1932

Abstract

Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5′-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071714-034330
2015-07-17
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/nutr/35/1/annurev-nutr-071714-034330.html?itemId=/content/journals/10.1146/annurev-nutr-071714-034330&mimeType=html&fmt=ahah

Literature Cited

  1. Aasheim ET, Hofsø D, Hjelmesaeth J, Birkeland KI, Bøhmer T. 1.  2008. Vitamin status in morbidly obese patients: a cross-sectional study. Am. J. Clin. Nutr. 87:362–69 [Google Scholar]
  2. Albersen M, Bosma M, Luykx JJ, Jans JJ, Bakker SC. 2.  et al. 2014. Vitamin B6 vitamers in human plasma and cerebrospinal fluid. Am. J. Clin. Nutr. 100:587–92 [Google Scholar]
  3. Albersen M, Groenendaal F, van der Ham M, de Koning TJ, Bosma M. 3.  et al. 2012. Vitamin B-6 vitamer concentrations in cerebrospinal fluid differ between preterm and term newborn infants. Pediatrics 130:E191–98 [Google Scholar]
  4. Altman K, Greengard O. 4.  1966. Correlation of kynurenine excretion with liver tryptophan pyrrolase levels in disease and after hydrocortisone induction. J. Clin. Invest. 45:1527–34 [Google Scholar]
  5. Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B. 5.  et al. 2007. Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr. Med. Chem. 14:1291–324 [Google Scholar]
  6. Anderson BB, O'Brien H, Griffin GE, Mollin DL. 6.  1980. Hydrolysis of pyridoxal-5′-phosphate in plasma in conditions with raised alkaline phosphate. Gut 21:192–94 [Google Scholar]
  7. Andon MB, Reynolds RD, Moser-Veillon PB, Howard MP. 7.  1989. Dietary intake of total and glycosylated vitamin B-6 and the vitamin B-6 nutritional status of unsupplemented lactating women and their infants. Am. J. Clin. Nutr. 50:1050–58 [Google Scholar]
  8. 8. Anonymous 2012. B vitamins and related biochemical compounds. Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population14–71 Atlanta, GA: CDC, Natl. Cent. Environ. Health, Div. Lab. Sci. [Google Scholar]
  9. Apeland T, Mansoor MA, Pentieva K, McNulty H, Seljeflot I, Strandjord RE. 9.  2002. The effect of B-vitamins on hyperhomocysteinemia in patients on antiepileptic drugs. Epilepsy Res. 51:237–47 [Google Scholar]
  10. Apeland T, Mansoor MA, Pentieva K, McNulty H, Strandjord RE. 10.  2003. Fasting and post-methionine loading concentrations of homocysteine, vitamin B2, and vitamin B6 in patients on antiepileptic drugs. Clin. Chem. 49:1005–8 [Google Scholar]
  11. Barnard HC, de Kock JJ, Vermaak WJ, Potgieter GM. 11.  1987. A new perspective in the assessment of vitamin B-6 nutritional status during pregnancy in humans. J. Nutr. 117:1303–6 [Google Scholar]
  12. Bates CJ, Pentieva KD, Prentice A. 12.  1999. An appraisal of vitamin B6 status indices and associated confounders, in young people aged 4–18 years and in people aged 65 years and over, in two national British surveys. Public Health Nutr. 2:529–35 [Google Scholar]
  13. Bates CJ, Pentieva KD, Prentice A, Mansoor MA, Finch S. 13.  1999. Plasma pyridoxal phosphate and pyridoxic acid and their relationship to plasma homocysteine in a representative sample of British men and women aged 65 years and over. Br. J. Nutr. 81:191–201 [Google Scholar]
  14. Beulens JW, Sierksma A, Schaafsma G, Kok FJ, Struys EA. 14.  et al. 2005. Kinetics of homocysteine metabolism after moderate alcohol consumption. Alcohol Clin. Exp. Res. 29:739–45 [Google Scholar]
