149. 149.
    Séboussi R, Tremblay GF, Ouellet V, Chouinard PY, Chorfi Y et al. 2016. Selenium-fertilized forage as a way to supplement lactating dairy cows. J. Dairy Sci. 99:5358–69
    [Google Scholar]
  150. 150.
    Shamberger RJ, Frost DV. 1969. Possible protective effect of selenium against human cancer. Can. Med. Assoc. J. 100:682
    [Google Scholar]
  151. 151.
    Shi B, Spallholz JE. 1994. Bioavailability of selenium from raw and cooked ground beef assessed in selenium-deficient Fischer rats. J. Am. Coll. Nutr. 13:195–101
    [Google Scholar]
  152. 152.
    Singh M, Singh N, Bhandari DK. 1980. Interaction of selenium and sulfur on the growth and chemical composition of raya. Soil Sci. 129:238–44
    [Google Scholar]
  153. 153.
    Smith AM, Picciano MF. 1986. Evidence for increased selenium requirement for the rat during pregnancy and lactation. J. Nutr. 116:1068–79
    [Google Scholar]
  154. 154.
    Sordillo LM. 2013. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet. Med. Int. 2013:154045
    [Google Scholar]
  155. 155.
    Soto-Navarro SA, Lawler TL, Taylor JB, Reynolds LP, Reed JJ et al. 2004. Effect of high-selenium wheat on visceral organ mass, and intestinal cellularity and vascularity in finishing beef steers. J. Anim. Sci. 82:1788–93
    [Google Scholar]
  156. 156.
    Sprinkle JE, Schafer DW, Cuneo SP, Tolleson DR, Enns RM. 2020. Effects of a long-acting trace mineral rumen bolus upon range cow productivity. Trans. Anim. Sci. 5:txaa232
    [Google Scholar]
  157. 157.
    Stowe H, Pagan J. 1998. Selenium supplementation for horse feed. Adv. Equine Nutr. 1:97–103
    [Google Scholar]
  158. 158.
    Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M et al. 2007. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med. 147:217–23
    [Google Scholar]
  159. 159.
    Sun LH, Huang JQ, Deng J, Lei XG. 2019. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult. Sci. 98:4247–54
    [Google Scholar]
  160. 160.
    Sun LH, Li JG, Zhao H, Shi J, Huang JQ et al. 2013. Porcine serum can be biofortified with selenium to inhibit proliferation of three types of human cancer cells. J. Nutr. 143:1115–22
    [Google Scholar]
  161. 161.
    Sun Y, Gao C, Wang X, Yuan Y, Liu Y, Jia J. 2017. Serum quantitative proteomic analysis of patients with keshan disease based on iTRAQ labeling technique: a first term study. J. Trace Elem. Med. Biol. 44:331–38
    [Google Scholar]
  162. 162.
    Sunde RA. 2021. Gene set enrichment analysis of selenium-deficient and high-selenium rat liver transcript expression and comparison with turkey liver expression. J. Nutr. 151:772–84
    [Google Scholar]
  163. 163.
    Sunde RA, Evenson JK, Thompson KM, Sachdev SW. 2005. Dietary selenium requirements based on glutathione peroxidase-1 activity and mRNA levels and other Se-dependent parameters are not increased by pregnancy and lactation in rats. J. Nutr. 135:2144–50
    [Google Scholar]
  164. 164.
    Sunde RA, Hadley KB. 2010. Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Exp. Biol. Med. 235:23–31
    [Google Scholar]
  165. 165.
    Sunde RA, Li JL, Taylor RM. 2016. Insights for setting of nutrient requirements, gleaned by comparison of selenium status biomarkers in turkeys and chickens versus rats, mice, and lambs. Adv. Nutr. 7:1129–38
    [Google Scholar]
  166. 166.
    Sunde RA, Sunde GR, Sunde CM, Sunde ML, Evenson JK. 2015. Cloning, sequencing, and expression of selenoprotein transcripts in the turkey (Meleagris gallopavo). PLOS ONE 10:e0129801
    [Google Scholar]
  167. 167.
    Sunde RA, Thompson KM. 2009. Dietary selenium requirements based on tissue selenium concentration and glutathione peroxidase activities in old female rats. J. Trace Elem. Med. Biol. 23:132–37
    [Google Scholar]
  168. 168.
    Sunde RA, Thompson KM, Fritsche KL, Evenson JK. 2017. Minimum selenium requirements increase when repleting second-generation selenium-deficient rats but are not further altered by vitamin E deficiency. Biol. Trace Elem. Res. 177:139–47
    [Google Scholar]
  169. 169.
