Chronic kidney disease (CKD) has a prevalence of approximately 13% and is most frequently caused by diabetes and hypertension. In population studies, CKD etiology is often uncertain. Some experimental and observational human studies have suggested that high-protein intake may increase CKD progression and even cause CKD in healthy people. The protein source may be important. Daily red meat consumption over years may increase CKD risk, whereas white meat and dairy proteins appear to have no such effect, and fruit and vegetable proteins may be renal protective. Few randomized trials exist with an observation time greater than 6 months, and most of these were conducted in patients with preexisting diseases that dispose to CKD. Results conflict and do not allow any conclusion about kidney-damaging effects of long-term, high-protein intake. Until additional data become available, present knowledge seems to substantiate a concern. Screening for CKD should be considered before and during long-term, high-protein intake.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrahamson M, Olafsson I, Palsdottir A, Ulvsbäck M, Lundwall A. 1.  et al. 1990. Structure and expression of the human cystatin C gene. Biochem. J. 268:287–94 [Google Scholar]
  2. Addis T. 2.  1948. Glomerular Nephritis: Diagnosis and Treatment New York: Macmillan [Google Scholar]
  3. Almeida JC, Zelmanovitz T, Vaz JS, Steemburgo T, Perassolo MS. 3.  et al. 2008. Sources of protein and polyunsaturated fatty acids of the diet and microalbuminuria in type 2 diabetes mellitus. J. Am. Coll. Nutr. 27:528–37 [Google Scholar]
  4. 4. Am. Diabetes Assoc. 2017. Standards of medical care in diabetes. Diabetes Care 40:Suppl. 1S1–S142 [Google Scholar]
  5. 5. Am. Diet. Assoc., Dieticians Can., Am. Coll. Sports Med., Rodrigues NR, Di Marco NM, Langley S. 2009. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 41:709–31 [Google Scholar]
  6. Ayala O, English P, Pinkney J. 6.  2013. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 97:505–16 [Google Scholar]
  7. Banerjee T, Crews DC, Wesson DE, Tilea AM, Saran R. 7.  et al. (Cent. Dis. Control Prev. Chronic Kidney Dis. Surveill. Team). 2015. High dietary acid load predicts ESRD among adults with CKD. J. Am. Soc. Nephrol. 26:1693–1700 [Google Scholar]
  8. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ. 8.  et al. 2013. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc 14542–59 [Google Scholar]
  9. Beasley JM, Katz R, Shlipak M, Rifkin D, Siscovick D, Kaplan R. 9.  2014. Dietary protein intake and change in estimated GFR in the Cardiovascular Health Study. Nutrition 30:794–99 [Google Scholar]
  10. Bernstein AM, Trayzon L, Zhaoping L. 10.  2007. Are high-protein, vegetable-based diets safe for kidney function? A review of the literature. J. Am. Diet. Assoc. 107:644–50 [Google Scholar]
  11. Bie P, Astrup A. 11.  2015. Dietary protein and kidney function: when higher glomerular filtration rate is desirable. Am. J. Clin. Nutr. 102:3–4 [Google Scholar]
  12. Bosch JP, Lauer A, Glabman S. 12.  1984. Short-term protein loading in assessment of patients with renal disease. Am. J. Med. 77:873–79 [Google Scholar]
  13. Bosch JP, Lew S, Glabman S, Lauer A. 13.  1986. Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am. J. Med. 81:809–15 [Google Scholar]
  14. Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledon M, Glabman S. 14.  1983. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med. 75:943–50 [Google Scholar]
  15. Brändle E, Sieberth HG, Hautmann RE. 15.  1996. Effect of chronic dietary protein intake on the renal function in healthy subjects. Eur. J. Clin. Nutr. 50:734–40 [Google Scholar]
  16. Brenner BM, Lawler EV, Mackenzie HS. 16.  1996. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–77 [Google Scholar]
