Vitamin E modulates the activity of several signal transduction enzymes with consequent alterations of gene expression. At the molecular level, vitamin E may directly bind to these enzymes and compete with their substrates, or it may change their activity by redox regulation. The translocation of several of these enzymes to the plasma membrane is regulated by vitamin E, suggesting the modulation of protein-membrane interactions as a common mechanism for vitamin E action. Enzyme-membrane interactions can be affected by vitamin E by interference with binding to specific membrane lipids or by altering cellular structures such as membrane microdomains (lipid rafts). Moreover, competition by vitamin E for common binding sites within lipid transport proteins may alter the traffic of lipid mediators and thus affect their signaling and enzymatic conversion. In this review, the main effects of vitamin E on enzymes involved in signal transduction are summarized and possible molecular mechanisms leading to enzyme modulation are evaluated.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abate A, Yang G, Dennery PA, Oberle S, Schroder H. 1.  2000. Synergistic inhibition of cyclooxygenase-2 expression by vitamin E and aspirin. Free Radic. Biol. Med. 29:1135–42 [Google Scholar]
  2. Abdala-Valencia H, Berdnikovs S, Cook-Mills JM. 2.  2013. Vitamin E isoforms as modulators of lung inflammation. Nutrients 5:4347–63 [Google Scholar]
  3. Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ. 3.  2011. Vitamin E and all-cause mortality: a meta-analysis. Curr. Aging Sci. 4:158–70 [Google Scholar]
  4. Akazawa A, Nishikawa K, Suzuki K, Asano R, Kumadaki I. 4.  et al. 2002. Induction of apoptosis in a human breast cancer cell overexpressing ErbB-2 receptor by α-tocopheryloxybutyric acid. Jpn. J. Pharmacol. 89:417–21 [Google Scholar]
  5. Andersen M, Lenhard B, Whatling C, Eriksson P, Odeberg J. 5.  2006. Alternative promoter usage of the membrane glycoprotein CD36. BMC Mol. Biol. 7:8 [Google Scholar]
  6. Anderson K, Simmons-Menchaca M, Lawson KA, Atkinson J, Sanders BG, Kline K. 6.  2004. Differential response of human ovarian cancer cells to induction of apoptosis by vitamin E succinate and vitamin E analogue, α-TEA. Cancer Res. 64:4263–69 [Google Scholar]
  7. Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. 7.  1996. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. PNAS 93:5699–704 [Google Scholar]
  8. Andresen BT, Rizzo MA, Shome K, Romero G. 8.  2002. The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade. FEBS Lett. 531:65–68 [Google Scholar]
  9. Asleh R, Levy AP. 9.  2010. Divergent effects of α-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype. Antioxid. Redox Signal. 12:209–17 [Google Scholar]
  10. Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. 10.  2010. The location and behavior of α-tocopherol in membranes. Mol. Nutr. Food Res. 54:641–51 [Google Scholar]
  11. Bankaitis VA, Mousley CJ, Schaaf G. 11.  2010. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem. Sci. 35:150–60 [Google Scholar]
  12. Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB. 12.  1999. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem. 274:34543–46 [Google Scholar]
  13. Barthel A, Klotz LO. 13.  2005. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol. Chem. 386:207–16 [Google Scholar]
  14. Belisle SE, Leka LS, Delgado-Lista J, Jacques PF, Ordovas JM, Meydani SN. 14.  2009. Polymorphisms at cytokine genes may determine the effect of vitamin E on cytokine production in the elderly. J. Nutr. 139:1855–60 [Google Scholar]
  15. Betti M, Minelli A, Canonico B, Castaldo P, Magi S. 15.  et al. 2006. Antiproliferative effects of tocopherols (vitamin E) on murine glioma C6 cells: homologue-specific control of PKC/ERK and cyclin signaling. Free Radic. Biol. Med. 41:464–72 [Google Scholar]
  16. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. 16.  2007. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–57 [Google Scholar]
  17. Blum S, Vardi M, Brown JB, Russell A, Milman U. 17.  et al. 2010. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2-2 genotype. Pharmacogenomics 11:675–84 [Google Scholar]
  18. Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F. 18.  2015. Can genetic variability in α-tocopherol bioavailability explain the heterogeneous response to α-tocopherol supplements?. Antioxid. Redox Signal. 22:669–78 [Google Scholar]
  19. Borel P, Moussa M, Reboul E, Lyan B, Defoort C. 19.  et al. 2007. Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J. Nutr. 137:2653–59 [Google Scholar]
  20. Boscoboinik D, Szewczyk A, Hensey C, Azzi A. 20.  1991. Inhibition of cell proliferation by α-tocopherol. Role of protein kinase C. J. Biol. Chem. 266:6188–94 [Google Scholar]
  21. Boudreau RT, Garduno R, Lin TJ. 21.  2002. Protein phosphatase 2A and protein kinase Cα are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells. J. Biol. Chem. 277:5322–29 [Google Scholar]
  22. Bozaykut P, Karademir B, Yazgan B, Sozen E, Siow RC. 22.  et al. 2014. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis. Free Radic. Biol. Med. 70C:174–81 [Google Scholar]
  23. Bradford A, Atkinson J, Fuller N, Rand RP. 23.  2003. The effect of vitamin E on the structure of membrane lipid assemblies. J. Lipid Res. 44:1940–45 [Google Scholar]
  24. Brigelius-Flohe R. 24.  2005. Induction of drug metabolizing enzymes by vitamin E. J. Plant Physiol. 162:797–802 [Google Scholar]
  25. Brigelius-Flohe R. 25.  2009. Vitamin E: the shrew waiting to be tamed. Free Radic. Biol. Med. 46:543–54 [Google Scholar]
  26. Brigelius-Flohe R, Kelly FJ, Salonen JT, Neuzil J, Zingg JM, Azzi A. 26.  2002. The European perspective on vitamin E: current knowledge and future research. Am. J. Clin. Nutr. 76:703–16 [Google Scholar]
  27. Brigelius-Flohe R, Kluth D, Banning A. 27.  2005. Is there a future for antioxidants in atherogenesis?. Mol. Nutr. Food Res. 49:1083–89 [Google Scholar]
  28. Brigelius-Flohe R, Traber MG. 28.  1999. Vitamin E: function and metabolism. FASEB J. 13:1145–55 [Google Scholar]
  29. Brognard J, Newton AC. 29.  2008. PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol. Metab. 19:223–30 [Google Scholar]
  30. Brugge J, Hung MC, Mills GB. 30.  2007. A new mutational AKTivation in the PI3K pathway. Cancer Cell 12:104–7 [Google Scholar]
  31. Cachia O, Benna JE, Pedruzzi E, Descomps B, Gougerot-Pocidalo MA, Leger CL. 31.  1998. α-Tocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47phox membrane translocation and phosphorylation. J. Biol. Chem. 273:32801–5 [Google Scholar]
  32. Chan SS, Monteiro HP, Schindler F, Stern A, Junqueira VB. 32.  2001. Alpha-tocopherol modulates tyrosine phosphorylation in human neutrophils by inhibition of protein kinase C activity and activation of tyrosine phosphatases. Free Radic. Res. 35:843–56 [Google Scholar]
