Dietary lipids are efficiently absorbed by the small intestine, incorporated into triglyceride-rich lipoproteins (chylomicrons), and transported in the circulation to various tissues. Intestinal lipid absorption and mobilization and chylomicron synthesis and secretion are highly regulated processes. Elevated chylomicron production rate contributes to the dyslipidemia seen in common metabolic disorders such as insulin-resistant states and type 2 diabetes and likely increases the risk for atherosclerosis seen in these conditions. An in-depth understanding of the regulation of chylomicron production may provide leads for the development of drugs that could be of therapeutic utility in the prevention of dyslipidemia and atherosclerosis. Chylomicron secretion is subject to regulation by various factors, including diet, body weight, genetic variants, hormones, nutraceuticals, medications, and emerging interventions such as bariatric surgical procedures. In this review we discuss the regulation of chylomicron production, mechanisms that underlie chylomicron dysregulation, and potential avenues for future research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aalto-Setala K, Bisgaier CL, Ho A, Kieft KA, Traber MG. 1.  et al. 1994. Intestinal expression of human apolipoprotein A-IV in transgenic mice fails to influence dietary lipid absorption or feeding behavior. J. Clin. Invest. 93:1776–86 [Google Scholar]
  2. Agren JJ, Valve R, Vidgren H, Laakso M, Uusitupa M. 2.  1998. Postprandial lipemic response is modified by the polymorphism at codon 54 of the fatty acid-binding protein 2 gene. Arterioscler. Thromb. Vasc. Biol. 18:1606–10 [Google Scholar]
  3. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM. 3.  et al. 2004. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–4 [Google Scholar]
  4. Amaro A, Fabbrini E, Kars M, Yue P, Schechtman K. 4.  et al. 2010. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 139:149–53 [Google Scholar]
  5. Anant S, Davidson NO. 5.  2001. Molecular mechanisms of apolipoprotein B mRNA editing. Curr. Opin. Lipidol. 12:159–65 [Google Scholar]
  6. Baggio LL, Drucker DJ. 6.  2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–57 [Google Scholar]
  7. Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G. 7.  et al. 1995. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 95:1281–87 [Google Scholar]
  8. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. 8.  2007. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–16 [Google Scholar]
  9. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C. 9.  et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–42 [Google Scholar]
  10. Blackburn C, Guan B, Brown J, Cullis C, Condon SM. 10.  et al. 2006. Identification and characterization of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones as inhibitors of the fatty acid transporter FATP4. Bioorg. Med. Chem. Lett. 16:3504–9 [Google Scholar]
  11. Botham KM, Moore EH, De Pascale C, Bejta F. 11.  2007. The induction of macrophage foam cell formation by chylomicron remnants. Biochem. Soc. Trans. 35:454–58 [Google Scholar]
  12. Bozzetto L, Annuzzi G, Corte GD, Patti L, Cipriano P. 12.  et al. 2011. Ezetimibe beneficially influences fasting and postprandial triglyceride-rich lipoproteins in type 2 diabetes. Atherosclerosis 217:142–48 [Google Scholar]
  13. Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B. 13.  et al. 2011. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 106:383–89 [Google Scholar]
  14. Bray GA. 14.  2012. Fructose and risk of cardiometabolic disease. Curr. Atheroscler. Rep. 14:570–78 [Google Scholar]
  15. Bruin T, Tuzgol S, van Diermen DE, Hoogerbrugge-van der Linden N, Brunzell JD. 15.  et al. 1993. Recurrent pancreatitis and chylomicronemia in an extended Dutch kindred is caused by a Gly154→Ser substitution in lipoprotein lipase. J. Lipid Res. 34:2109–19 [Google Scholar]
  16. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM. 16.  et al. 2006. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116:1052–62 [Google Scholar]