  17. Brenner BM, Meyer TW, Hostetter TH. 17.  1982. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307:652–59 [Google Scholar]
  18. Brinkworth GD, Buckley JD, Noakes M, Clifton PM. 18.  2010. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrate diet versus high-carbohydrate diet. J. Am. Diet. Assoc. 110:633–38 [Google Scholar]
  19. Butani L, Polinsky MS, Kaiser BA, Baluarte HJ. 19.  2002. Dietary protein intake significantly affects the serum creatinine concentration. Kidney Int 61:1907 [Google Scholar]
  20. Castellino P, Coda B, De Fronzo R. 20.  1986. Effect of amino acid infusion on renal hemodynamics in humans. Am. J. Physiol. 251:F132–40 [Google Scholar]
  21. 21. Cent. Dis. Control Prev. 2010. National Chronic Kidney Disease Fact Sheet: General Information and National Estimates on Chronic Kidney Disease in the United States Atlanta, GA: US Dept. Health Hum. Serv. Cent. Dis. Control Prev. [Google Scholar]
  22. Charlton JR, Springsteen CH, Carmody JB. 22.  2014. Nephron number and its determinants in early life: a primer. Pediatr. Nephrol. 29:2299–308 [Google Scholar]
  23. Cirillo M, Lombardi C, Chiricone D, De Santo NG, Zanchetti A, Bilancio G. 23.  2014. Protein intake and kidney function in the middle-age population: contrast between cross-sectional and longitudinal data. Nephrol. Dial. Transplant. 29:1733–40 [Google Scholar]
  24. Cirillo M, Zingone F, Lombardi C, Cavallo P, Zanchetti A, Bilancio G. 24.  2015. Population-based dose-response curve of glomerular filtration rate to dietary protein intake. Nephrol. Dial. Transplant. 30:1156–62 [Google Scholar]
  25. Clifton PM, Condo D, Keogh JB. 25.  2014. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets: a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 24:224–35 [Google Scholar]
  26. de Brito-Ashurst, Varagunam M, Raftery MJ, Yaqoob MM. 26.  2009. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20:2075–84 [Google Scholar]
  27. de Mello VDF, Zelmanovitz T, Perassolo MS, Azevedo MJ, Gross JL. 27.  2006. Withdrawal of red meat from the usual diet reduces albuminuria and improves serum fatty acid profile in type 2 diabetes patients with macroalbuminuria. Am. J. Clin. Nutr. 83:1032–38 [Google Scholar]
  28. De Miguel C, Lund H, Mattson DL. 28.  2011. High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension 57:269–74 [Google Scholar]
  29. De Souza RJ, Swain JF, Appel LJ, Sacks FM. 29.  2008. Alternatives for macronutient intake and chronic disease: a comparison of the OmniHeart diets with popular diets and with dietary recommendations. Am. J. Clin. Nutr. 88:1–11 [Google Scholar]
  30. Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP. 30.  et al. 2016. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28:313–20 [Google Scholar]
  31. Dharnidharka VR, Kwon C, Stevens G. 31.  2002. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am. J. Kidney Dis. 40:221–26 [Google Scholar]
  32. Dunkler D, Dehghan M, Teo KK, Heinze G, Gao P. 32.  et al. (ONTARGET Investig.) 2013. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA 173:1682–92 [Google Scholar]
  33. 33.  EFSA (Eur. Food Saf. Auth.) Panel Diet. Prod. Nutr. Allerg. (NDA) 2012. Scientific opinion on dietary reference values for protein. EFSA J. 10:2557–623 [Google Scholar]
  34. Eriksen BO, Stefansson VTN, Jenssen TG, Mathisen UD, Schei J. 34.  et al. 2016. Elevated blood pressure is not associated with accelerated glomerular filtration rate decline in the general non-diabetic middle-aged population.. Kidney Int 90:254–56 [Google Scholar]
  35. Flechtner-Mors M, Boehm BO, Wittmann R, Thoma U, Ditschuneit HH. 35.  2010. Enhanced weight loss with protein-enriched meal replacements in subjects with the metabolic syndrome. Diabetes Metab. Res. Rev. 26:393–405 [Google Scholar]