  33. Chandra V, Jasti J, Kaur P, Betzel C, Srinivasan A, Singh TP. 33.  2002. First structural evidence of a specific inhibition of phospholipase A2 by α-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and α-tocopherol at 1.8 Å resolution. J. Mol. Biol. 320:215–22 [Google Scholar]
  34. Cheung L, Andersen M, Gustavsson C, Odeberg J, Fernandez-Perez L. 34.  et al. 2007. Hormonal and nutritional regulation of alternative CD36 transcripts in rat liver—a role for growth hormone in alternative exon usage. BMC Mol. Biol. 8:60 [Google Scholar]
  35. Cho W, Stahelin RV. 35.  2005. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34:119–51 [Google Scholar]
  36. Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN. 36.  1997. γ-Tocopherol traps mutagenic electrophiles such as NOX and complements α-tocopherol: physiological implications. PNAS 94:3217–22 [Google Scholar]
  37. Comitato R, Nesaretnam K, Leoni G, Ambra R, Canali R. 37.  et al. 2009. A novel mechanism of natural vitamin E tocotrienol activity: involvement of ERβ signal transduction. Am. J. Physiol. Endocrinol. Metab. 297:E427–37 [Google Scholar]
  38. Constantinou C, Papas A, Constantinou AI. 38.  2008. Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 123:739–52 [Google Scholar]
  39. Cook-Mills JM. 39.  2013. Isoforms of vitamin E differentially regulate PKC and inflammation: a review. J. Clin. Cell Immunol. 4:1000137 [Google Scholar]
  40. Cook-Mills JM, Abdala-Valencia H, Hartert T. 40.  2013. Two faces of vitamin E in the lung. Am. J. Respir. Crit. Care Med. 188:279–84 [Google Scholar]
  41. Coulter ID, Hardy ML, Morton SC, Hilton LG, Tu W. 41.  et al. 2006. Antioxidants vitamin C and vitamin E for the prevention and treatment of cancer. J. Gen. Intern. Med. 21:735–44 [Google Scholar]
  42. Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T. 42.  et al. 2006. Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J. Biol. Chem. 281:35686–98 [Google Scholar]
  43. Cursiefen C, Maruyama K, Bock F, Saban D, Sadrai Z. 43.  et al. 2011. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J. Exp. Med. 208:1083–92 [Google Scholar]
  44. Curwin AJ, Leblanc MA, Fairn GD, McMaster CR. 44.  2013. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14. PLOS ONE 8:e55388 [Google Scholar]
  45. Cuschieri J, Bulger E, Biligren J, Garcia I, Maier RV. 45.  2007. Vitamin E inhibits endotoxin-mediated transport of phosphatases to lipid rafts. Shock 27:19–24 [Google Scholar]
  46. De Pascale MC, Bassi AM, Patrone V, Villacorta L, Azzi A, Zingg JM. 46.  2006. Increased expression of transglutaminase-1 and PPARγ after vitamin E treatment in human keratinocytes. Arch. Biochem. Biophys. 447:97–106 [Google Scholar]
  47. Desrumaux C, Risold PY, Schroeder H, Deckert V, Masson D. 47.  et al. 2005. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J. 19:296–97 [Google Scholar]
  48. Devaraj S, Hugou I, Jialal I. 48.  2001. α-Tocopherol decreases CD36 expression in human monocyte-derived macrophages. J. Lipid Res. 42:521–27 [Google Scholar]
  49. Devaraj S, Jialal I. 49.  1999. α-Tocopherol decreases interleukin-1β release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler. Thromb. Vasc. Biol. 19:1125–33 [Google Scholar]
  50. Dolado I, Nebreda AR. 50.  2008. AKT and oxidative stress team up to kill cancer cells. Cancer Cell 14:427–29 [Google Scholar]
  51. Dolfi SC, Yang Z, Lee MJ, Guan F, Hong J, Yang CS. 51.  2013. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells. J. Agric. Food Chem. 61:8533–40 [Google Scholar]
  52. Donapaty S, Louis S, Horvath E, Kun J, Sebti SM, Malafa MP. 52.  2006. RRR-α-tocopherol succinate down-regulates oncogenic Ras signaling. Mol. Cancer Ther. 5:309–16 [Google Scholar]
  53. Dong LF, Low P, Dyason JC, Wang XF, Prochazka L. 53.  et al. 2008. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–35 [Google Scholar]
  54. Döring F, Rimbach G, Lodge JK. 54.  2004. In silico search for single nucleotide polymorphisms in genes important in vitamin E homeostasis. IUBMB Life 56:615–20 [Google Scholar]
  55. Douglas CE, Chan AC, Choy PC. 55.  1986. Vitamin E inhibits platelet phospholipase A2. Biochim. Biophys. Acta 876:639–45 [Google Scholar]
  56. Egger T, Hammer A, Wintersperger A, Goti D, Malle E, Sattler W. 56.  2001. Modulation of microglial superoxide production by α-tocopherol in vitro: attenuation of p67phox translocation by a protein phosphatase-dependent pathway. J. Neurochem. 79:1169–82 [Google Scholar]
  57. Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W. 57.  2003. Vitamin E (α-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem. J. 370:459–67 [Google Scholar]
  58. Elisia I, Kitts DD. 58.  2013. Different tocopherol isoforms vary in capacity to scavenge free radicals, prevent inflammatory response, and induce apoptosis in both adult- and fetal-derived intestinal epithelial cells. Biofactors 39:663–71 [Google Scholar]
  59. Elisia I, Kitts DD. 59.  2013. Modulation of NF-κB and Nrf2 control of inflammatory responses in FHs 74 Int cell line is tocopherol isoform-specific. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G940–49 [Google Scholar]
  60. Eyre NS, Cleland LG, Tandon NN, Mayrhofer G. 60.  2007. Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake. J. Lipid Res. 48:528–42 [Google Scholar]
  61. Fanali G, Fasano M, Ascenzi P, Zingg J-M, Azzi A. 61.  2013. α-Tocopherol binding to human serum albumin. 39294–303
  62. Febbraio M, Hajjar DP, Silverstein RL. 62.  2001. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108:785–91 [Google Scholar]
  63. Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R. 63.  et al. 2006. α-Tocopherol affects neuronal plasticity in adult rat dentate gyrus: the possible role of PKCδ. J. Neurobiol. 66:793–810 [Google Scholar]
  64. Finkel T. 64.  2003. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15:247–54 [Google Scholar]
  65. Frank GD, Eguchi S, Yamakawa T, Tanaka S, Inagami T, Motley ED. 65.  2000. Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal-regulated kinase by angiotensin II. Endocrinology 141:3120–26 [Google Scholar]
  66. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. 66.  2008. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler. Thromb. Vasc. Biol. 28:180–86 [Google Scholar]
  67. Fukunaga-Takenaka R, Shirai Y, Yagi K, Adachi N, Sakai N. 67.  et al. 2005. Importance of chroman ring and tyrosine phosphorylation in the subtype-specific translocation and activation of diacylglycerol kinase α by D-α-tocopherol. Genes Cells 10:311–19 [Google Scholar]
  68. Galli F, Stabile AM, Betti M, Conte C, Pistilli A. 68.  et al. 2004. The effect of α- and γ-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation. Arch. Biochem. Biophys. 423:97–102 [Google Scholar]
