Selenium is regulated in the body to maintain vital selenoproteins and to avoid toxicity. When selenium is limiting, cells utilize it to synthesize the selenoproteins most important to them, creating a selenoprotein hierarchy in the cell. The liver is the central organ for selenium regulation and produces excretory selenium forms to regulate whole-body selenium. It responds to selenium deficiency by curtailing excretion and secreting selenoprotein P (Sepp1) into the plasma at the expense of its intracellular selenoproteins. Plasma Sepp1 is distributed to tissues in relation to their expression of the Sepp1 receptor apolipoprotein E receptor-2, creating a tissue selenium hierarchy. -terminal Sepp1 forms are taken up in the renal proximal tubule by another receptor, megalin. Thus, the regulated whole-body pool of selenium is shifted to needy cells and then to vital selenoproteins in them to supply selenium where it is needed, creating a whole-body selenoprotein hierarchy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alhazzani W, Jacobi J, Sindi A, Hartog C, Reinhart K. 1.  et al. 2013. The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit. Care Med. 41:1555–64 [Google Scholar]
  2. Andersen OM, Yeung CH, Vorum H, Wellner M, Andreassen TK. 2.  et al. 2003. Essential role of the apolipoprotein E receptor-2 in sperm development. J. Biol. Chem. 278:23989–95 [Google Scholar]
  3. Arnér ES, Holmgren A. 3.  2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267:6102–9 [Google Scholar]
  4. Avissar N, Ornt DB, Yagil Y, Horowitz S, Watkins RH. 4.  et al. 1994. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Physiol. 266:C367–75 [Google Scholar]
  5. Avissar N, Whitin JC, Allen PZ, Palmer IS, Cohen HJ. 5.  1989. Antihuman plasma glutathione peroxidase antibodies: immunologic investigations to determine plasma glutathione peroxidase protein and selenium content in plasma. Blood 73:318–23 [Google Scholar]
  6. Bansal MP, Oborn CJ, Danielson KG, Medina D. 6.  1989. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis 10:541–46 [Google Scholar]
  7. Behne D, Hilmert H, Scheid S, Gessner H, Elger W. 7.  1988. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim. Biophys. Acta 966:12–21 [Google Scholar]
  8. Behne D, Höfer-Bosse T. 8.  1984. Effects of a low selenium status on the distribution and retention of selenium in the rat. J. Nutr. 114:1289–96 [Google Scholar]
  9. Berry MJ, Banu L, Harney JW, Larsen PR. 9.  1993. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 12:3315–22 [Google Scholar]
  10. Bosschaerts T, Guilliams M, Noel W, Herin M, Burk RF. 10.  et al. 2008. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. J. Immunol. 180:6168–75 [Google Scholar]
  11. Brigelius-Flohé R, Maiorino M. 11.  2013. Glutathione peroxidases. Biochim. Biophys. Acta 1830:3289–303 [Google Scholar]
  12. Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA. 12.  et al. 2009. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol. Cell 35:479–89 [Google Scholar]
  13. Burk RF, Brown DG, Seely RJ, Scaief CC. 13.  1972. Influence of dietary and injected selenium on whole-body retention, route of excretion, and tissue retention of 75SeO32- in the rat. J. Nutr. 102:1049–55 [Google Scholar]
  14. Burk RF, Hill KE. 14.  2009. Selenoprotein P—expression, functions, and roles in mammals. Biochim. Biophys. Acta 1790:1441–47 [Google Scholar]
  15. Burk RF, Hill KE, Motley AK. 15.  2001. Plasma selenium in specific and non-specific forms. Biofactors 14:107–14 [Google Scholar]
  16. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S. 16.  et al. 2014. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 28:3579–88 [Google Scholar]
  17. Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK. 17.  et al. 2007. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J. Neurosci. 27:6207–11 [Google Scholar]
  18. Burk RF, Hill KE, Read R, Bellew T. 18.  1991. Response of rat selenoprotein P to selenium administration and fate of its selenium. Am. J. Physiol. 261:E26–30 [Google Scholar]
  19. Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW. 19.  2006. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev. 15:804–10 [Google Scholar]