  17. Buhman KK, Smith SJ, Stone SJ, Repa JJ, Wong JS. 17.  et al. 2002. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J. Biol. Chem. 277:25474–79 [Google Scholar]
  18. Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM. 18.  et al. 2010. One-year treatment with exenatide versus insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress. Atherosclerosis 212:223–29 [Google Scholar]
  19. Cao J, Cheng L, Shi Y. 19.  2007. Catalytic properties of MGAT3, a putative triacylglycerol synthase. J. Lipid Res. 48:583–91 [Google Scholar]
  20. Cara L, Dubois C, Borel P, Armand M, Senft M. 20.  et al. 1992. Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults. Am. J. Clin. Nutr. 55:81–88 [Google Scholar]
  21. Cases S, Stone SJ, Zhou P, Yen E, Tow B. 21.  et al. 2001. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276:38870–76 [Google Scholar]
  22. Chavez-Jauregui RN, Mattes RD, Parks EJ. 22.  2010. Dynamics of fat absorption and effect of sham feeding on postprandial lipema. Gastroenterology 139:1538–48 [Google Scholar]
  23. Cheng D, Nelson TC, Chen J, Walker SG, Wardwell-Swanson J. 23.  et al. 2003. Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption. J. Biol. Chem. 278:13611–14 [Google Scholar]
  24. Cohen JC, Berger GM. 24.  1990. Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J. Lipid Res. 31:597–602 [Google Scholar]
  25. Cohen JC, Stender S, Hobbs HH. 25.  2014. APOC3, coronary disease, and complexities of Mendelian randomization. Cell Metab. 20:387–89 [Google Scholar]
  26. Cohn JS, Marcoux C, Davignon J. 26.  1999. Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler. Thromb. Vasc. Biol. 19:2474–86 [Google Scholar]
  27. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO. 27.  et al. 2014. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371:22–31 [Google Scholar]
  28. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML. 28.  et al. 2007. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356:148–56 [Google Scholar]
  29. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD. 29.  et al. 2013. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381:40–46 [Google Scholar]
  30. Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF. 30.  2014. Glucagon-like peptide 2 regulates release of chylomicron from the intestine. Gastroenterology 147:1275–84 [Google Scholar]
  31. Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. 31.  2015. Intranasal insulin suppresses endogenous glucose production in humans compared to placebo, in the presence of similar venous insulin concentration. Diabetes 64:3766–74 [Google Scholar]
  32. Dash S, Xiao C, Morgantini C, Szeto L, Lewis GF. 32.  2013. High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler. Thromb. Vasc. Biol. 33:2895–901 [Google Scholar]
  33. Denison H, Nilsson C, Kujacic M, Lofgren L, Karlsson C. 33.  et al. 2013. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes. Metab. 15:136–43 [Google Scholar]
  34. Desmarchelier C, Martin JC, Planells R, Gastaldi M, Nowicki M. 34.  et al. 2014. The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J. Clin. Endocrinol. Metab. 99:E484–88 [Google Scholar]
  35. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C. 35.  et al. 2013. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45:1345–52 [Google Scholar]
  36. Douris N, Kojima S, Pan X, Lerch-Gaggl AF, Duong SQ. 36.  et al. 2011. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 21:1347–55 [Google Scholar]
  37. Drucker DJ, Nauck MA. 37.  2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–705 [Google Scholar]
  38. Drucker DJ, Yusta B. 38.  2014. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 76:561–83 [Google Scholar]
  39. Dubois C, Beaumier G, Juhel C, Armand M, Portugal H. 39.  et al. 1998. Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am. J. Clin. Nutr. 67:31–38 [Google Scholar]
  40. Duez H, Lamarche B, Uffelman KD, Valero R, Cohn JS, Lewis GF. 40.  2006. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 26:1357–63 [Google Scholar]