  15. Bhagavan HN, Coleman M, Coursin DB. 15.  1975. The effect of pyridoxine hydrochloride on blood serotonin and pyridoxal phosphate contents in hyperactive children. Pediatrics 55:437–41 [Google Scholar]
  16. 16. Biomark. Defin. Work. Group 2001. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69:89–95 [Google Scholar]
  17. Bisp MR, Bor MV, Heinsvig EM, Kall MA, Nexo E. 17.  2002. Determination of vitamin B6 vitamers and pyridoxic acid in plasma: development and evaluation of a high-performance liquid chromatographic assay. Anal. Biochem. 305:82–89 [Google Scholar]
  18. Bitsch R. 18.  1993. Vitamin B6. Int. J. Vitam. Nutr. Res. 63:278–82 [Google Scholar]
  19. Bor MV, Refsum H, Bisp MR, Bleie O, Schneede J. 19.  et al. 2003. Plasma vitamin B6 vitamers before and after oral vitamin B6 treatment: a randomized placebo-controlled study. Clin. Chem. 49:155–61 [Google Scholar]
  20. Borschel MW. 20.  1995. Vitamin B-6 in infancy: requirements and current feeding practices. Vitamin B-6 Metabolism in Pregnancy, Lactation and Infancy DJ Raiten 109–24 Boca Raton, FL: CRC Press [Google Scholar]
  21. Borschel MW, Kirksey A, Hannemann RE. 21.  1986. Effects of vitamin B6 intake on nutriture and growth of young infants. Am. J. Clin. Nutr. 43:7–15 [Google Scholar]
  22. Boylan LM, Sugerman HJ, Driskell JA. 22.  1988. Vitamin E, vitamin B-6, vitamin B-12, and folate status of gastric bypass surgery patients. J. Am. Diet. Assoc. 88:579–85 [Google Scholar]
  23. Brown RR, Rose DP, Leklem JE, Linkswiler H, Anand R. 23.  1975. Urinary 4-pyridoxic acid, plasma pyridoxal phosphate, and erythrocyte aminotransferase levels in oral contraceptive users receiving controlled intakes of vitamin B6. Am. J. Clin. Nutr. 28:10–19 [Google Scholar]
  24. Brussaard JH, Löwik MR, van den Berg H, Brants HA, Bemelmans W. 24.  1997. Dietary and other determinants of vitamin B6 parameters. Eur. J. Clin. Nutr. 51:Suppl. 3S39–45 [Google Scholar]
  25. Brussaard JH, Löwik MR, van den Berg H, Brants HA, Kistemaker C. 25.  1997. Micronutrient status, with special reference to vitamin B6. Eur. J. Clin. Nutr. 51:Suppl. 3S32–38 [Google Scholar]
  26. Buchet R, Millán JL, Magne D. 26.  2013. Multisystemic functions of alkaline phosphatases. Methods Mol. Biol. 1053:27–51 [Google Scholar]
  27. Campbell BM, Charych E, Lee AW, Möller T. 27.  2014. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front. Neurosci. 8:12 [Google Scholar]
  28. Carter TC, Pangilinan F, Molloy AM, Fan R. 28.  2015. ALPL common variants at putative regulatory sites influence circulating pyridoxal 5′-phosphate concentration. J. Nutr. In press [Google Scholar]
  29. Cattaneo M, Lombardi R, Lecchi A, Bucciarelli P, Mannucci PM. 29.  2001. Low plasma levels of vitamin B-6 are independently associated with a heightened risk of deep-vein thrombosis. Circulation 104:2442–46 [Google Scholar]
  30. Chang HY, Tang FY, Chen DY, Chih HM, Huang ST. 30.  et al. 2013. Clinical use of cyclooxygenase inhibitors impairs vitamin B-6 metabolism. Am. J. Clin. Nutr. 98:1440–49 [Google Scholar]
  31. Chang SJ, Hsiao LJ, Lee YC, Hsuen SY. 31.  2007. Vitamin B-6 status assessment in relation to dietary intake in high school students aged 16–18 years. Br. J. Nutr. 97:764–69 [Google Scholar]