  20. Burk RF, Olson GE, Hill KE, Winfrey VP, Motley AK, Kurokawa S. 20.  2013. Maternal-fetal transfer of selenium in the mouse. FASEB J. 27:3249–56 [Google Scholar]
  21. Burk RF, Seely RJ, Kiker KW. 21.  1973. Selenium: dietary threshold for urinary excretion in the rat. Proc. Soc. Exp. Biol. Med. 142:214–16 [Google Scholar]
  22. Byard JL. 22.  1969. Trimethyl selenide. A urinary metabolite of selenite. Arch. Biochem. Biophys. 130:556–60 [Google Scholar]
  23. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. 23.  2014. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J. Biol. Chem. 289:9662–74 [Google Scholar]
  24. Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali R. 24.  et al. 2007. Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J. Biol. Chem. 282:32591–602 [Google Scholar]
  25. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ. 25.  et al. 2004. Identification and characterization of phosphoseryl-tRNA[ser]sec kinase. Proc. Natl. Acad. Sci. USA 101:12848–53 [Google Scholar]
  26. Chiu-Ugalde J, Theilig F, Behrends T, Drebes J, Sieland C. 26.  et al. 2010. Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem. J. 431:103–11 [Google Scholar]
  27. Copeland PR, Driscoll DM. 27.  1999. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274:25447–54 [Google Scholar]
  28. Copeland PR, Stepanik VA, Driscoll DM. 28.  2001. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol. Cell. Biol. 21:1491–98 [Google Scholar]
  29. Cubadda F, Aureli F, Ciardullo S, D'Amato M, Raggi A. 29.  et al. 2010. Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. J. Agric. Food Chem. 58:2295–301 [Google Scholar]
  30. Di Cosmo C, McLellan N, Liao XH, Khanna KK, Weiss RE. 30.  et al. 2009. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J. Clin. Endocrinol. Metab. 94:4003–9 [Google Scholar]
  31. Diamond AM, Choi IS, Crain PF, Hashizume T, Pomerantz SC. 31.  et al. 1993. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[ser]sec. J. Biol. Chem. 268:14215–23 [Google Scholar]
  32. Esaki N, Nakamura T, Tanaka H, Soda K. 32.  1982. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J. Biol. Chem. 257:4386–91 [Google Scholar]
  33. Esaki N, Nakamura T, Tanaka H, Suzuki T, Morino Y, Soda K. 33.  1981. Enzymatic synthesis of selenocysteine in rat liver. Biochemistry 20:4492–500 [Google Scholar]
  34. Ewan RC, Pope AL, Baumann CA. 34.  1967. Elimination of fixed selenium by the rat. J. Nutr. 91:547–54 [Google Scholar]
  35. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. 35.  2000. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19:4796–805 [Google Scholar]
  36. Fletcher JE, Copeland PR, Driscoll DM. 36.  2000. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. RNA 6:1573–84 [Google Scholar]
  37. Ganther HE. 37.  1971. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10:4089–98 [Google Scholar]
  38. Ganther HE, Corcoran C. 38.  1969. Selenotrisulfides. II. Cross-linking of reduced pancreatic ribonuclease with selenium. Biochemistry 8:2557–63 [Google Scholar]
  39. Griffiths NM, Stewart RD, Robinson MF. 39.  1976. The metabolism of [75Se]selenomethionine in four women. Br. J. Nutr. 35:373–82 [Google Scholar]
  40. Hawker FH, Stewart PM, Snitch PJ. 40.  1990. Effects of acute illness on selenium homeostasis. Crit. Care Med. 18:442–46 [Google Scholar]
  41. Hill KE, Motley AK, Winfrey VP, Burk RF. 41.  2014. Selenoprotein P is the major selenium transport protein in mouse milk. PLOS ONE 9:e103486 [Google Scholar]
  42. Hill KE, Wu S, Motley AK, Stevenson TD, Winfrey VP. 42.  et al. 2012. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem. 287:40414–24 [Google Scholar]
  43. Hill KE, Xia Y, Åkesson B, Boeglin ME, Burk RF. 43.  1996. Selenoprotein P concentration in plasma is an index of selenium status in selenium-deficient and selenium-supplemented Chinese subjects. J. Nutr. 126:138–45 [Google Scholar]
  44. Hill KE, Zhou J, Austin LM, Motley AK, Ham AJ. 44.  et al. 2007. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for supply of selenium to brain and testis but not for maintenance of whole-body selenium. J. Biol. Chem. 282:10972–80 [Google Scholar]