  41. Duez H, Lamarche B, Uffelman KD, Valero R, Szeto L. 41.  et al. 2008. Dissociation between the insulin-sensitizing effect of rosiglitazone and its effect on hepatic and intestinal lipoprotein production. J. Clin. Endocrinol. Metab. 93:1722–29 [Google Scholar]
  42. Duez H, Lamarche B, Valero R, Pavlic M, Proctor S. 42.  et al. 2008. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 117:2369–76 [Google Scholar]
  43. During A, Dawson HD, Harrison EH. 43.  2005. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J. Nutr. 135:2305–12 [Google Scholar]
  44. Evans K, Kuusela PJ, Cruz ML, Wilhelmova I, Fielding BA, Frayn KN. 44.  1998. Rapid chylomicron appearance following sequential meals: effects of second meal composition. Br. J. Nutr. 79:425–29 [Google Scholar]
  45. Farr S, Baker C, Naples M, Taher J, Adeli K. 45.  2014. Central glucagon-like peptide-1 reduces intestinal chylomicron production via melanocortin-4-receptor signaling. Arterioscler. Thromb. Vasc. Biol. 34:Suppl. 1A429 [Google Scholar]
  46. Federico LM, Naples M, Taylor D, Adeli K. 46.  2006. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes 55:1316–26 [Google Scholar]
  47. Fielding BA, Callow J, Owen RM, Samra JS, Matthews DR, Frayn KN. 47.  1996. Postprandial lipemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals. Am. J. Clin. Nutr. 63:36–41 [Google Scholar]
  48. Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. 48.  2013. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24:257–68 [Google Scholar]
  49. Gimeno RE, Hirsch DJ, Punreddy S, Sun Y, Ortegon AM. 49.  et al. 2003. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J. Biol. Chem. 278:49512–16 [Google Scholar]
  50. Gögebakan O, Andres J, Biedasek K, Mai K, Kühnen P. 50.  et al. 2012. Glucose-dependent insulinotropic polypeptide reduces fat-specific expression and activity of 11β-hydroxysteroid dehydrogenase type 1 and inhibits release of free fatty acids. Diabetes 61:292–300 [Google Scholar]
  51. Grant KI, Marais MP, Dhansay MA. 51.  1994. Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance. Am. J. Clin. Nutr. 59:853–60 [Google Scholar]
  52. Grosskopf I, Ringel Y, Charach G, Maharshak N, Mor R. 52.  et al. 1997. Metformin enhances clearance of chylomicrons and chylomicron remnants in nondiabetic mildly overweight glucose-intolerant subjects. Diabetes Care 20:1598–602 [Google Scholar]
  53. Guan X, Stoll B, Lu X, Tappenden KA, Holst JJ. 53.  et al. 2003. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1. Gastroenterology 125:136–47 [Google Scholar]
  54. Haas JT, Winter HS, Lim E, Kirby A, Blumenstiel B. 54.  et al. 2012. DGAT1 mutation is linked to a congenital diarrheal disorder. J. Clin. Invest. 122:4680–84 [Google Scholar]
  55. Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R. 55.  et al. 2002. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277:31646–55 [Google Scholar]
  56. Hampton SM, Morgan LM, Lawrence N, Anastasiadou T, Norris F. 56.  et al. 1996. Postprandial hormone and metabolic responses in simulated shift work. J. Endocrinol. 151:259–67 [Google Scholar]
  57. Harbis A, Defoort C, Narbonne H, Juhel C, Senft M. 57.  et al. 2001. Acute hyperinsulinism modulates plasma apolipoprotein B-48 triglyceride-rich lipoproteins in healthy subjects during the postprandial period. Diabetes 50:462–69 [Google Scholar]
  58. Harmel E, Grenier E, Bendjoudi Ouadda A, El Chebly M, Ziv E. 58.  et al. 2014. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology 155:873–88 [Google Scholar]
  59. Hayashi H, Fujimoto K, Cardelli JA, Nutting DF, Bergstedt S, Tso P. 59.  1990. Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am. J. Physiol. 259:G709–19 [Google Scholar]
  60. Hazard SE, Patel SB. 60.  2007. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch. 453:745–52 [Google Scholar]
  61. Hegele RA. 61.  2009. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10:109–21 [Google Scholar]
  62. Hegele RA, Harris SB, Hanley AJ, Sadikian S, Connelly PW, Zinman B. 62.  1996. Genetic variation of intestinal fatty acid-binding protein associated with variation in body mass in aboriginal Canadians. J. Clin. Endocrinol. Metab. 81:4334–37 [Google Scholar]