    Surai PF, Fisinin VI, Karadas F. 2016. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Anim. Nutr. 2:1–11
    [Google Scholar]
  170. 170.
    Suttle NF, Underwood EJ. 2010. Mineral Nutrition of Livestock Oxfordshire, UK: CAB International
    [Google Scholar]
  171. 171.
    Swanson TJ, Hammer CJ, Luther JS, Carlson DB, Taylor JB et al. 2008. Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. J. Anim. Sci. 86:2415–23
    [Google Scholar]
  172. 172.
    Takahashi K, Suzuki N, Ogra Y. 2018. Effect of administration route and dose on metabolism of nine bioselenocompounds. J. Trace Elem. Med. Biol. 49:113–18
    [Google Scholar]
  173. 173.
    Tang C, Li S, Zhang K, Li J, Han Y et al. 2020. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox. Biol. 36:101519
    [Google Scholar]
  174. 174.
    Taylor JB, Caton JS, Larsen R. 2014. Selenium biofortification in North America: using naturally selenium-rich feeds for livestock. Selenium in the Environment and Human Health155–56 London: CRC Press, Taylor & Francis Group
    [Google Scholar]
  175. 175.
    Taylor JB, Marchello MJ, Finley JW, Lawler TL, Combs GF, Caton JS. 2008. Nutritive value and display-life attributes of selenium-enriched beef-muscle foods. J. Food Comp. Anal. 21:183–86
    [Google Scholar]
  176. 176.
    Taylor PR, Li B, Dawsey SM, Li JY, Yang CS et al. 1994. Prevention of esophageal cancer: the nutrition intervention trials in Linxian, China. Linxian Nutrition Intervention Trials Study Group. Cancer Res. 54:2029S–31S
    [Google Scholar]
  177. 177.
    Taylor RM, Bourget VG, Sunde RA. 2019. High dietary inorganic selenium has minimal effects on turkeys and selenium status biomarkers. Poult. Sci. 98:855–65
    [Google Scholar]
  178. 178.
    Taylor RM, Mendoza KM, Abrahante JE, Reed KM, Sunde RA. 2020. The hepatic transcriptome of the turkey poult (Meleagris gallopavo) is minimally altered by high inorganic dietary selenium. PLOS ONE 15:e0232160
    [Google Scholar]
  179. 179.
    Taylor RM, Sunde RA. 2016. Selenoprotein transcript level and enzyme activity as biomarkers for selenium status and selenium requirements in the turkey (Meleagris gallopavo). PLOS ONE 11:e0151665
    [Google Scholar]
  180. 180.
    Terry N, Zayed AM, de Souza MP, Tarun AS. 2000. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:401–32
    [Google Scholar]
  181. 181.
    Thompson JN, Scott ML. 1969. Role of selenium in the nutrition of the chick. J. Nutr. 97:335–42
    [Google Scholar]
  182. 182.
    Tobe R, Mihara H 2018. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim. Biophys. Acta Gen. Subj. 1862:2433–40
    [Google Scholar]
  183. 183.
    Turner JC, Osborn PJ, McVeagh SM. 1990. Studies on selenate and selenite absorption by sheep ileum using an everted sac method and an isolated, vascularly perfused system. Comp. Biochem. Physiol. A Comp. Physiol. 95:297–301
    [Google Scholar]
  184. 184.
    US Food Drug Admin. 2013. Code of Federal Regulations Title 21, Part 1271: Human cells, tissues, and cellular and tissue-based products Washington, DC: US Food Drug Admin.
    [Google Scholar]
  185. 185.
    Vadhanavikit S, Ganther HE. 1993. Selenium requirements of rats for normal hepatic and thyroidal 5′-deiodinase (type I) activities. J. Nutr. 123:1124–28
    [Google Scholar]
  186. 186.
    Valle G, McDowell LR, Wilkinson NS, Wright D. 1993. Selenium concentration of bermudagrass after spraying with sodium selenate. Commun. Soil Sci. Plant Anal. 24:1763–68
    [Google Scholar]
  187. 187.
    Van Dael P, Davidsson L, Ziegler EE, Fay LB, Barclay D. 2002. Comparison of selenite and selenate apparent absorption and retention in infants using stable isotope methodology. Pediatr. Res. 51:71–75
    [Google Scholar]
  188. 188.
    Van Mantgem PJ, Wu L, Banuelos GS. 1996. Bioextraction of selenium by forage and selected field legume species in selenium-laden soils under minimal field management conditions. Ecotoxicol. Environ. Saf. 34:228–38
    [Google Scholar]
  189. 189.
    Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M et al. 2018. Selenium for preventing cancer. Cochrane Database Syst. Rev. 1:Cd005195
    [Google Scholar]
  190. 190.