  32. Chang SJ, Kirksey A. 32.  1990. Pyridoxine supplementation of lactating mothers: relation to maternal nutrition status and vitamin B-6 concentrations in milk. Am. J. Clin. Nutr. 51:826–31 [Google Scholar]
  33. Cheng CH, Chang SJ, Lee BJ, Lin KL, Huang YC. 33.  2006. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 60:1207–13 [Google Scholar]
  34. Chiang EP, Bagley PJ, Selhub J, Nadeau M, Roubenoff R. 34.  2003. Abnormal vitamin B6 status is associated with severity of symptoms in patients with rheumatoid arthritis. Am. J. Med. 114:283–87 [Google Scholar]
  35. Chiang EP, Bagley PJ, Roubenoff R, Nadeau M, Selhub J. 35.  2003. Plasma pyridoxal 5′-phosphate concentration is correlated with functional vitamin B-6 indices in patients with rheumatoid arthritis and marginal vitamin B-6 status. J. Nutr. 133:1056–59 [Google Scholar]
  36. Chiang EP, Smith DE, Selhub J, Dallal G, Wang YC, Roubenoff R. 36.  2005. Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res. Ther. 7:R1254–62 [Google Scholar]
  37. Chi YY, Gribbin M, Lamers Y, Gregory JF, Muller KE. 37.  2012. Global hypothesis testing for high-dimensional repeated measures-outcomes. Stat. Med. 31:724–42 [Google Scholar]
  38. Choi SW, Friso S. 38.  2012. Vitamins B6 and cancer. Subcell. Biochem. 56:247–64 [Google Scholar]
  39. Christensen B, Mosdol A, Retterstol L, Landaas S, Thelle DS. 39.  2001. Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol—a randomized controlled trial. Am. J. Clin. Nutr. 74:302–7 [Google Scholar]
  40. Ciorba MA. 40.  2013. Kynurenine pathway metabolites: relevant to vitamin B-6 deficiency and beyond. Am. J. Clin. Nutr. 98:863–64 [Google Scholar]
  41. Clayton PT. 41.  2006. B6-responsive disorders: a model of vitamin dependency. J. Inherit. Metab. Dis. 29:317–26 [Google Scholar]
  42. Coburn SP, Mahuren JD, Jain M, Zubovic Y, Wortsman J. 42.  1998. Alkaline phosphatase (EC 3.1.3.1) in serum is inhibited by physiological concentrations of inorganic phosphate. J. Clin. Endocrinol. Metab. 83:3951–57 [Google Scholar]
  43. Coburn SP, Reynolds RD, Mahuren JD, Schaltenbrand WE, Wang Y. 43.  et al. 2002. Elevated plasma 4-pyridoxic acid in renal insufficiency. Am. J. Clin. Nutr. 75:57–64 [Google Scholar]
  44. Coburn SP, Ziegler PJ, Costill DL, Mahuren JD, Fink WJ. 44.  et al. 1991. Response of vitamin B-6 content of muscle to changes in vitamin B-6 intake in men. Am. J. Clin. Nutr. 53:1436–42 [Google Scholar]
  45. Cope EL, Shrubsole MJ, Cohen SS, Cai Q, Wu J. 45.  et al. 2013. Intraindividual variation in one-carbon metabolism plasma biomarkers. Cancer Epidemiol. Biomarkers Prev. 22:1894–99 [Google Scholar]
  46. Costa C, De Antoni A, Allegri G, Vanzan S. 46.  1979. Studies on the tryptophan load test in man. Ric. Clin. Lab. 9:165–75 [Google Scholar]
  47. Cravo ML, Glória LM, Selhub J, Nadeau MR, Camilo ME. 47.  et al. 1996. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. Am. J. Clin. Nutr. 63:220–24 [Google Scholar]
  48. da Silva VR, Ralat MA, Quinlivan EP, DeRatt BN, Garrett TJ. 48.  et al. 2014. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells. Am. J. Physiol. Endocrinol. Metab. 307:E93–101 [Google Scholar]
  49. da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, Midttun Ø. 49.  et al. 2013. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J. Nutr. 143:1719–27 [Google Scholar]