  45. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF. 45.  et al. 2003. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 278:13640–46 [Google Scholar]
  46. Howard MT, Carlson BA, Anderson CB, Hatfield DL. 46.  2013. Translational redefinition of UGA codons is regulated by selenium availability. J. Biol. Chem. 288:19401–13 [Google Scholar]
  47. 47. Inst. Med 2000. Selenium. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids284–324 Washington, DC: Natl. Acad. Press [Google Scholar]
  48. Juresa D, Blanusa M, Francesconi KA, Kienzl N, Kuehnelt D. 48.  2007. Biological availability of selenosugars in rats. Chem.-Biol. Interact. 168:203–10 [Google Scholar]
  49. Kato T, Read R, Rozga J, Burk RF. 49.  1992. Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am. J. Physiol. 262:G854–58 [Google Scholar]
  50. Kehr S, Malinouski M, Finney L, Vogt S, Labunskyy VM. 50.  et al. 2009. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 389:808–18 [Google Scholar]
  51. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. 51.  2002. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc. Natl. Acad. Sci. USA 99:15932–36 [Google Scholar]
  52. Köhrle J, Jakob F, Contempre B, Dumont JE. 52.  2005. Selenium, the thyroid, and the endocrine system. Endocr. Rev. 26:944–84 [Google Scholar]
  53. Kossinova O, Malygin A, Krol A, Karpova G. 53.  2013. A novel insight into the mechanism of mammalian selenoprotein synthesis. RNA 19:1147–58 [Google Scholar]
  54. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O. 54.  et al. 2003. Characterization of mammalian selenoproteomes. Science 300:1439–43 [Google Scholar]
  55. Kumar S, Björnstedt M, Holmgren A. 55.  1992. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur. J. Biochem. 207:435–39 [Google Scholar]
  56. Kurokawa S, Bellinger FP, Hill KE, Burk RF, Berry MJ. 56.  2014. Isoform-specific binding of selenoprotein P to the beta-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J. Biol. Chem. 289:9195–207 [Google Scholar]
  57. Kurokawa S, Eriksson S, Rose KL, Wu S, Motley AK. 57.  et al. 2014. Sepp1UF forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic. Biol. Med. 69:67–76 [Google Scholar]
  58. Kurokawa S, Hill KE, McDonald WH, Burk RF. 58.  2012. Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (apoER2). J. Biol. Chem. 287:28717–26 [Google Scholar]
  59. Kurokawa S, Takehashi M, Tanaka H, Mihara H, Kurihara T. 59.  et al. 2011. Mammalian selenocysteine lyase is involved in selenoprotein biosynthesis. J. Nutr. Sci. Vit. 57:298–305 [Google Scholar]
  60. Labunskyy VM, Hatfield DL, Gladyshev VN. 60.  2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94:739–77 [Google Scholar]
  61. Lacourciere GM, Stadtman TC. 61.  1998. The NIFS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate. J. Biol. Chem. 273:30921–26 [Google Scholar]
  62. Latreche L, Duhieu S, Touat-Hamici Z, Jean-Jean O, Chavatte L. 62.  2012. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element. RNA Biol. 9:681–90 [Google Scholar]
  63. Lei XG, Evenson JK, Thompson KM, Sunde RA. 63.  1995. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125:1438–46 [Google Scholar]
  64. Low SC, Grundner-Culemann E, Harney JW, Berry MJ. 64.  2000. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J. 19:6882–90 [Google Scholar]
  65. Lu J, Holmgren A. 65.  2014. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66:75–87 [Google Scholar]
  66. Ma S, Hill KE, Caprioli RM, Burk RF. 66.  2002. Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J. Biol. Chem. 277:12749–54 [Google Scholar]
  67. Martin JL, Hurlbut JA. 67.  1976. Tissue selenium levels and growth responses of mice fed selenomethionine, Se-methylselenocysteine or sodium selenite. Phosphorus Sulfur 1:295–300 [Google Scholar]
  68. McConnell KP, Cho GJ. 68.  1967. Active transport of L-selenomethionine in the intestine. Am. J. Physiol. 213:150–56 [Google Scholar]
  69. McConnell KP, Portman OW. 69.  1952. Excretion of dimethyl selenide by the rat. J. Biol. Chem. 195:277–82 [Google Scholar]
  70. McConnell KP, Roth DM. 70.  1966. Respiratory excretion of selenium. Proc. Soc. Exp. Biol. Med. 123:919–21 [Google Scholar]