  69. Gao T, Furnari F, Newton AC. 69.  2005. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18:13–24 [Google Scholar]
  70. Gerss J, Kopcke W. 70.  2009. The questionable association of vitamin E supplementation and mortality—inconsistent results of different meta-analytic approaches. Cell Mol. Biol. (Noisy-le-grand) 55:Suppl.OL1111–20 [Google Scholar]
  71. Ghosh R, Bankaitis VA. 71.  2011. Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors 37:290–308 [Google Scholar]
  72. Gianello R, Libinaki R, Azzi A, Gavin PD, Negis Y. 72.  et al. 2005. α-Tocopheryl phosphate: a novel, natural form of vitamin E. Free Radic. Biol. Med. 39:970–76 [Google Scholar]
  73. Gills JJ, Dennis PA. 73.  2004. The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin. Investig. Drugs 13:787–97 [Google Scholar]
  74. Gohil K, Godzdanker R, O'Roark E, Schock BC, Kaini RR. 74.  et al. 2004. α-Tocopherol transfer protein deficiency in mice causes multi-organ deregulation of gene networks and behavioral deficits with age. Ann. N. Y. Acad. Sci. 1031:109–26 [Google Scholar]
  75. Goncalves A, Roi S, Nowicki M, Niot I, Reboul E. 75.  2014. Cluster-determinant 36 impacts on vitamin E postprandial response. Mol. Nutr. Food Res. 58:2297–306 [Google Scholar]
  76. González R, Sánchez de Medina F, Gálvez J, Rodríguez-Cabezas ME, Duarte J, Zarzuelo A. 76.  2001. Dietary vitamin E supplementation protects the rat large intestine from experimental inflammation. Int. J. Vitam. Nutr. Res. 71:243–50 [Google Scholar]
  77. Goti D, Hrzenjak A, Levak-Frank S, Frank S, van Der Westhuyzen DR. 77.  et al. 2001. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem. 76:498–508 [Google Scholar]
  78. Grammas P, Hamdheydari L, Benaksas EJ, Mou S, Pye QN. 78.  et al. 2004. Anti-inflammatory effects of tocopherol metabolites. Biochem. Biophys. Res. Commun. 319:1047–52 [Google Scholar]
  79. Grau A, Ortiz A. 79.  1998. Dissimilar protection of tocopherol isomers against membrane hydrolysis by phospholipase A2. Chem. Phys. Lipids 91:109–18 [Google Scholar]
  80. Grossman S, Waksman EG. 80.  1984. New aspects of the inhibition of soybean lipoxygenase by α-tocopherol. Evidence for the existence of a specific complex. Int. J. Biochem. 16:281–89 [Google Scholar]
  81. Han SN, Pang E, Zingg JM, Meydani SN, Meydani M, Azzi A. 81.  2010. Differential effects of natural and synthetic vitamin E on gene transcription in murine T lymphocytes. Arch. Biochem. Biophys. 495:49–55 [Google Scholar]
  82. Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P. 82.  et al. 2004. New perspectives on vitamin E: γ-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic. Biol. Med. 36:1–15 [Google Scholar]
  83. Hentati A, Deng HX, Hung WY, Nayer M, Ahmed MS. 83.  et al. 1996. Human α-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann. Neurol. 39:295–300 [Google Scholar]
  84. Hicke L. 84.  1999. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9:107–12 [Google Scholar]
  85. Hill MM, Hemmings BA. 85.  2002. Inhibition of protein kinase B/Akt. Implications for cancer therapy. Pharmacol. Ther. 93:243–51 [Google Scholar]
  86. Himmelfarb J, Kane J, McMonagle E, Zaltas E, Bobzin S. 86.  et al. 2003. Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney Int. 64:978–91 [Google Scholar]
  87. Hirano F, Tanaka H, Miura T, Hirano Y, Okamoto K. 87.  et al. 1998. Inhibition of NF-κB-dependent transcription of human immunodeficiency virus 1 promoter by a phosphodiester compound of vitamin C and vitamin E, EPC-K1. Immunopharmacology 39:31–38 [Google Scholar]
  88. Huang PH, Chuang HC, Chou CC, Wang H, Lee SL. 88.  et al. 2013. Vitamin E facilitates the inactivation of the kinase Akt by the phosphatase PHLPP1. Sci. Signal. 6:ra19 [Google Scholar]
  89. Huang PH, Wang D, Chuang HC, Wei S, Kulp SK, Chen CS. 89.  2009. α-Tocopheryl succinate and derivatives mediate the transcriptional repression of androgen receptor in prostate cancer cells by targeting the PP2A-JNK-Sp1-signaling axis. Carcinogenesis 30:1125–31 [Google Scholar]
  90. Huang ZG, Liang C, Han SF, Wu ZG. 90.  2012. Vitamin E ameliorates ox-LDL-induced foam cells formation through modulating the activities of oxidative stress-induced NF-κB pathway. Mol. Cell. Biochem. 363:11–19 [Google Scholar]
  91. Huebbe P, Lodge JK, Rimbach G. 91.  2010. Implications of apolipoprotein E genotype on inflammation and vitamin E status. Mol. Nutr. Food Res. 54:623–30 [Google Scholar]
  92. Hurley JH, Misra S. 92.  2000. Signaling and subcellular targeting by membrane-binding domains. Annu. Rev. Biophys. Biomol. Struct. 29:49–79 [Google Scholar]
  93. Ile KE, Schaaf G, Bankaitis VA. 93.  2006. Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling. Nat. Chem. Biol. 2:576–83 [Google Scholar]
  94. Inoue M, Itoh H, Tanaka T, Chun TH, Doi K. 94.  et al. 2001. Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator–activated receptor-γ. Arterioscler. Thromb. Vasc. Biol. 21:560–66 [Google Scholar]
  95. Iqbal J, Hussain MM. 95.  2009. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296:E1183–94 [Google Scholar]
  96. Irani K. 96.  2000. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res. 87:179–83 [Google Scholar]
  97. Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. 97.  2007. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J. Biol. Chem. 282:15404–15 [Google Scholar]
  98. Jia L, Yu W, Wang P, Li J, Sanders BG, Kline K. 98.  2008. Critical roles for JNK, c-Jun, and Fas/FasL-signaling in vitamin E analog-induced apoptosis in human prostate cancer cells. Prostate 68:427–41 [Google Scholar]
  99. Jialal I, Devaraj S. 99.  2003. Antioxidants and atherosclerosis: Don't throw out the baby with the bath water. Circulation 107:926–28 [Google Scholar]
  100. Jiang Q. 100.  2014. Natural forms of vitamin E: metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy. Free Radic. Biol. Med. 72:76–90 [Google Scholar]
  101. Jiang Q, Ames BN. 101.  2003. γ-Tocopherol, but not α-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 17:816–22 [Google Scholar]
  102. Jiang Q, Christen S, Shigenaga MK, Ames BN. 102.  2001. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74:714–22 [Google Scholar]
  103. Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN. 103.  2000. γ-Tocopherol and its major metabolite, in contrast to α-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. PNAS 97:11494–99 [Google Scholar]
  104. Jiang XC, Tall AR, Qin S, Lin M, Schneider M. 104.  et al. 2002. Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E. J. Biol. Chem. 277:31850–56 [Google Scholar]
  105. Jiang Z, Yin X, Jiang Q. 105.  2011. Natural forms of vitamin E and 13′-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. J. Immunol. 186:1173–79 [Google Scholar]