  50. Davis SR, Quinlivan EP, Stacpoole PW, Gregory JF. 50.  2006. Plasma glutathione and cystathionine concentrations are elevated but cysteine flux is unchanged by dietary vitamin B-6 restriction in young men and women. J. Nutr. 136:373–78 [Google Scholar]
  51. Davis SR, Scheer JB, Quinlivan EP, Coats BS, Stacpoole PW, Gregory JF. 51.  2005. Dietary vitamin B-6 restriction does not alter rates of homocysteine remethylation or synthesis in healthy young women and men. Am. J. Clin. Nutr. 81:648–55 [Google Scholar]
  52. Delport R, Ubbink JB, Vermaak WJ, Becker PJ. 52.  1993. Theophylline increases pyridoxal kinase activity independently from vitamin B6 nutritional status. Res. Commun. Chem. Pathol. Pharmacol. 79:325–33 [Google Scholar]
  53. di Salvo ML, Safo MK, Contestabile R. 53.  2012. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. (Elite Ed.) 4:897–913 [Google Scholar]
  54. Dona AC, Jimenez B, Schafer H, Humpfer E, Spraul M. 54.  et al. 2014. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 86:9887–94 [Google Scholar]
  55. Driskell JA, Giraud DW, Mitmesser SH. 55.  2000. Vitamin B-6 intakes and plasma B-6 vitamer concentrations of men and women, 19–50 years of age. Int. J. Vitam. Nutr. Res. 70:221–25 [Google Scholar]
  56. Eliot AC, Kirsch JF. 56.  2004. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73:383–415 [Google Scholar]
  57. Eussen SJ, Nilsen RM, Midttun Ø, Hustad S, IJssennagger N. 57.  et al. 2013. North-south gradients in plasma concentrations of B-vitamins and other components of one-carbon metabolism in Western Europe: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br. J. Nutr. 110:363–74 [Google Scholar]
  58. Fedde KN, Whyte MP. 58.  1990. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am. J. Hum. Genet. 47:767–75 [Google Scholar]
  59. Fedosov SN. 59.  2013. Biochemical markers of vitamin B12 deficiency combined in one diagnostic parameter: the age-dependence and association with cognitive function and blood hemoglobin. Clin. Chim. Acta 422:47–53 [Google Scholar]
  60. Fisher JH, Willis RA, Haskell BE. 60.  1984. Effect of protein quality on vitamin B-6 status in the rat. J. Nutr. 114:786–91 [Google Scholar]
  61. Fogelholm M. 61.  1992. Micronutrient status in females during a 24-week fitness-type exercise program. Ann. Nutr. Metab. 36:209–18 [Google Scholar]
  62. Fogelholm M, Ruokonen I, Laakso JT, Vuorimaa T, Himberg JJ. 62.  1993. Lack of association between indices of vitamin B1, B2, and B6 status and exercise-induced blood lactate in young adults. Int. J. Sport Nutr. 3:165–76 [Google Scholar]
  63. Footitt EJ, Heales SJ, Mills PB, Allen GF, Oppenheim M, Clayton PT. 63.  2011. Pyridoxal 5′-phosphate in cerebrospinal fluid; factors affecting concentration. J. Inherit. Metab. Dis. 34:529–38 [Google Scholar]
  64. Friedman AN, Hunsicker LG, Selhub J, Bostom AG. 64.  2004. Clinical and nutritional correlates of C-reactive protein in type 2 diabetic nephropathy. Atherosclerosis 172:121–25 [Google Scholar]
  65. Friso S, Girelli D, Martinelli N, Olivieri O, Lotto V. 65.  et al. 2004. Low plasma vitamin B-6 concentrations and modulation of coronary artery disease risk. Am. J. Clin. Nutr. 79:992–98 [Google Scholar]
  66. Friso S, Jacques PF, Wilson PWF, Rosenberg IH, Selhub J. 66.  2001. Low circulating vitamin B-6 is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation 103:2788–91 [Google Scholar]