  71. Miniard AC, Middleton LM, Budiman ME, Gerber CA, Driscoll DM. 71.  2010. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res. 38:4807–20 [Google Scholar]
  72. Mozier NM, McConnell KP, Hoffman JL. 72.  1988. S-adenosyl-L-methionine:thioether S-methyltransferase, a new enzyme in sulfur and selenium metabolism. J. Biol. Chem. 263:4527–31 [Google Scholar]
  73. Nakayama A, Hill KE, Austin LM, Motley AK, Burk RF. 73.  2007. All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J. Nutr. 137:690–93 [Google Scholar]
  74. Neuhierl B, Thanbichler M, Lottspeich F, Böck A. 74.  1999. A family of S-methylmethionine-dependent thiol/selenol methyltransferases. J. Biol. Chem. 274:5407–14 [Google Scholar]
  75. Nickel A, Kottra G, Schmidt G, Danier J, Hofmann T, Daniel H. 75.  2009. Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chem.-Biol. Interact. 177:234–41 [Google Scholar]
  76. Niskar AS, Paschal DC, Kieszak SM, Flegal KM, Bowman B. 76.  et al. 2003. Serum selenium levels in the US population: Third National Health and Nutrition Examination Survey, 1988–1994. Biol. Trace Elem. Res. 91:1–10 [Google Scholar]
  77. Okuno T, Motobayashi S, Ueno H, Nakamuro K. 77.  2005. Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha, gamma-elimination. Biol. Trace Elem. Res. 106:77–93 [Google Scholar]
  78. Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK. 78.  et al. 2010. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am. J. Physiol. Ren. Physiol. 298:F1244–53 [Google Scholar]
  79. Olson GE, Winfrey VP, Hill KE, Burk RF. 79.  2008. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem. 283:6854–60 [Google Scholar]
  80. Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. 80.  2007. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem. 282:12290–97 [Google Scholar]
  81. Olson OE, Novacek EJ, Whitehead EI, Palmer IS. 81.  1970. Investigations on selenium in wheat. Phytochemistry 9:1181–88 [Google Scholar]
  82. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M. 82.  et al. 2010. Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase. J. Biol. Chem. 285:12133–39 [Google Scholar]
  83. Palmer IS, Fischer DD, Halverson AW, Olson OE. 83.  1969. Identification of a major selenium excretory product in rat urine. Biochim. Biophys. Acta 177:336–42 [Google Scholar]
  84. Pedrosa LF, Motley AK, Stevenson TD, Hill KE, Burk RF. 84.  2012. Fecal selenium excretion is regulated by dietary selenium intake. Biol. Trace Elem. Res. 149:377–81 [Google Scholar]
  85. Pitts MW, Raman AV, Hashimoto AC, Todorovic C, Nichols RA, Berry MJ. 85.  2012. Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating. Neuroscience 208:58–68 [Google Scholar]
  86. Renko K, Hofmann PJ, Stoedter M, Hollenbach B, Behrends T. 86.  et al. 2009. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 23:1758–65 [Google Scholar]
  87. Sabbagh M, Van Hoewyk D. 87.  2012. Malformed selenoproteins are removed by the ubiquitin-proteasome pathway in Stanleya pinnata. Plant Cell Physiol. 53:555–64 [Google Scholar]
  88. Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G. 88.  et al. 2014. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J. Biol. Chem. 289:31765–76 [Google Scholar]
  89. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L. 89.  et al. 2010. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 120:4220–35 [Google Scholar]
  90. Schomburg L, Schweizer U, Holtmann B, Flohé L, Sendtner M, Köhrle J. 90.  2003. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J. 370:397–402 [Google Scholar]
  91. Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL. 91.  et al. 2005. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem. J. 386:221–26 [Google Scholar]
  92. Seale LA, Hashimoto AC, Kurokawa S, Gilman CL, Seyedali A. 92.  et al. 2012. Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol. Cell. Biol. 32:4141–54 [Google Scholar]
  93. Seyedali A, Berry MJ. 93.  2014. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20:1248–56 [Google Scholar]
  94. Soda K, Oikawa T, Esaki N. 94.  1999. Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10:257–62 [Google Scholar]
  95. Sors TG, Ellis DR, Salt DE. 95.  2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86:373–89 [Google Scholar]