  106. Johnykutty S, Tang P, Zhao H, Hicks DG, Yeh S, Wang X. 106.  2009. Dual expression of α-tocopherol-associated protein and estrogen receptor in normal/benign human breast luminal cells and the downregulation of α-tocopherol-associated protein in estrogen-receptor-positive breast carcinomas. Mod. Pathol. 22:770–75 [Google Scholar]
  107. Kabuto H, Yokoi I, Iwata-Ichikawa E, Ogawa N. 107.  1999. EPC-K1, a hydroxyl radical scavenger, prevents 6-hydroxydopamine-induced dopamine depletion in the mouse striatum by up-regulation of catalase activity. Neurochem. Res. 24:1543–48 [Google Scholar]
  108. Kagan VE, Bakalova RA, Serbinova EE, Stoytchev TS. 108.  1990. Fluorescence measurements of incorporation and hydrolysis of tocopherol and tocopheryl esters in biomembranes. Methods Enzymol. 186:355–67 [Google Scholar]
  109. Kaneai N, Arai M, Takatsu H, Fukui K, Urano S. 109.  2012. Vitamin E inhibits oxidative stress-induced denaturation of nerve terminal proteins involved in neurotransmission. J. Alzheimer's Dis. 28:183–89 [Google Scholar]
  110. Kannappan R, Gupta SC, Kim JH, Aggarwal BB. 110.  2012. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr. 7:43–52 [Google Scholar]
  111. Kempna P, Reiter E, Arock M, Azzi A, Zingg JM. 111.  2004. Inhibition of HMC-1 mast cell proliferation by vitamin E: involvement of the protein kinase B pathway. J. Biol. Chem. 279:50700–9 [Google Scholar]
  112. Kempna P, Ricciarelli R, Azzi A, Zingg JM. 112.  2010. Alternative splicing and gene polymorphism of the human TAP3/SEC14L4 gene. Mol. Biol. Rep. 37:3503–8 [Google Scholar]
  113. Kempna P, Zingg JM, Ricciarelli R, Hierl M, Saxena S, Azzi A. 113.  2003. Cloning of novel human SEC14p-like proteins: cellular localization, ligand binding and functional properties. Free Radic. Biol. Med. 34:1458–72 [Google Scholar]
  114. Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW. 114.  et al. 2003. Molecular basis of vitamin E action. Tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J. Biol. Chem. 278:43508–15 [Google Scholar]
  115. Klein A, Deckert V, Schneider M, Dutrillaux F, Hammann A. 115.  et al. 2006. α-Tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice. Arterioscler. Thromb. Vasc. Biol. 26:2160–67 [Google Scholar]
  116. Kline K, Yu W, Sanders BG. 116.  2004. Vitamin E and breast cancer. J. Nutr. 134:3458–62S [Google Scholar]
  117. Kolleck I, Schlame M, Fechner H, Looman AC, Wissel H, Rustow B. 117.  1999. HDL is the major source of vitamin E for type II pneumocytes. Free Radic. Biol. Med. 27:882–90 [Google Scholar]
  118. Kono N, Arai H. 118.  2015. Intracellular transport of fat-soluble vitamins A and E. Traffic 16:19–34 [Google Scholar]
  119. Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y. 119.  et al. 2013. Impaired α-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 340:1106–10 [Google Scholar]
  120. Kostner GM, Oettl K, Jauhiainen M, Ehnholm C, Esterbauer H, Dieplinger H. 120.  1995. Human plasma phospholipid transfer protein accelerates exchange/transfer of alpha-tocopherol between lipoproteins and cells. Biochem. J. 305:659–67 [Google Scholar]
  121. Koya D, Lee IK, Ishii H, Kanoh H, King GL. 121.  1997. Prevention of glomerular dysfunction in diabetic rats by treatment with d-α-tocopherol. J. Am. Soc. Nephrol. 8:426–35 [Google Scholar]
  122. Kyaw M, Yoshizumi M, Tsuchiya K, Izawa Y, Kanematsu Y, Tamaki T. 122.  2004. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases. Acta Pharmacol. Sin. 25:977–85 [Google Scholar]
  123. Landes N, Pfluger P, Kluth D, Birringer M, Ruhl R. 123.  et al. 2003. Vitamin E activates gene expression via the pregnane X receptor. Biochem. Pharmacol. 65:269–73 [Google Scholar]
  124. Lecompte S, Szabo de Edelenyi F, Goumidi L, Maiani G, Moschonis G. 124.  et al. 2011. Polymorphisms in the CD36/TAT gene are associated with plasma vitamin E concentrations in humans. Am. J. Clin. Nutr. 93:644–51 [Google Scholar]
  125. Lemaire-Ewing S, Desrumaux C, Neel D, Lagrost L. 125.  2010. Vitamin E transport, membrane incorporation and cell metabolism: Is α-tocopherol in lipid rafts an oar in the lifeboat?. Mol. Nutr. Food Res. 54:631–40 [Google Scholar]
  126. Lepley RA, Muskardin DT, Fitzpatrick FA. 126.  1996. Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. J. Biol. Chem. 271:6179–84 [Google Scholar]
  127. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. 127.  2003. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 22:5501–10 [Google Scholar]
  128. Libinaki R, Tesanovic S, Heal A, Nikolovski B, Vinh A. 128.  et al. 2010. The effect of tocopheryl phosphate on key biomarkers of inflammation: implication in the reduction of atherosclerosis progression in a hypercholesterolemic rabbit model. Clin. Exp. Pharmacol. Physiol. 37:587–92 [Google Scholar]
  129. Lirangi M, Meydani M, Zingg JM, Azzi A. 129.  2012. α-Tocopheryl-phosphate regulation of gene expression in preadipocytes and adipocytes. Biofactors 38:450–57 [Google Scholar]
  130. Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J. 130.  et al. 2014. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 20:193–201 [Google Scholar]
  131. Ma X, Bacci S, Mlynarski W, Gottardo L, Soccio T. 131.  et al. 2004. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 13:2197–205 [Google Scholar]
  132. Mahoney CW, Azzi A. 132.  1988. Vitamin E inhibits protein kinase C activity. Biochem. Biophys. Res. Commun. 154:694–97 [Google Scholar]
  133. Mardones P, Rigotti A. 133.  2004. Cellular mechanisms of vitamin E uptake: relevance in α-tocopherol metabolism and potential implications for disease. J. Nutr. Biochem. 15:252–60 [Google Scholar]
  134. Mardones P, Strobel P, Miranda S, Leighton F, Quinones V. 134.  et al. 2002. α-Tocopherol metabolism is abnormal in scavenger receptor class B type I (SR-BI)-deficient mice. J. Nutr. 132:443–49 [Google Scholar]
  135. Marmor MD, Yarden Y. 135.  2004. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23:2057–70 [Google Scholar]
  136. Martin-Nizard F, Boullier A, Fruchart JC, Duriez P. 136.  1998. Alpha-tocopherol but not beta-tocopherol inhibits thrombin-induced PKC activation and endothelin secretion in endothelial cells. J. Cardiovasc. Risk 5:339–45 [Google Scholar]
  137. Maziere C, Conte MA, Maziere JC. 137.  2001. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic. Biol. Med. 31:1334–40 [Google Scholar]
  138. McCary CA, Yoon Y, Panagabko C, Cho W, Atkinson J, Cook-Mills JM. 138.  2012. Vitamin E isoforms directly bind PKCα and differentially regulate activation of PKCα. Biochem. J. 441:189–98 [Google Scholar]
  139. McLaughlin S, Murray D. 139.  2005. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–11 [Google Scholar]