    Vinceti M, Filippini T, Wise LA, Rothman KJ. 2021. A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies. Environ. Res. 197:111210
    [Google Scholar]
  191. 191.
    Vonnahme KA, Wienhold CM, Borowicz PP, Neville TL, Redmer DA et al. 2011. Supranutritional selenium increases mammary gland vascularity in postpartum ewe lambs. J. Dairy Sci. 94:2850–58
    [Google Scholar]
  192. 192.
    Wang S, Lv Y, Wang Y, Du P, Tan W et al. 2018. Network analysis of Se-and Zn-related proteins in the serum proteomics expression profile of the endemic dilated cardiomyopathy Keshan disease. Biol. Trace Elem. Res. 183:40–48
    [Google Scholar]
  193. 193.
    Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons RA, Lei XG. 2008. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia 51:1515–24
    [Google Scholar]
  194. 194.
    Wang Y, Rijntjes E, Wu Q, Lv H, Gao C et al. 2020. Selenium deficiency is linearly associated with hypoglycemia in healthy adults. Redox. Biol. 37:101709
    [Google Scholar]
  195. 195.
    Waschulewski IH, Sunde RA. 1988. Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J. Nutr. 118:367–74
    [Google Scholar]
  196. 196.
    Wastney ME, Combs GF Jr., Canfield WK, Taylor PR, Patterson KY et al. 2011. A human model of selenium that integrates metabolism from selenite and selenomethionine. J. Nutr. 141:708–17
    [Google Scholar]
  197. 197.
    Wedekind KJ, Howard KA, Backus RC, Yu S, Morris JG, Rogers QR. 2003. Determination of the selenium requirement in kittens. J. Anim. Physiol. Anim. Nutr. 87:315–23
    [Google Scholar]
  198. 198.
    Wedekind KJ, Yu S, Combs GF 2004. The selenium requirement of the puppy. J. Anim. Physiol. Anim. Nutr. 88:340–47
    [Google Scholar]
  199. 199.
    Weiss SL, Evenson JK, Thompson KM, Sunde RA. 1996. The selenium requirement for glutathione peroxidase mRNA level is half of the selenium requirement for glutathione peroxidase activity in female rats. J. Nutr. 126:2260–67
    [Google Scholar]
  200. 200.
    Weiss WP. 2005. Selenium sources for dairy cattle. Tri-State Dairy Nutrition Conference, Vol. 561–71 Columbus, Ohio: Ohio State University
    [Google Scholar]
  201. 201.
    Wen HY, Davis RL, Shi B, Chen JJ, Chen L et al. 1997. Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats. Biol. Trace Elem. Res. 58:43–53
    [Google Scholar]
  202. 202.
    Whanger PD, Butler JA. 1988. Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats. J. Nutr. 118:846–52
    [Google Scholar]
  203. 203.
    White PJ. 2018. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 1862:2333–42
    [Google Scholar]
  204. 204.
    World Health Organ. 1996. Trace elements in human nutrition and health Rep. World Health Organization Geneva:
    [Google Scholar]
  205. 205.
    Wu L, Guo X, Banuelos GS. 1997. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils. Environ. Toxicol. Chem. 16:491–97
    [Google Scholar]
  206. 206.
    Xia Y, Hill KE, Byrne DW, Xu J, Burk RF. 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81:829–34
    [Google Scholar]
  207. 207.
    Xia Y, Hill KE, Li P, Xu J, Zhou D et al. 2010. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr. 92:525–31
    [Google Scholar]
  208. 208.
    Xu J, Wang L, Tang J, Jia G, Liu G et al. 2017. Pancreatic atrophy caused by dietary selenium deficiency induces hypoinsulinemic hyperglycemia via global down-regulation of selenoprotein encoding genes in broilers. PLOS ONE 12:e0182079
    [Google Scholar]
  209. 209.
    Yamashita M, Yamashita Y, Suzuki T, Kani Y, Mizusawa N et al. 2013. Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. Mar. Biotechnol. 15:559–70
    [Google Scholar]
  210. 210.
    Yamashita Y, Yamashita M. 2010. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem. 285:18134–38
    [Google Scholar]
  211. 211.
    Yan L, Robinson R, Shi Z, Mann G. 2016. Efficacy of progesterone supplementation during early pregnancy in cows: a meta-analysis. Theriogenology 85:1390–98.e1
    [Google Scholar]
  212. 212.
    Yang GQ, Wang SZ, Zhou RH, Sun SZ. 1983. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 37:872–81
    [Google Scholar]
  213. 213.