  96. Squires JE, Berry MJ. 96.  2008. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60:232–35 [Google Scholar]
  97. Stoytcheva ZR, Berry MJ. 97.  2009. Transcriptional regulation of mammalian selenoprotein expression. Biochim. Biophys. Acta 1790:1429–40 [Google Scholar]
  98. Sunde RA, Raines AM, Barnes KM, Evenson JK. 98.  2011. Selenium status highly-regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci. Rep. 29:329–38 [Google Scholar]
  99. Suzuki KT, Kurasaki K, Suzuki N. 99.  2007. Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochim. Biophys. Acta 1770:1053–61 [Google Scholar]
  100. Suzuki KT, Somekawa L, Suzuki N. 100.  2006. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats. Toxicol. Appl. Pharmacol. 216:303–8 [Google Scholar]
  101. Suzuki Y, Hashiura Y, Matsumura K, Matsukawa T, Shinohara A, Furuta N. 101.  2010. Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses. Metallomics: Integr. Biometal Sci. 2:126–32 [Google Scholar]
  102. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H. 102.  et al. 2004. Selenophosphate synthetase genes from lung adenocarcinoma cells: SPS1 for recycling L-selenocysteine and SPS2 for selenite assimilation. Proc. Natl. Acad. Sci. USA 101:16162–67 [Google Scholar]
  103. Tobe R, Mihara H, Kurihara T, Esaki N. 103.  2009. Identification of proteins interacting with selenocysteine lyase. Biosci. Biotechnol. Biochem. 73:1230–32 [Google Scholar]
  104. Touat-Hamici Z, Legrain Y, Bulteau AL, Chavatte L. 104.  2014. Selective up-regulation of human selenoproteins in response to oxidative stress. J. Biol. Chem. 289:14750–61 [Google Scholar]
  105. Tsay D-T, Halverson AW, Palmer IS. 105.  1970. Inactivity of dietary trimethylselenonium chloride against the necrogenic syndrome of the rat. Nutr. Rep. Int. 2:203–7 [Google Scholar]
  106. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW. 106.  et al. 2000. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1:158–63 [Google Scholar]
  107. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A. 107.  et al. 1999. Dual function of the selenoprotein PHGPx during sperm maturation. Science 285:1393–96 [Google Scholar]
  108. Van Dael P, Davidsson L, Munoz-Box R, Fay LB, Barclay D. 108.  2001. Selenium absorption and retention from a selenite- or selenate-fortified milk-based formula in men measured by a stable-isotope technique. Br. J. Nutr. 85:157–63 [Google Scholar]
  109. Wallace E, Calvin H, Cooper G. 109.  1983. Progressive defects observed in mouse sperm during the course of three generations of selenium deficiency. Gamete Res. 7:377–87 [Google Scholar]
  110. Waschulewski IH, Sunde RA. 110.  1988. Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J. Nutr. 118:367–74 [Google Scholar]
  111. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA. 111.  et al. 2010. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24:844–52 [Google Scholar]
  112. Wolffram S, Berger B, Grenacher B, Scharrer E. 112.  1989. Transport of selenoamino acids and their sulfur analogues across the intestinal brush border membrane of pigs. J. Nutr. 119:706–12 [Google Scholar]
  113. Xia Y. 113.  2000. Keshan disease. The Cambridge World History of Food 1 KF Kiple, KC Ornelas 939–47 New York: Cambridge Univ. Press [Google Scholar]
  114. Xia Y, Hill KE, Byrne DW, Xu J, Burk RF. 114.  2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81:829–34 [Google Scholar]
  115. Xia Y, Hill KE, Li P, Xu J, Zhou D. 115.  et al. 2010. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr. 92:525–31 [Google Scholar]
  116. Xu XM, Carlson BA, Mix H, Zhang Y, Saira K. 116.  et al. 2007. Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLOS Biol. 5:e4 [Google Scholar]
  117. Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA. 117.  et al. 2010. Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc. Natl. Acad. Sci. USA 107:21430–34 [Google Scholar]
  118. Yang G-Q, Zhu L-Z, Liu S-J, Gu L-Z, Qian P-C. 118.  et al. 1987. Human selenium requirements in China. Selenium in Biology and Medicine Part B, ed. GF Combs, JE Spallholz, OA Levander, JE Oldfield 589–607 New York: AVI [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error