  67. Furth-Walker D, Leibman D, Smolen A. 67.  1989. Changes in pyridoxal phosphate and pyridoxamine phosphate in blood, liver and brain in the pregnant mouse. J. Nutr. 119:750–56 [Google Scholar]
  68. Glória L, Cravo M, Camilo ME, Resende M, Cardoso JN. 68.  et al. 1997. Nutritional deficiencies in chronic alcoholics: relation to dietary intake and alcohol consumption. Am. J. Gastroenterol. 92:485–89 [Google Scholar]
  69. Gregory JF. 69.  1990. The bioavailability of vitamin B6. Recent findings. Ann. N. Y. Acad. Sci. 585:86–95 [Google Scholar]
  70. Gregory JF. 70.  1998. Nutritional properties and significance of vitamin glycosides. Annu. Rev. Nutr. 18:277–96 [Google Scholar]
  71. Gregory JF. 71.  2012. Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr. Res. 56:5809 [Google Scholar]
  72. Gregory JF, Kirk JR. 72.  1979. Determination of urinary 4-pyridoxic acid using high performance liquid chromatography. Am. J. Clin. Nutr. 32:879–83 [Google Scholar]
  73. Gregory JF, Park Y, Lamers Y, Bandyopadhyay N, Chi YY. 73.  et al. 2013. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLOS ONE 8:e63544 [Google Scholar]
  74. Hamfelt A. 74.  1967. Pyridoxal phosphate concentration and aminotransferase activity in human blood cells. Clin. Chim. Acta 16:19–28 [Google Scholar]
  75. Hansen CM, Leklem JE, Miller LT. 75.  1997. Changes in vitamin B-6 status indicators of women fed a constant protein diet with varying levels of vitamin B-6. Am. J. Clin. Nutr. 66:1379–87 [Google Scholar]
  76. Hansen CM, Shultz TD, Kwak HK, Memon HS, Leklem JE. 76.  2001. Assessment of vitamin B-6 status in young women consuming a controlled diet containing four levels of vitamin B-6 provides an estimated average requirement and recommended dietary allowance. J. Nutr. 131:1777–86 [Google Scholar]
  77. Hansson GK, Robertson AK, Söderberg-Nauclér C. 77.  2006. Inflammation and atherosclerosis. Annu. Rev. Pathol. 1:297–329 [Google Scholar]
  78. Harnroongroj T, Jintaridhi P, Vudhivai N, Pongpaew P, Tungtrongchitr R. 78.  2002. B vitamins, vitamin C and hematological measurements in overweight and obese Thais in Bangkok. J. Med. Assoc. Thai. 85:17–25 [Google Scholar]
  79. Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ. 79.  et al. 2009. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum. Mol. Genet. 18:4677–87 [Google Scholar]
  80. Heiskanen K, Kallio M, Salmenperä L, Siimes MA, Ruokonen I, Perheentupa J. 80.  1995. Vitamin B-6 status during childhood: tracking from 2 months to 11 years of age. J. Nutr. 125:2985–92 [Google Scholar]
  81. Heiskanen K, Siimes MA, Perheentupa J, Salmenperä L. 81.  1994. Reference ranges for erythrocyte pyridoxal 5′-phosphate concentration and the erythrocyte aspartate transaminase stimulation test in lactating mothers and their infants. Am. J. Clin. Nutr. 59:1297–303 [Google Scholar]
  82. Herbeth B, Chavance M, Musse N, Mejean L, Vernhes G. 82.  1989. Dietary intake and other determinants of blood vitamins in an elderly population. Eur. J. Clin. Nutr. 43:175–86 [Google Scholar]
  83. Huang SC, Wei JCC, Lin PT, Wuc DJ, Huang YC. 83.  2012. Plasma pyridoxal 5′-phosphate is not associated with inflammatory and immune responses after adjusting for serum albumin in patients with rheumatoid arthritis: a preliminary study. Ann. Nutr. Metab. 60:83–89 [Google Scholar]