  63. Hein GJ, Baker C, Hsieh J, Farr S, Adeli K. 63.  2012. GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62:373–81 [Google Scholar]
  64. Hogue JC, Lamarche B, Deshaies Y, Tremblay AJ, Bergeron J. 64.  et al. 2008. Differential effect of fenofibrate and atorvastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with type 2 diabetes mellitus with marked hypertriglyceridemia. Metabolism 57:246–54 [Google Scholar]
  65. Hogue JC, Lamarche B, Tremblay AJ, Bergeron J, Gagne C, Couture P. 65.  2007. Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes. J. Lipid Res. 48:1336–42 [Google Scholar]
  66. Hooper AJ, Robertson K, Barrett PH, Parhofer KG, van Bockxmeer FM, Burnett JR. 66.  2007. Postprandial lipoprotein metabolism in familial hypobetalipoproteinemia. J. Clin. Endocrinol. Metab. 92:1474–78 [Google Scholar]
  67. Hsieh J, Longuet C, Baker CL, Qin B, Federico LM. 67.  et al. 2010. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53:552–61 [Google Scholar]
  68. Hsieh J, Longuet C, Maida A, Bahrami J, Xu E. 68.  et al. 2009. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:997–1005 [Google Scholar]
  69. Hussain MM, Maxfield FR, Mas-Oliva J, Tabas I, Ji ZS. 69.  et al. 1991. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J. Biol. Chem. 266:13936–40 [Google Scholar]
  70. Hussain MM, Pan X. 70.  2015. Circadian regulators of intestinal lipid absorption. J. Lipid Res. 56:761–70 [Google Scholar]
  71. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. 71.  2004. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. PNAS 101:7281–86 [Google Scholar]
  72. Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB. 72.  et al. 2013. Roux-en-Y gastric bypass versus intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA 309:2240–49 [Google Scholar]
  73. Iqbal J, Rudel LL, Hussain MM. 73.  2008. Microsomal triglyceride transfer protein enhances cellular cholesteryl esterification by relieving product inhibition. J. Biol. Chem. 283:19967–80 [Google Scholar]
  74. Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P, Williams CM. 74.  2005. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids. Am. J. Clin. Nutr. 81:25–34 [Google Scholar]
  75. James AP, Watts GF, Mamo JC. 75.  2005. The effect of metformin and rosiglitazone on postprandial lipid metabolism in obese insulin-resistant subjects. Diabetes Obes. Metab. 7:381–89 [Google Scholar]
  76. Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM. 76.  1995. Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am. J. Clin. Nutr. 61:787–91 [Google Scholar]
  77. Johansen CT, Hegele RA. 77.  2012. The complex genetic basis of plasma triglycerides. Curr. Atheroscler. Rep. 14:227–34 [Google Scholar]
  78. Jones B, Jones EL, Bonney SA, Patel HN, Mensenkamp AR. 78.  et al. 2003. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 34:29–31 [Google Scholar]
  79. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. 79.  2014. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371:32–41 [Google Scholar]
  80. Jorgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjaerg-Hansen A. 80.  2013. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur. Heart J. 34:1826–33 [Google Scholar]
  81. Kamagate A, Qu S, Perdomo G, Su D, Kim DH. 81.  et al. 2008. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J. Clin. Invest. 118:2347–64 [Google Scholar]
  82. Kishore P, Boucai L, Zhang K, Li W, Koppaka S. 82.  et al. 2011. Activation of KATP channels suppresses glucose production in humans. J. Clin. Invest. 121:4916–20 [Google Scholar]
  83. Koo HY, Miyashita M, Cho BH, Nakamura MT. 83.  2009. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem. Biophys. Res. Commun. 390:285–89 [Google Scholar]
  84. Lairon D. 84.  2008. Macronutrient intake and modulation on chylomicron production and clearance. Atheroscler. Suppl. 9:45–48 [Google Scholar]
  85. Lam TK, Gutierrez-Juarez R, Pocai A, Bhanot S, Tso P. 85.  et al. 2007. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat. Med. 13:171–80 [Google Scholar]
  86. Lemieux I, Salomon H, Despres JP. 86.  2003. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann. Med. 35:442–48 [Google Scholar]