  140. Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK. 140.  2004. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J. Biol. Chem. 279:37716–25 [Google Scholar]
  141. Meydani SN, Han SN, Wu D. 141.  2005. Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol. Rev. 205:269–84 [Google Scholar]
  142. Meyenberg A, Goldblum D, Zingg JM, Azzi A, Nesaretnam K. 142.  et al. 2005. Tocotrienol inhibits proliferation of human Tenon's fibroblasts in vitro: a comparative study with vitamin E forms and mitomycin C. Graefes Arch. Clin. Exp. Ophthalmol. 243:1263–71 [Google Scholar]
  143. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. 143.  2005. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142:37–46 [Google Scholar]
  144. Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R. 144.  et al. 2008. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler. Thromb. Vasc. Biol. 28:341–47 [Google Scholar]
  145. Misra S, Miller GJ, Hurley JH. 145.  2001. Recognizing phosphatidylinositol 3-phosphate. Cell 107:559–62 [Google Scholar]
  146. Miyazawa T, Shibata A, Sookwong P, Kawakami Y, Eitsuka T. 146.  et al. 2009. Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol). J. Nutr. Biochem. 20:79–86 [Google Scholar]
  147. Mo H, Elson CE. 147.  2004. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood) 229:567–85 [Google Scholar]
  148. Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A. 148.  et al. 2014. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res. Rev. 14:81–101 [Google Scholar]
  149. Mokashi V, Singh DK, Porter TD. 149.  2005. Supernatant protein factor stimulates HMG-CoA reductase in cell culture and in vitro. Arch. Biochem. Biophys. 433:474–80 [Google Scholar]
  150. Molano A, Meydani SN. 150.  2012. Vitamin E, signalosomes and gene expression in T cells. Mol. Aspects Med. 33:55–62 [Google Scholar]
  151. Morley S, Thakur V, Danielpour D, Parker R, Arai H. 151.  et al. 2010. Tocopherol transfer protein sensitizes prostate cancer cells to vitamin E. J. Biol. Chem. 285:35578–89 [Google Scholar]
  152. Munteanu A, Ricciarelli R, Massone S, Zingg JM. 152.  2007. Modulation of proteasome activity by vitamin E in THP-1 monocytes. IUBMB Life 59:771–80 [Google Scholar]
  153. Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM. 153.  2006. Antagonistic effects of oxidized low density lipoprotein and α-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase b and peroxisome proliferator-activated receptor-γ. J. Biol. Chem. 281:6489–97 [Google Scholar]
  154. Munteanu A, Zingg JM. 154.  2007. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol. Aspects Med. 28:538–90 [Google Scholar]
  155. Munteanu A, Zingg JM, Ogru E, Libinaki R, Gianello R. 155.  et al. 2004. Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: relevance to atherosclerosis and inflammation. Biochem. Biophys. Res. Commun. 318:311–16 [Google Scholar]
  156. Munteanu A, Zingg JM, Ricciarelli R, Azzi A. 156.  2005. CD36 overexpression in ritonavir-treated THP-1 cells is reversed by α-tocopherol. Free Radic. Biol. Med. 38:1047–56 [Google Scholar]
  157. Murray ED Jr, Wechter WJ, Kantoci D, Wang WH, Pham T. 157.  et al. 1997. Endogenous natriuretic factors 7: biospecificity of a natriuretic γ-tocopherol metabolite LLU-α. J. Pharmacol. Exp. Ther. 282:657–62 [Google Scholar]
  158. Mustacich DJ, Leonard SW, Devereaux MW, Sokol RJ, Traber MG. 158.  2006. α-Tocopherol regulation of hepatic cytochrome P450s and ABC transporters in rats. Free Radic. Biol. Med. 41:1069–78 [Google Scholar]
  159. Mustacich DJ, Vo AT, Elias VD, Payne K, Sullivan L. 159.  et al. 2007. Regulatory mechanisms to control tissue α-tocopherol. Free Radic. Biol. Med. 43:610–18 [Google Scholar]
  160. Myhre O, Sterri SH, Bogen IL, Fonnum F. 160.  2004. Erk1/2 phosphorylation and reactive oxygen species formation via nitric oxide and Akt-1/Raf-1 crosstalk in cultured rat cerebellar granule cells exposed to the organic solvent 1,2,4-trimethylcyclohexane. Toxicol. Sci. 80:296–303 [Google Scholar]
  161. Nakagawa K, Eitsuka T, Inokuchi H, Miyazawa T. 161.  2004. DNA chip analysis of comprehensive food function: inhibition of angiogenesis and telomerase activity with unsaturated vitamin E, tocotrienol. Biofactors 21:5–10 [Google Scholar]
  162. Nakayama S, Katoh EM, Tsuzuki T, Kobayashi S. 162.  2003. Protective effect of α-tocopherol-6-O-phosphate against ultraviolet B-induced damage in cultured mouse skin. J. Invest. Dermatol. 121:406–11 [Google Scholar]
  163. Narushima K, Takada T, Yamanashi Y, Suzuki H. 163.  2008. Niemann-Pick C1-like 1 mediates α-tocopherol transport. Mol. Pharmacol. 74:42–49 [Google Scholar]
  164. Negis Y, Aytan N, Ozer N, Ogru E, Libinaki R. 164.  et al. 2006. The effect of tocopheryl phosphates on atherosclerosis progression in rabbits fed with a high cholesterol diet. Arch. Biochem. Biophys. 450:63–66 [Google Scholar]
  165. Negis Y, Zingg JM, Ogru E, Gianello R, Libinaki R, Azzi A. 165.  2005. On the existence of cellular tocopheryl phosphate, its synthesis, degradation and cellular roles: a hypothesis. IUBMB Life 57:23–25 [Google Scholar]
  166. Neuzil J, Dong LF, Wang XF, Zingg JM. 166.  2006. Tocopherol-associated protein-1 accelerates apoptosis induced by α-tocopheryl succinate in mesothelioma cells. Biochem. Biophys. Res. Commun. 343:1113–7 [Google Scholar]
  167. Neuzil J, Weber T, Schroder A, Lu M, Ostermann G. 167.  et al. 2001. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J. 15:403–15 [Google Scholar]
  168. Ni J, Pang ST, Yeh S. 168.  2007. Differential retention of alpha-vitamin E is correlated with its transporter gene expression and growth inhibition efficacy in prostate cancer cells. Prostate 67:463–71 [Google Scholar]
  169. Ni J, Wen X, Yao J, Chang HC, Yin Y. 169.  et al. 2005. Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway. Cancer Res. 65:9807–16 [Google Scholar]
  170. Nicod N, Parker RS. 170.  2013. Vitamin E secretion by Caco-2 monolayers to APOA1, but not to HDL, is vitamer selective. J. Nutr. 143:1565–72 [Google Scholar]
  171. Nishio K, Ishida N, Saito Y, Ogawa-Akazawa Y, Shichiri M. 171.  et al. 2011. α-Tocopheryl phosphate: uptake, hydrolysis, and antioxidant action in cultured cells and mouse. Free Radic. Biol. Med. 50:1794–800 [Google Scholar]
  172. Nitti M, d'Abramo C, Traverso N, Verzola D, Garibotto G. 172.  et al. 2005. Central role of PKCδ in glycoxidation-dependent apoptosis of human neurons. Free Radic. Biol. Med. 38:846–56 [Google Scholar]
  173. Noel SE, Lai CQ, Mattei J, Parnell LD, Ordovas JM, Tucker KL. 173.  2010. Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 211:210–15 [Google Scholar]
  174. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML. 174.  et al. 2008. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14:458–70 [Google Scholar]