    Yang GQ, Zhu LZ, Liu SJ, Gu LZ, Qian PC et al. 1987. Human selenium requirements in China. Selenium in Biology and Medicine GF Combs Jr., OA Levander, JE Spalholz, JE Odfield 589–607 New York: AVI
    [Google Scholar]
  214. 214.
    Yang X, Chen W, Feng Y 2007. Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environ. Geochem. Health 29:413–28
    [Google Scholar]
  215. 215.
    Yang X, Li Z, Zhang R, Zhang D, Xiong Y et al. 2021. Dysregulation of transcription profile of selenoprotein in patients with Kashin-Beck disease and its effect on Se deficiency-induced chondrocyte apoptosis. Biol. Trace Elem. Res. 200:1508–17
    [Google Scholar]
  216. 216.
    Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S et al. 2013. Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J. Nutr. 143:613–19
    [Google Scholar]
  217. 217.
    Young PA, Kaiser II. 1975. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. Arch. Biochem. Biophys. 171:483–89
    [Google Scholar]
  218. 218.
    Yu SY, Zhu YJ, Li WG, Huang QS, Huang CZ et al. 1991. A preliminary report on the intervention trials of primary liver cancer in high-risk populations with nutritional supplementation of selenium in China. Biol. Trace Elem. Res. 29:289–94
    [Google Scholar]
  219. 219.
    Zeng MS, Li X, Liu Y, Zhao H, Zhou JC et al. 2012. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic. . Biol. Med. 52:1335–42
    [Google Scholar]
  220. 220.
    Zhan X, Qie Y, Wang M, Li X, Zhao R. 2011. Selenomethionine: an effective selenium source for sow to improve Se distribution, antioxidant status, and growth performance of pig offspring. Biol. Trace Elem. Res. 142:481–91
    [Google Scholar]
  221. 221.
    Zhang K, Zhao Q, Zhan T, Han Y, Tang C, Zhang J. 2019. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs. Biol. Trace Elem. Res. 196:463–71
    [Google Scholar]
  222. 222.
    Zhang Y, Yu D, Zhang J, Bao J, Tang C, Zhang Z. 2020. The role of necroptosis and apoptosis through the oxidative stress pathway in the liver of selenium-deficient swine. Metallomics 12:607–16
    [Google Scholar]
  223. 223.
    Zhao H, Li K, Tang JY, Zhou JC, Wang KN et al. 2015. Expression of selenoprotein genes is affected by obesity of pigs fed a high-fat diet. J. Nutr. 145:1394–401
    [Google Scholar]
  224. 224.
    Zhao H, Zhao Z, Lei XG 2021. Function and regulation of porcine selenogenome and selenoproteome. Selenium in Pig Nutrition and Health PF Surai 39–59 Wageningen, Netherlands: Wageningen Academic Publishers
    [Google Scholar]
  225. 225.
    Zhao L, Sun LH, Huang JQ, Briens M, Qi DS et al. 2017. A novel organic selenium compound exerts unique regulation of selenium speciation, selenogenome, and selenoproteins in broiler chicks. J. Nutr. 147:789–97
    [Google Scholar]
  226. 226.
    Zhao X, Liang K, Zhu H, Wang J. 2021. Health risk assessment of heavy metals contamination in selenium-enriched eggs. Environ. Sci. Pollut. Res. Int. 28:27047–55
    [Google Scholar]
  227. 227.
    Zhao Z, Barcus M, Kim J, Lum KL, Mills C, Lei XG. 2016. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J. Nutr. 146:1625–33
    [Google Scholar]
  228. 228.
    Zhao Z, Kim J, Lei XG. 2020. High dietary fat and selenium concentrations exert tissue- and glutathione peroxidase 1-dependent impacts on lipid metabolism of young-adult mice. J. Nutr. 150:1738–48
    [Google Scholar]
  229. 229.
    Zhou J, Huang K, Lei XG. 2013. Selenium and diabetes—evidence from animal studies. Free Radic. . Biol. Med. 65:1548–56
    [Google Scholar]
  230. 230.
    Zhou JC, Zhao H, Li JG, Xia XJ, Wang KN et al. 2009. Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J. Nutr. 139:1061–66
    [Google Scholar]
  231. 231.
    Zhu J, Wang N, Li S, Li L, Su H, Liu C. 2008. Distribution and transport of selenium in Yutangba, China: impact of human activities. Sci. Total Environ. 392:252–61
    [Google Scholar]
  232. 232.
    Zou K, Liu G, Wu T, Du L. 2009. Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis. Osteoarthr. Cartil. 17:144–51
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062320-121834
Loading
/content/journals/10.1146/annurev-nutr-062320-121834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error