  87. Lewis GF, Naples M, Uffelman K, Leung N, Szeto L, Adeli K. 87.  2004. Intestinal lipoprotein production is stimulated by an acute elevation of plasma free fatty acids in the fasting state: studies in insulin-resistant and insulin-sensitized Syrian golden hamsters. Endocrinology 145:5006–12 [Google Scholar]
  88. Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. 88.  1995. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Invest. 95:158–66 [Google Scholar]
  89. Liu L, Wen T, Zheng XY, Yang DG, Zhao SP. 89.  et al. 2009. Remnant-like particles accelerate endothelial progenitor cells senescence and induce cellular dysfunction via an oxidative mechanism. Atherosclerosis 202:405–14 [Google Scholar]
  90. Mamo JC, James AP, Soares MJ, Griffiths DG, Purcell K, Schwenke JL. 90.  2005. A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet. Eur. J. Clin. Nutr. 59:1142–18 [Google Scholar]
  91. Mansbach CM, Siddiqi SA. 91.  2010. The biogenesis of chylomicrons. Annu. Rev. Physiol. 72:315–33 [Google Scholar]
  92. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R. 92.  et al. 2009. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J. Lipid Res. 50:999–1011 [Google Scholar]
  93. Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D. 93.  et al. 2006. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49:2049–57 [Google Scholar]
  94. Maury E, Ramsey KM, Bass J. 94.  2010. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ. Res. 106:447–62 [Google Scholar]
  95. Meier JJ, Gethmann A, Gotze O, Gallwitz B, Holst JJ. 95.  et al. 2006. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 49:452–58 [Google Scholar]
  96. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O. 96.  et al. 2006. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 130:44–54 [Google Scholar]
  97. Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C. 97.  et al. 2002. Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J. Nutr. 132:3642–49 [Google Scholar]
  98. Mera Y, Odani N, Kawai T, Hata T, Suzuki M. 98.  et al. 2011. Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4′-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein. J. Pharmacol. Exp. Ther. 336:321–27 [Google Scholar]
  99. Milger K, Herrmann T, Becker C, Gotthardt D, Zickwolf J. 99.  et al. 2006. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J. Cell Sci. 119:4678–88 [Google Scholar]
  100. Morel E, Demignot S, Chateau D, Chambaz J, Rousset M, Delers F. 100.  2004. Lipid-dependent bidirectional traffic of apolipoprotein B in polarized enterocytes. Mol. Biol. Cell 15:132–41 [Google Scholar]
  101. Mortensen LS, Hartvigsen ML, Brader LJ, Astrup A, Schrezenmeir J. 101.  et al. 2009. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am. J. Clin. Nutr. 90:41–48 [Google Scholar]
  102. Murphy MC, Isherwood SG, Sethi S, Gould BJ, Wright JW. 102.  et al. 1995. Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase?. Eur. J. Clin. Nutr. 49:578–88 [Google Scholar]
  103. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C. 103.  et al. 2010. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363:2220–27 [Google Scholar]
  104. Naples M, Baker C, Lino M, Iqbal J, Hussain MM, Adeli K. 104.  2012. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G1043–52 [Google Scholar]
  105. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. 105.  2007. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J. Biol. Chem. 282:19493–501 [Google Scholar]
  106. Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM. 106.  et al. 2006. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 131:1197–207 [Google Scholar]
  107. Neeli I, Siddiqi SA, Siddiqi S, Mahan J, Lagakos WS. 107.  et al. 2007. Liver fatty acid-binding protein initiates budding of pre-chylomicron transport vesicles from intestinal endoplasmic reticulum. J. Biol. Chem. 282:17974–84 [Google Scholar]
  108. Newberry EP, Xie Y, Kennedy SM, Luo J, Davidson NO. 108.  2006. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 44:1191–205 [Google Scholar]