  175. Nogueira-Pedro A, Barbosa CM, Segreto HR, Lungato L, D'Almeida V. 175.  et al. 2011. α-Tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J. Leukocyte Biol. 90:1111–17 [Google Scholar]
  176. Numakawa Y, Numakawa T, Matsumoto T, Yagasaki Y, Kumamaru E. 176.  et al. 2006. Vitamin E protected cultured cortical neurons from oxidative stress-induced cell death through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J. Neurochem. 97:1191–202 [Google Scholar]
  177. Ogier N, Klein A, Deckert V, Athias A, Bessede G. 177.  et al. 2007. Cholesterol accumulation is increased in macrophages of phospholipid transfer protein-deficient mice: normalization by dietary α-tocopherol supplementation. Arterioscler. Thromb. Vasc. Biol. 27:2407–12 [Google Scholar]
  178. Okamoto K, Tanaka H, Makino Y, Makino I. 178.  1998. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzo pyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem. Pharmacol. 56:79–86 [Google Scholar]
  179. Olivier M, Bott R, Frisdal E, Nowicki M, Plengpanich W. 179.  et al. 2014. ABCG1 is involved in vitamin E efflux. Biochim. Biophys. Acta 1841:1741–51 [Google Scholar]
  180. Oram JF, Vaughan AM, Stocker R. 180.  2001. ATP-binding cassette transporter A1 mediates cellular secretion of α-tocopherol. J. Biol. Chem. 276:39898–902 [Google Scholar]
  181. Packer L, Weber SU, Rimbach G. 181.  2001. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 131:369–73S [Google Scholar]
  182. Pan J, Chang Q, Wang X, Son Y, Zhang Z. 182.  et al. 2010. Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem. Res. Toxicol. 23:568–77 [Google Scholar]
  183. Panagabko C, Morley S, Hernandez M, Cassolato P, Gordon H. 183.  et al. 2003. Ligand specificity in the CRAL-TRIO protein family. Biochemistry 42:6467–74 [Google Scholar]
  184. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ. 184.  1993. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 268:11230–38 [Google Scholar]
  185. Partovian C, Simons M. 185.  2004. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell. Signal. 16:951–57 [Google Scholar]
  186. Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJ. 186.  1992. Hypocholesterolemic activity of synthetic and natural tocotrienols. J. Med. Chem. 35:3595–606 [Google Scholar]
  187. Pentland AP, Morrison AR, Jacobs SC, Hruza LL, Hebert JS, Packer L. 187.  1992. Tocopherol analogs suppress arachidonic acid metabolism via phospholipase inhibition. J. Biol. Chem. 267:15578–84 [Google Scholar]
  188. Porter TD. 188.  2003. Supernatant protein factor and tocopherol-associated protein: an unexpected link between cholesterol synthesis and vitamin E (review). J. Nutr. Biochem. 14:3–6 [Google Scholar]
  189. Qin S, Chock PB. 189.  2003. Implication of phosphatidylinositol 3-kinase membrane recruitment in hydrogen peroxide-induced activation of PI3K and Akt. Biochemistry 42:2995–3003 [Google Scholar]
  190. Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C. 190.  et al. 2006. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem. 281:4739–45 [Google Scholar]
  191. Reddanna P, Rao MK, Reddy CC. 191.  1985. Inhibition of 5-lipoxygenase by vitamin E. FEBS Lett. 193:39–43 [Google Scholar]
  192. Reiter E, Azzi A, Zingg JM. 192.  2007. Enhanced anti-proliferative effects of combinatorial treatment of delta-tocopherol and resveratrol in human HMC-1 cells. Biofactors 30:67–77 [Google Scholar]
  193. Ren B, Hale J, Srikanthan S, Silverstein RL. 193.  2011. Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 117:6036–45 [Google Scholar]
  194. Ricciarelli R, Argellati F, Pronzato MA, Domenicotti C. 194.  2007. Vitamin E and neurodegenerative disease. Mol. Aspects Med. 28:591–606 [Google Scholar]
  195. Ricciarelli R, Azzi A. 195.  1998. Regulation of recombinant PKCα activity by protein phosphatase 1 and protein phosphatase 2A. Arch. Biochem. Biophys. 355:197–200 [Google Scholar]
  196. Ricciarelli R, Tasinato A, Clement S, Ozer NK, Boscoboinik D, Azzi A. 196.  1998. α-Tocopherol specifically inactivates cellular protein kinase Cα by changing its phosphorylation state. Biochem. J. 334:243–49 [Google Scholar]
  197. Ricciarelli R, Zingg JM, Azzi A. 197.  2000. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 102:82–87 [Google Scholar]
  198. Rigotti A. 198.  2007. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects Med. 28:423–36 [Google Scholar]
  199. Rimbach G, Moehring J, Huebbe P, Lodge JK. 199.  2010. Gene-regulatory activity of α-tocopherol. Molecules 15:1746–61 [Google Scholar]
  200. Rizzo MA, Shome K, Watkins SC, Romero G. 200.  2000. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J. Biol. Chem. 275:23911–18 [Google Scholar]
  201. Roberts LJ 2nd, Oates JA, Linton MF, Fazio S, Meador BP. 201.  et al. 2007. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic. Biol. Med. 43:1388–93 [Google Scholar]
  202. Robey RB, Hay N. 202.  2009. Is Akt the “Warburg kinase”? Akt-energy metabolism interactions and oncogenesis. Semin. Cancer Biol. 19:25–31 [Google Scholar]
  203. Robinson I, de Serna DG, Gutierrez A, Schade DS. 203.  2006. Vitamin E in humans: an explanation of clinical trial failure. Endocr. Pract. 12:576–82 [Google Scholar]
  204. Royer MC, Lemaire-Ewing S, Desrumaux C, Monier S, Pais de Barros JP. 204.  et al. 2009. 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for α-tocopherol with consequences on cell death. J. Biol. Chem. 284:15826–34 [Google Scholar]
  205. Saito K, Tautz L, Mustelin T. 205.  2007. The lipid-binding SEC14 domain. Biochim. Biophys. Acta 1771:719–26 [Google Scholar]
  206. Sakai T, Okano T, Makino H, Tsudzuki T. 206.  1976. Activation of cyclic AMP phosphodiesterase by a new vitamin E derivative. J. Cyclic Nucleotide Res. 2:163–70 [Google Scholar]
  207. Salinthone S, Kerns AR, Tsang V, Carr DW. 207.  2013. α-Tocopherol (vitamin E) stimulates cyclic AMP production in human peripheral mononuclear cells and alters immune function. Mol. Immunol. 53:173–78 [Google Scholar]
  208. Sato Y, Arai H, Miyata A, Tokita S, Yamamoto K. 208.  et al. 1993. Primary structure of α-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J. Biol. Chem. 268:17705–10 [Google Scholar]
  209. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE. 209.  et al. 2008. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol. Cell 29:191–206 [Google Scholar]
  210. Scheid MP, Woodgett JR. 210.  2003. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 546:108–12 [Google Scholar]
  211. Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M. 211.  et al. 2005. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor γ ligand. PNAS 102:2340–45 [Google Scholar]