  84. Huang SC, Wei JCC, Wu DJ, Huang YC. 84.  2010. Vitamin B-6 supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur. J. Clin. Nutr. 64:1007–13 [Google Scholar]
  85. Huang YC, Chang HH, Huang SC, Cheng CH, Lee BJ. 85.  et al. 2005. Plasma pyridoxal 5′-phosphate is a significant indicator of immune responses in the mechanically ventilated critically ill. Nutrition 21:779–85 [Google Scholar]
  86. Huang YC, Chang SJ, Chiu YT, Chang HH, Cheng CH. 86.  2003. The status of plasma homocysteine and related B-vitamins in healthy young vegetarians and nonvegetarians. Eur. J. Nutr. 42:84–90 [Google Scholar]
  87. Huang YC, Chen W, Evans MA, Mitchell ME, Shultz TD. 87.  1998. Vitamin B-6 requirement and status assessment of young women fed a high-protein diet with various levels of vitamin B-6. Am. J. Clin. Nutr. 67:208–20 [Google Scholar]
  88. Hung CJ, Huang PC, Lu SC, Li YH, Huang HB. 88.  et al. 2002. Plasma homocysteine levels in Taiwanese vegetarians are higher than those of omnivores. J. Nutr. 132:152–58 [Google Scholar]
  89. Hustad S, Eussen S, Midttun Ø, Ulvik A, van de Kant PM. 89.  et al. 2012. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin. Chem. 58:402–10 [Google Scholar]
  90. Iqbal SJ, Brain A, Reynolds TM, Penny M, Holland S. 90.  1998. Relationship between serum alkaline phosphatase and pyridoxal-5′-phosphate levels in hypophosphatasia. Clin. Sci. (Lond.) 94:203–6 [Google Scholar]
  91. Johansson M, Relton C, Ueland PM, Vollset SE, Midttun Ø. 91.  et al. 2010. Serum B vitamin levels and risk of lung cancer. JAMA 303:2377–85 [Google Scholar]
  92. Johnson JM, Yu T, Strobel FH, Jones DP. 92.  2010. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 135:2864–70 [Google Scholar]
  93. Kang-Yoon SA, Kirksey A, Giacoia G, West K. 93.  1992. Vitamin B-6 status of breast-fed neonates: influence of pyridoxine supplementation on mothers and neonates. Am. J. Clin. Nutr. 56:548–58 [Google Scholar]
  94. Kang-Yoon SA, Kirksey A, Giacoia GP, West KD. 94.  1995. Vitamin B-6 adequacy in neonatal nutrition: associations with preterm delivery, type of feeding, and vitamin B-6 supplementation. Am. J. Clin. Nutr. 62:932–42 [Google Scholar]
  95. Kannan K, Jain SK. 95.  2004. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic. Biol. Med. 36:423–28 [Google Scholar]
  96. Kant AK, Moser-Veillon PB, Reynolds RD. 96.  1988. Effect of age on changes in plasma, erythrocyte, and urinary B-6 vitamers after an oral vitamin B-6 load. Am. J. Clin. Nutr. 48:1284–90 [Google Scholar]
  97. Kark JA, Bongiovanni R, Hicks CU, Tarassoff PG, Hannah SJ, Yoshida GY. 97.  1982. Modification of intracellular hemoglobin with pyridoxal and pyridoxal 5′-phosphate. Blood Cells 8:299–314 [Google Scholar]
  98. Keene KL, Chen WM, Chen F, Williams SR, Elkhatib SD. 98.  et al. 2014. Genetic associations with plasma B12, B6, and folate levels in an ischemic stroke population from the Vitamin Intervention for Stroke Prevention (VISP) trial. Front. Public Health 2:112 [Google Scholar]
  99. Kelly PJ, Kistler JP, Shih VE, Mandell R, Atassi N. 99.  et al. 2004. Inflammation, homocysteine, and vitamin B6 status after ischemic stroke. Stroke 35:12–15 [Google Scholar]
  100. Key TJ, Silcocks PB, Davey GK, Appleby PN, Bishop DT. 100.  1997. A case-control study of diet and prostate cancer. Br. J. Cancer 76:678–87 [Google Scholar]