  109. Niot I, Poirier H, Tran TT, Besnard P. 109.  2009. Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog. Lipid Res. 48:101–15 [Google Scholar]
  110. Nogueira JP, Maraninchi M, Beliard S, Padilla N, Duvillard L. 110.  et al. 2012. Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 32:1039–44 [Google Scholar]
  111. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. 111.  2007. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308 [Google Scholar]
  112. Obici S, Zhang BB, Karkanias G, Rossetti L. 112.  2002. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8:1376–82 [Google Scholar]
  113. Ooi EM, Russell BS, Olson E, Sun SZ, Diffenderfer MR. 113.  et al. 2012. Apolipoprotein B-100-containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations. Arterioscler. Thromb. Vasc. Biol. 32:459–66 [Google Scholar]
  114. Padilla N, Maraninchi M, Beliard S, Berthet B, Nogueira JP. 114.  et al. 2014. Effects of bariatric surgery on hepatic and intestinal lipoprotein particle metabolism in obese, nondiabetic humans. Arterioscler. Thromb. Vasc. Biol. 34:2330–37 [Google Scholar]
  115. Pan X, Hussain MM. 115.  2009. Clock is important for food and circadian regulation of macronutrient absorption in mice. J. Lipid Res. 50:1800–13 [Google Scholar]
  116. Pan X, Hussain MM. 116.  2012. Gut triglyceride production. Biochim. Biophys. Acta 1821:727–35 [Google Scholar]
  117. Pan X, Munshi MK, Iqbal J, Queiroz J, Sirwi AA. 117.  et al. 2013. Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein. J. Biol. Chem. 288:20464–76 [Google Scholar]
  118. Pan X, Zhang Y, Wang L, Hussain MM. 118.  2010. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 12:174–86 [Google Scholar]
  119. Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. 119.  1999. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Invest. 104:1087–96 [Google Scholar]
  120. Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. 120.  2010. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes 59:580–87 [Google Scholar]
  121. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ. 121.  et al. 2005. Hypothalamic KATP channels control hepatic glucose production. Nature 434:1026–31 [Google Scholar]
  122. Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP. 122.  et al. 2012. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62:1186–95 [Google Scholar]
  123. Proctor SD, Mamo JC. 123.  2003. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol. 23:1595–600 [Google Scholar]
  124. Qin B, Polansky MM, Sato Y, Adeli K, Anderson RA. 124.  2009. Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J. Nutr. Biochem. 20:901–8 [Google Scholar]
  125. Rader DJ, Kastelein JJ. 125.  2014. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 129:1022–32 [Google Scholar]
  126. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM. 126.  et al. 2011. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478:404–7 [Google Scholar]
  127. Repa JJ, Turley SD, Quan G, Dietschy JM. 127.  2005. Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J. Lipid Res. 46:779–89 [Google Scholar]
  128. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE. 128.  et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214 [Google Scholar]
  129. Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W. 129.  2006. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta 1761:416–23 [Google Scholar]
  130. Robertson MD, Parkes M, Warren BF, Ferguson DJ, Jackson KG. 130.  et al. 2003. Mobilisation of enterocyte fat stores by oral glucose in humans. Gut 52:834–39 [Google Scholar]
  131. Roche HM, Zampelas A, Jackson KG, Williams CM, Gibney MJ. 131.  1998. The effect of test meal monounsaturated fatty acid:saturated fatty acid ratio on postprandial lipid metabolism. Br. J. Nutr. 79:419–24 [Google Scholar]
  132. Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E. 132.  et al. 2009. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119:70–79 [Google Scholar]
  133. Sandoval JC, Nakagawa-Toyama Y, Masuda D, Tochino Y, Nakaoka H. 133.  et al. 2010. Fenofibrate reduces postprandial hypertriglyceridemia in CD36 knockout mice. J. Atheroscler. Thromb. 17:610–18 [Google Scholar]