  212. Sen CK, Khanna S, Roy S. 212.  2006. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 78:2088–98 [Google Scholar]
  213. Sen CK, Khanna S, Roy S, Packer L. 213.  2000. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60c-Src kinase activation and death of HT4 neuronal cells. J. Biol. Chem. 275:13049–55 [Google Scholar]
  214. Shah S, Sylvester PW. 214.  2004. Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp. Biol. Med. (Maywood) 229:745–55 [Google Scholar]
  215. Shah SJ, Sylvester PW. 215.  2005. γ-Tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor κB activity. Exp. Biol. Med. (Maywood) 230:235–41 [Google Scholar]
  216. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B. 215a.  et al. 2013. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14:812–20 [Google Scholar]
  217. Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. 216.  2014. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism 63:875–86 [Google Scholar]
  218. Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC. 217.  et al. 2006. α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of BCL-XL/BCL-2 function. J. Biol. Chem. 281:11819–25 [Google Scholar]
  219. Shibata A, Nakagawa K, Sookwong P, Tsuduki T, Oikawa S, Miyazawa T. 218.  2009. δ-Tocotrienol suppresses VEGF induced angiogenesis whereas α-tocopherol does not. J. Agric. Food Chem. 57:8696–704 [Google Scholar]
  220. Shibata N, Jishage K, Arita M, Watanabe M, Kawase Y. 219.  et al. 2006. Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB J. 20:2642–44 [Google Scholar]
  221. Shin-Kang S, Ramsauer VP, Lightner J, Chakraborty K, Stone W. 220.  et al. 2011. Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radic. Biol. Med. 51:1164–74 [Google Scholar]
  222. Simonsen A, Stenmark H. 221.  2001. PX domains: attracted by phosphoinositides. Nat. Cell Biol. 3:E179–82 [Google Scholar]
  223. Sommer D, Coleman S, Swanson SA, Stemmer PM. 222.  2002. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch. Biochem. Biophys. 404:271–78 [Google Scholar]
  224. Stolzing A, Widmer R, Jung T, Voss P, Grune T. 223.  2006. Tocopherol-mediated modulation of age-related changes in microglial cells: turnover of extracellular oxidized protein material. Free Radic. Biol. Med. 40:2126–35 [Google Scholar]
  225. Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA. 224.  et al. 2005. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170:477–85 [Google Scholar]
  226. Suarna C, Wu BJ, Choy K, Mori T, Croft K. 225.  et al. 2006. Protective effect of vitamin E supplements on experimental atherosclerosis is modest and depends on preexisting vitamin E deficiency. Free Radic. Biol. Med. 41:722–30 [Google Scholar]
  227. Sylvester PW, Nachnani A, Shah S, Briski KP. 226.  2002. Role of GTP-binding proteins in reversing the antiproliferative effects of tocotrienols in preneoplastic mammary epithelial cells. Asia Pac. J. Clin. Nutr. 11:Suppl. 7S452–59 [Google Scholar]
  228. Sylvester PW, Shah SJ. 227.  2005. Mechanisms mediating the antiproliferative and apoptotic effects of vitamin E in mammary cancer cells. Front. Biosci. 10:699–709 [Google Scholar]
  229. Sylvester PW, Shah SJ, Samant GV. 228.  2005. Intracellular signaling mechanisms mediating the antiproliferative and apoptotic effects of gamma-tocotrienol in neoplastic mammary epithelial cells. J. Plant Physiol. 162:803–10 [Google Scholar]
  230. Takayama H, Hamner CE, Caccitolo JA, Hisamochi K, Pearson PJ, Schaff HV. 229.  2003. A novel antioxidant, EPC-K1, stimulates endothelial nitric oxide production and scavenges hydroxyl radicals. Circ. J. 67:1046–52 [Google Scholar]
  231. Tappeiner C, Meyenberg A, Goldblum D, Mojon D, Zingg JM. 230.  et al. 2010. Antifibrotic effects of tocotrienols on human Tenon's fibroblasts. Graefes Arch. Clin. Exp. Ophthalmol. 248:65–71 [Google Scholar]
  232. Terasawa Y, Ladha Z, Leonard SW, Morrow JD, Newland D. 231.  et al. 2000. Increased atherosclerosis in hyperlipidemic mice deficient in α-tocopherol transfer protein and vitamin E. PNAS 97:13830–34 [Google Scholar]
  233. Teruel MN, Meyer T. 232.  2000. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103:181–84 [Google Scholar]
  234. Tiwary R, Yu W, deGraffenried LA, Sanders BG, Kline K. 233.  2011. Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer. Breast Cancer Res. 13:R120 [Google Scholar]
  235. Tiwary R, Yu W, Sanders BG, Kline K. 234.  2011. α-TEA cooperates with MEK or mTOR inhibitors to induce apoptosis via targeting IRS/PI3K pathways. Br. J. Cancer 104:101–9 [Google Scholar]
  236. Traber MG. 235.  2010. Regulation of xenobiotic metabolism, the only signaling function of α-tocopherol?. Mol. Nutr. Food Res. 54:661–68 [Google Scholar]
  237. Traber MG, Atkinson J. 236.  2007. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43:4–15 [Google Scholar]
  238. Tran K, Chan AC. 237.  1990. R,R,R-α-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochim. Biophys. Acta 1043:189–97 [Google Scholar]
  239. Tran K, Proulx PR, Chan AC. 238.  1994. Vitamin E suppresses diacylglycerol (DAG) level in thrombin-stimulated endothelial cells through an increase of DAG kinase activity. Biochim. Biophys. Acta 1212:193–202 [Google Scholar]
  240. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S. 239.  et al. 2006. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J. Biol. Chem. 281:31002–11 [Google Scholar]
  241. Uchida T, Nomura S, Ichikawa T, Abe C, Ikeda S. 240.  2011. Tissue distribution of vitamin E metabolites in rats after oral administration of tocopherol or tocotrienol. J. Nutr. Sci. Vitaminol. (Tokyo) 57:326–32 [Google Scholar]
  242. Ulatowski L, Manor D. 241.  2013. Vitamin E trafficking in neurologic health and disease. Annu. Rev. Nutr. 33:87–103 [Google Scholar]
  243. Upston JM, Kritharides L, Stocker R. 242.  2003. The role of vitamin E in atherosclerosis. Prog. Lipid Res. 42:405–22 [Google Scholar]
  244. Varga Z, Kosaras E, Komodi E, Katko M, Karpati I. 243.  et al. 2008. Effects of tocopherols and 2,2′-carboxyethyl hydroxychromans on phorbol-ester-stimulated neutrophils. J. Nutr. Biochem. 19:320–27 [Google Scholar]
  245. Vejux A, Guyot S, Montange T, Riedinger JM, Kahn E, Lizard G. 244.  2009. Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J. Nutr. Biochem. 20:45–61 [Google Scholar]
  246. Venugopal SK, Devaraj S, Jialal I. 245.  2004. RRR-α-tocopherol decreases the expression of the major scavenger receptor, CD36, in human macrophages via inhibition of tyrosine kinase (Tyk2). Atherosclerosis 175:213–20 [Google Scholar]
  247. Venugopal SK, Devaraj S, Yang T, Jialal I. 246.  2002. α-Tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-α. Diabetes 51:3049–54 [Google Scholar]