  101. Kolodziej LR, Paleolog EM, Williams RO. 101.  2011. Kynurenine metabolism in health and disease. Amino Acids 41:1173–83 [Google Scholar]
  102. Kretsch MJ, Sauberlich HE, Skala JH, Johnson HL. 102.  1995. Vitamin B-6 requirement and status assessment: young women fed a depletion diet followed by a plant- or animal-protein diet with graded amounts of vitamin B-6. Am. J. Clin. Nutr. 61:1091–101 [Google Scholar]
  103. Lainé-Cessac P, Cailleux A, Allain P. 103.  1997. Mechanisms of the inhibition of human erythrocyte pyridoxal kinase by drugs. Biochem. Pharmacol. 54:863–70 [Google Scholar]
  104. Lamers Y, Williamson J, Ralat M, Quinlivan EP, Gilbert LR. 104.  et al. 2009. Moderate dietary vitamin B-6 restriction raises plasma glycine and cystathionine concentrations while minimally affecting the rates of glycine turnover and glycine cleavage in healthy men and women. J. Nutr. 139:452–60 [Google Scholar]
  105. Larsson SC, Orsini N, Wolk A. 105.  2010. Vitamin B-6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA 303:1077–83 [Google Scholar]
  106. Lee CM, Leklem JE. 106.  1985. Differences in vitamin B6 status indicator responses between young and middle-aged women fed constant diets with two levels of vitamin B6. Am. J. Clin. Nutr. 42:226–34 [Google Scholar]
  107. Le Floc'h N, Otten W, Merlot E. 107.  2011. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–205 [Google Scholar]
  108. Leklem JE. 108.  1971. Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am. J. Clin. Nutr. 24:659–72 [Google Scholar]
  109. Leklem JE. 109.  1986. Vitamin B-6 requirement and oral contraceptive use—a concern?. J. Nutr. 116:475–77 [Google Scholar]
  110. Leklem JE. 110.  1990. Vitamin B-6: a status report. J. Nutr. 120:Suppl. 111503–7 [Google Scholar]
  111. Leklem JE, Brown RR, Rose DP, Linkswiler HM. 111.  1975. Vitamin B6 requirements of women using oral contraceptives. Am. J. Clin. Nutr. 28:535–41 [Google Scholar]
  112. Leklem JE, Hollenbeck CB. 112.  1990. Acute ingestion of glucose decreases plasma pyridoxal 5′-phosphate and total vitamin B-6 concentration. Am. J. Clin. Nutr. 51:832–36 [Google Scholar]
  113. Li L, Rose P, Moore PK. 113.  2011. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. 51:169–87 [Google Scholar]
  114. Lim U, Schenk M, Kelemen LE, Davis S, Cozen W. 114.  et al. 2005. Dietary determinants of one-carbon metabolism and the risk of non-Hodgkin's lymphoma: NCI-SEER case-control study, 1998–2000. Am. J. Epidemiol. 162:953–64 [Google Scholar]
  115. Lima CP, Davis SR, Mackey AD, Scheer JB, Williamson J, Gregory JF. 115.  2006. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J. Nutr. 136:2141–47 [Google Scholar]
  116. Linnebank M, Moskau S, Semmler A, Widman G, Weller M. 116.  et al. 2012. Antiepileptic drugs and vitamin B6 plasma levels in adult patients. Epilepsy Res. 101:182–84 [Google Scholar]
  117. Linnet K, Bossuyt PM, Moons KG, Reitsma JB. 117.  2012. Quantifying the accuracy of a diagnostic test or marker. Clin. Chem. 58:1292–301 [Google Scholar]
  118. Loo G, Goodman PJ, Hill KA, Smith JT. 118.  1986. Creatine metabolism in the pyridoxine-deficient rat. J. Nutr. 116:2403–8 [Google Scholar]
  119. Lotto V, Choi SW, Friso S. 119.  2011. Vitamin B-6: a challenging link between nutrition and inflammation in CVD. Br. J. Nutr. 106:183–95 [Google Scholar]