  134. Sane AT, Sinnett D, Delvin E, Bendayan M, Marcil V. 134.  et al. 2006. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J. Lipid Res. 47:2112–20 [Google Scholar]
  135. Schlierf G, Dorow E. 135.  1973. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J. Clin. Invest. 52:732–40 [Google Scholar]
  136. Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD. 136.  2010. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 212:217–22 [Google Scholar]
  137. Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H. 137.  2008. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol. Sin. 29:698–706 [Google Scholar]
  138. Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. 138.  2004. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation 109:1022–28 [Google Scholar]
  139. Siddiqi S, Mansbach CM 2nd. 139.  2012. Phosphorylation of Sar1b protein releases liver fatty acid-binding protein from multiprotein complex in intestinal cytosol enabling it to bind to endoplasmic reticulum (ER) and bud the pre-chylomicron transport vesicle. J. Biol. Chem. 287:10178–88 [Google Scholar]
  140. Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM 2nd. 140.  2013. Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim. Biophys. Acta 1831:1311–21 [Google Scholar]
  141. Siddiqi SA, Mahan J, Siddiqi S, Gorelick FS, Mansbach CM 2nd. 141.  2006. Vesicle-associated membrane protein 7 is expressed in intestinal ER. J. Cell Sci. 119:943–50 [Google Scholar]
  142. Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM 2nd. 142.  2006. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J. Biol. Chem. 281:20974–82 [Google Scholar]
  143. Sidiropoulos KG, Meshkani R, Avramoglu-Kohen R, Adeli K. 143.  2007. Insulin inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR signaling cascade but does not involve internal ribosomal entry site (IRES) initiation. Arch. Biochem. Biophys. 465:380–88 [Google Scholar]
  144. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J. 144.  et al. 2014. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311:2297–304 [Google Scholar]
  145. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. 145.  2013. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 19:892–900 [Google Scholar]
  146. Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P. 146.  et al. 1999. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4:299–308 [Google Scholar]
  147. Steiner G, Poapst M, Davidson JK. 147.  1975. Production of chylomicron-like lipoproteins from endogenous lipid by the intestine and liver of diabetic dogs. Diabetes 24:263–71 [Google Scholar]
  148. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR. 148.  et al. 2004. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279:11767–76 [Google Scholar]
  149. Stremmel W. 149.  1988. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J. Clin. Invest. 82:2001–10 [Google Scholar]
  150. Tarugi P, Averna M, Di Leo E, Cefalu AB, Noto D. 150.  et al. 2007. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 195:e19–27 [Google Scholar]
  151. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T. 151.  et al. 2012. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14:612–22 [Google Scholar]
  152. Ting HJ, Stice JP, Schaff UY, Hui DY, Rutledge JC. 152.  et al. 2007. Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-α. Circ. Res. 100:381–90 [Google Scholar]
  153. Tome-Carneiro J, Gonzalvez M, Larrosa M, Garcia-Almagro FJ, Aviles-Plaza F. 153.  et al. 2012. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 56:810–21 [Google Scholar]
  154. Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P. 154.  2011. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes. Metab. 13:366–73 [Google Scholar]
  155. Tremblay AJ, Lamarche B, Kelly I, Charest A, Lepine MC. 155.  et al. 2014. Effect of sitagliptin therapy on triglyceride-rich lipoprotein kinetics in patients with type 2 diabetes. Diabetes Obes. Metab. 16:1223–29 [Google Scholar]
  156. Tso P, Balint JA. 156.  1986. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am. J. Physiol. 250:G715–26 [Google Scholar]