  248. Villacorta L, Graca-Souza AV, Ricciarelli R, Zingg JM, Azzi A. 247.  2003. α-Tocopherol induces expression of connective tissue growth factor and antagonizes tumor necrosis factor-α-mediated downregulation in human smooth muscle cells. Circ. Res. 92:104–10 [Google Scholar]
  249. Voegele AF, Jerkovic L, Wellenzohn B, Eller P, Kronenberg F. 248.  et al. 2002. Characterization of the vitamin E-binding properties of human plasma afamin. Biochemistry 41:14532–38 [Google Scholar]
  250. Wallert M, Mosig S, Rennert K, Funke H, Ristow M. 249.  et al. 2014. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro. Free Radic. Biol. Med. 68:43–51 [Google Scholar]
  251. Wallert M, Schmolz L, Galli F, Birringer M, Lorkowski S. 250.  2014. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol. 2:495–503 [Google Scholar]
  252. Wang F, Wang T, Lai J, Li M, Zou C. 251.  2006. Vitamin E inhibits hemolysis induced by hemin as a membrane stabilizer. Biochem. Pharmacol. 71:799–805 [Google Scholar]
  253. Wang Q, Theriault A, Gapor A, Adeli K. 252.  1998. Effects of tocotrienol on the intracellular translocation and degradation of apolipoprotein B: possible involvement of a proteasome independent pathway. Biochem. Biophys. Res. Commun. 246:640–43 [Google Scholar]
  254. Wang X, Quinn PJ. 253.  2000. The location and function of vitamin E in membranes (review). Mol. Membr. Biol. 17:143–56 [Google Scholar]
  255. Warfel NA, Newton AC. 254.  2012. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling. J. Biol. Chem. 287:3610–16 [Google Scholar]
  256. Wei Q, Xia Y. 255.  2006. Proteasome inhibition down-regulates endothelial nitric-oxide synthase phosphorylation and function. J. Biol. Chem. 281:21652–59 [Google Scholar]
  257. Wei T, Chen C, Hou J, Zhao B, Xin W, Mori A. 256.  1999. The antioxidant EPC-K1 attenuates NO-induced mitochondrial dysfunction, lipid peroxidation and apoptosis in cerebellar granule cells. Toxicology 134:117–26 [Google Scholar]
  258. Whiteman EL, Cho H, Birnbaum MJ. 257.  2002. Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13:444–51 [Google Scholar]
  259. Wilankar C, Khan NM, Checker R, Sharma D, Patwardhan R. 258.  et al. 2011. γ-Tocotrienol induces apoptosis in human T cell lymphoma through activation of both intrinsic and extrinsic pathways. Curr. Pharmac. Des. 17:2176–89 [Google Scholar]
  260. Wright ME, Peters U, Gunter MJ, Moore SC, Lawson KA. 259.  et al. 2009. Association of variants in two vitamin E transport genes with circulating vitamin E concentrations and prostate cancer risk. Cancer Res. 69:1429–38 [Google Scholar]
  261. Wu Y, Zu K, Ni J, Yeh S, Kasi D. 260.  et al. 2004. Cellular and molecular effects of α-tocopheryloxybutyrate: lessons for the design of vitamin E analog for cancer prevention. Anticancer Res. 24:3795–802 [Google Scholar]
  262. Yanamala N, Kapralov AA, Djukic M, Peterson J, Mao G. 261.  et al. 2014. Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E: tocopherol-succinate and tocopherol-phosphate. J. Biol. Chem. 289:32488–98 [Google Scholar]
  263. Yang CS, Suh N, Kong AN. 262.  2012. Does vitamin E prevent or promote cancer?. Cancer Prev. Res. 5:701–5 [Google Scholar]
  264. Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA. 263.  2004. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. 32:350–54 [Google Scholar]
  265. Yano T, Yajima S, Hagiwara K, Kumadaki I, Yano Y. 264.  et al. 2000. Vitamin E inhibits cell proliferation and the activation of extracellular signal-regulated kinase during the promotion phase of lung tumorigenesis irrespective of antioxidative effect. Carcinogenesis 21:2129–33 [Google Scholar]
  266. Yu W, Shun MC, Anderson K, Chen H, Sanders BG, Kline K. 265.  2006. α-TEA inhibits survival and enhances death pathways in cisplatin sensitive and resistant human ovarian cancer cells. Apoptosis 11:1813–23 [Google Scholar]
  267. Zheng T, Li W, Zhang A, Altura BT, Altura BM. 266.  1998. α-Tocopherol prevents ethanol-induced elevation of [Ca2+]i in cultured canine cerebral vascular smooth muscle cells. Neurosci. Lett. 245:17–20 [Google Scholar]
  268. Zingg JM. 267.  2006. Modulation of signal transduction by vitamin E. Proc. XIII Congr. Soc. Free Radic. Res. Intl., Davos, Switz.47–60 Bologna: Medimond Intl. Proc. [Google Scholar]
  269. Zingg JM. 268.  2007. Modulation of signal transduction by vitamin E. Mol. Aspects Med. 28:481–506 [Google Scholar]
  270. Zingg JM. 269.  2007. Molecular and cellular activities of vitamin E analogues. Mini Rev. Med. Chem. 7:543–58 [Google Scholar]
  271. Zingg JM. 270.  2012. Vitamin E and disease risk: Research focus turns on genetic polymorphisms and molecular mechanisms. Vitam. Trace Elem. 1:3 [Google Scholar]
  272. Zingg JM, Azzi A. 271.  2004. Non-antioxidant activities of vitamin E. Curr. Med. Chem. 11:1113–33 [Google Scholar]
  273. Zingg JM, Azzi A. 272.  2006. Molecular activities of vitamin E. Phytochemicals: Nutrient-Gene Interactions MS Meskin, WR Bidlack, RK Randoph 175–206 Boca Raton, FL: Taylor & Francis [Google Scholar]
  274. Zingg JM, Azzi A. 273.  2009. Comment re: vitamin E transport gene variants and prostate cancer. Cancer Res. 69:6756 [Google Scholar]
  275. Zingg JM, Azzi A, Meydani M. 274.  2008. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr. Rev. 66:406–14 [Google Scholar]
  276. Zingg JM, Azzi A, Meydani M. 275.  2015. Induction of VEGF expression by alpha-tocopherol and alpha-tocopheryl phosphate via PI3Kγ/PKB and hTAP1/SEC14L2-mediated lipid exchange. J. Cell Biochem. 116:398–407 [Google Scholar]
  277. Zingg JM, Han SN, Pang E, Meydani M, Meydani SN, Azzi A. 276.  2013. In vivo regulation of gene transcription by alpha- and gamma-tocopherol in murine T lymphocytes. Arch. Biochem. Biophys. 538:111–19 [Google Scholar]
  278. Zingg JM, Kempna P, Paris M, Reiter E, Villacorta L. 277.  et al. 2008. Characterization of three human sec14p-like proteins: α-Tocopherol transport activity and expression pattern in tissues. Biochimie 90:1703–15 [Google Scholar]
  279. Zingg JM, Libinaki R, Lai CQ, Meydani M, Gianello R. 278.  et al. 2010. Modulation of gene expression by α-tocopherol and α-tocopheryl phosphate in THP-1 monocytes. Free Radic. Biol. Med. 49:1989–2000 [Google Scholar]
  280. Zingg JM, Libinaki R, Meydani M, Azzi A. 279.  2014. Modulation of phosphorylation of tocopherol and phosphatidylinositol by hTAP1/SEC14L2-mediated lipid exchange. PLOS ONE 9:e101550 [Google Scholar]
  281. Zingg JM, Meydani M, Azzi A. 280.  2010. α-Tocopheryl phosphate—an active lipid mediator?. Mol. Nutr. Food Res. 54:1–14 [Google Scholar]
  282. Zingg JM, Ricciarelli R, Andorno E, Azzi A. 281.  2002. Novel 5′ exon of scavenger receptor CD36 is expressed in cultured human vascular smooth muscle cells and atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 22:412–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error