  120. Löwik MR, Schrijver J, van den Berg H, Hulshof KF, Wedel M, Ockhuizen T. 120.  1990. Effect of dietary fiber on the vitamin B6 status among vegetarian and nonvegetarian elderly (Dutch Nutrition Surveillance System). J. Am. Coll. Nutr. 9:241–49 [Google Scholar]
  121. Löwik MR, van den Berg H, Westenbrink S, Wedel M, Schrijver J, Ockhuizen T. 121.  1989. Dose-response relationships regarding vitamin B-6 in elderly people: a nationwide nutritional survey (Dutch Nutritional Surveillance System). Am. J. Clin. Nutr. 50:391–99 [Google Scholar]
  122. Löwik MR, Van Poppel G, Wedel M, van den Berg H, Schrijver J. 122.  1990. Dependence of vitamin B-6 status assessment on alcohol intake among elderly men and women (Dutch Nutrition Surveillance System). J. Nutr. 120:1344–51 [Google Scholar]
  123. Lucas A, Brooke OG, Baker BA, Bishop N, Morley R. 123.  1989. High alkaline phosphatase activity and growth in preterm neonates. Arch. Dis. Child. 64:902–9 [Google Scholar]
  124. Lu CC. 124.  2010. Vitamin B6, blood PLP level, and risk of colorectal cancer. JAMA 303:2251–52 author reply 2252 [Google Scholar]
  125. Luhby AL, Brin M, Gordon M, Davis P, Muphy M, Spiegel H. 125.  1971. Vitamin B6 metabolism in users of oral contraceptive agents. I. Abnormal urinary xanthurenic acid excretion and its correction by pyridoxine. Am. J. Clin. Nutr. 24:684–93 [Google Scholar]
  126. Lui A, Lumeng L, Aronoff GR, Li TK. 126.  1985. Relationship between body store of vitamin B6 and plasma pyridoxal-P clearance: metabolic balance studies in humans. J. Lab. Clin. Med. 106:491–97 [Google Scholar]
  127. Lukaski HC. 127.  2004. Vitamin and mineral status: effects on physical performance. Nutrition 20:632–44 [Google Scholar]
  128. Lumeng L. 128.  1978. The role of acetaldehyde in mediating the deleterious effect of ethanol on pyridoxal 5′-phosphate metabolism. J. Clin. Invest. 62:286–93 [Google Scholar]
  129. Lumeng L, Brashear RE, Li TK. 129.  1974. Pyridoxal 5′-phosphate in plasma: source, protein-binding, and cellular transport. J. Lab. Clin. Med. 84:334–43 [Google Scholar]
  130. Lumeng L, Lui A, Li TK. 130.  1980. Plasma content of B6 vitamers and its relationship to hepatic vitamin B6 metabolism. J. Clin. Invest. 66:688–95 [Google Scholar]
  131. Lussana F, Zighetti ML, Bucciarelli P, Cugno M, Cattaneo M. 131.  2003. Blood levels of homocysteine, folate, vitamin B-6 and B-12 in women using oral contraceptives compared to non-users. Thromb. Res. 112:37–41 [Google Scholar]
  132. Majchrzak D, Singer I, Männer M, Rust P, Genser D. 132.  et al. 2006. B-vitamin status and concentrations of homocysteine in Austrian omnivores, vegetarians and vegans. Ann. Nutr. Metab. 50:485–91 [Google Scholar]
  133. Manore MM. 133.  1994. Vitamin B6 and exercise. Int. J. Sport Nutr. 4:89–103 [Google Scholar]
  134. Manore MM. 134.  2000. Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements. Am. J. Clin. Nutr. 72:598–606S [Google Scholar]
  135. Marshall JR. 135.  2003. Methodologic and statistical considerations regarding use of biomarkers of nutritional exposure in epidemiology. J. Nutr. 133:Suppl. 3881–87S [Google Scholar]
/content/journals/10.1146/annurev-nutr-071714-034330
Loading
/content/journals/10.1146/annurev-nutr-071714-034330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error