  157. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 157.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  158. Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ. 158.  2000. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J. 14:2040–46 [Google Scholar]
  159. Veilleux A, Grenier E, Marceau P, Carpentier AC, Richard D, Levy E. 159.  2014. Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler. Thromb. Vasc. Biol. 34:644–53 [Google Scholar]
  160. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS. 160.  et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–16.e7 [Google Scholar]
  161. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC. 161.  2009. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J. Lipid Res. 50:204–13 [Google Scholar]
  162. Wasada T, McCorkle K, Harris V, Kawai K, Howard B, Unger RH. 162.  1981. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J. Clin. Invest. 68:1106–7 [Google Scholar]
  163. Weinstock PH, Bisgaier CL, Hayek T, Aalto-Setala K, Sehayek E. 163.  et al. 1997. Decreased HDL cholesterol levels but normal lipid absorption, growth, and feeding behavior in apolipoprotein A-IV knockout mice. J. Lipid Res. 38:1782–94 [Google Scholar]
  164. Weintraub MS, Zechner R, Brown A, Eisenberg S, Breslow JL. 164.  1988. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J. Clin. Invest. 82:1884–93 [Google Scholar]
  165. Westphal S, Kastner S, Taneva E, Leodolter A, Dierkes J, Luley C. 165.  2004. Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am. J. Clin. Nutr. 80:284–90 [Google Scholar]
  166. Westphal S, Leodolter A, Kahl S, Dierkes J, Malfertheiner P, Luley C. 166.  2002. Addition of glucose to a fatty meal delays chylomicrons and suppresses VLDL in healthy subjects. Eur. J. Clin. Invest. 32:322–27 [Google Scholar]
  167. Willnow TE. 167.  1997. Mechanisms of hepatic chylomicron remnant clearance. Diabetic Med. 14:Suppl. 3S75–80 [Google Scholar]
  168. Wong AT, Chan DC, Barrett PH, Adams LA, Watts GF. 168.  2014. Effect of omega-3 fatty acid ethyl esters on apolipoprotein B-48 kinetics in obese subjects on a weight-loss diet: a new tracer kinetic study in the postprandial state. J. Clin. Endocrinol. Metab. 99:E1427–35 [Google Scholar]
  169. Xiao C, Bandsma RH, Dash S, Szeto L, Lewis GF. 169.  2012. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler. Thromb. Vasc. Biol. 32:1513–19 [Google Scholar]
  170. Xiao C, Dash S, Lewis GF. 170.  2012. Mechanisms of incretin effects on plasma lipids and implications for the cardiovascular system. Cardiovasc. Hematol. Agents Med. Chem. 10:289–94 [Google Scholar]
  171. Xiao C, Dash S, Morgantini C, Lewis GF. 171.  2013. Novel role of enteral monosaccharides in intestinal lipoprotein production in healthy humans. Arterioscler. Thromb. Vasc. Biol. 33:1056–62 [Google Scholar]
  172. Xiao C, Dash S, Morgantini C, Patterson BW, Lewis GF. 172.  2014. Sitagliptin, a DPP-4 inhibitor, acutely inhibits intestinal lipoprotein particle secretion in healthy humans. Diabetes 63:2394–401 [Google Scholar]
  173. Xiao C, Hsieh J, Adeli K, Lewis GF. 173.  2011. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am. J. Physiol. Endocrinol. Metab. 301:E429–46 [Google Scholar]
  174. Xiao C, Lewis GF. 174.  2012. Regulation of chylomicron production in humans. Biochim. Biophys. Acta 1821:736–46 [Google Scholar]
  175. Yang LY, Kuksis A. 175.  1991. Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols. J. Lipid Res. 32:1173–86 [Google Scholar]
  176. Yen CL, Cheong ML, Grueter C, Zhou P, Moriwaki J. 176.  et al. 2009. Deficiency of the intestinal enzyme acyl CoA:monoacylglycerol acyltransferase-2 protects mice from metabolic disorders induced by high-fat feeding. Nat. Med. 15:442–46 [Google Scholar]
  177. Yen CL, Farese RV Jr. 177.  2003. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem. 278:18532–37 [Google Scholar]
  178. Yue JT, Mighiu PI, Naples M, Adeli K, Lam TK. 178.  2012. Glycine normalizes hepatic triglyceride-rich VLDL secretion by triggering the CNS in high-fat fed rats. Circ. Res. 110:1345–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error