  36. Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E. 36.  1997. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int 51:1196–204 [Google Scholar]
  37. Foster MC, Hwang S-J, Massaro JM, Jacques PF, Fox CS, Chu AY. 37.  2015. Lifestyle factors and indices of kidney function in the Framingham Heart Study. Am. J. Nephrol. 41:267–74 [Google Scholar]
  38. Fougue D, Laville M. 38.  2009. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst. Rev. 2009:CD001892 [Google Scholar]
  39. Franch HA, Mitch WE. 39.  2009. Navigating between the Scylla and Charybdis of prescribing dietary protein for chronic kidney diseases. Annu. Rev. Nutr. 29:341–64 [Google Scholar]
  40. Frank H, Graf J, Amann-Gassner U, Bratke R, Daniel H. 40.  et al. 2009. Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men. Am. J. Clin. Nutr. 90:1509–16 [Google Scholar]
  41. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C. 41.  2003. Impact of thyroid dysfunction on serum cystatin C. Kidney 63:1944–47 [Google Scholar]
  42. Friedman AN, Ogden LG, Foster GD, Klein S, Stein R. 42.  et al. 2012. Comparative effects of low-carbohydrate high-protein versus low-fat diets on the kidney. Clin. J. Am. Soc. Nephrol. 7:1103–11 [Google Scholar]
  43. Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H. 43.  2003. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am. J. Clin. Nutr. 78:734–41 [Google Scholar]
  44. Goraya N, Simoni J, Jo C, Wesson DE. 44.  2012. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 81:86–93 [Google Scholar]
  45. Goraya N, Wesson DE. 45.  2017. Is dietary red meat kidney toxic?. J. Am. Soc. Nephrol. 28:5–7 [Google Scholar]
  46. Gross JL, Zelmanovitz T, Moulin CC, De Mello V, Perassolo M. 46.  et al. 2002. Effect of chicken-based diet on renal function and lipid profile in patients with type 2 diabetes: a randomized crossover trial. Diabetes Care 25:645–51 [Google Scholar]
  47. Gutiérrez OM, Muntner P, Rizk DV, McClellan WM, Warnock DG. 47.  et al. 2014. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. Am. J. Kidney Dis. 64:204–13 [Google Scholar]
  48. Halbesma N, Bakker SJL, Jansen DF, Stolk RP, De Zeeuw D. 48.  et al. (PREVEND Study Group) 2009. High protein intake associates with cardiovascular events but not with loss of renal function. J. Am. Soc. Nephrol. 20:1797–804 [Google Scholar]
  49. Hallan S, Coresh J, Astor BC, Åsberg A, Powe NR. 49.  et al. 2006. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J. Am. Soc. Nephrol. 17:2275–84 [Google Scholar]
  50. Halton TL, Willett WC, Liu S, Manson JE, Albert CM. 50.  et al. 2006. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 355:1991–2002 [Google Scholar]
  51. Hankin JH, Stram DO, Arakawa K, Park S, Low SH. 51.  et al. 2001. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr. Cancer 39:187–95 [Google Scholar]
  52. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. 52.  2012. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 8:293–300 [Google Scholar]
  53. Hill NR, Fatoba ST, Oke JE, Hirst JA, O'Callaghan CA. 53.  et al. 2016. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLOS ONE 11:7e0158765 [Google Scholar]
  54. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D. 54.  et al. 2002. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–82 [Google Scholar]
  55. Hostetter TH, Meyer TW, Rennke HG. 55.  et al. 1986. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30:509–17 [Google Scholar]
  56. Huang M-C, Chen M-E, Hung H-C, Chen H-C, Chang W-T. 56.  et al. 2008. Inadequate energy and excess protein intakes may be associated with worsening renal function in chronic kidney disease. J. Ren. Nutr. 18:187–94 [Google Scholar]
  57. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI. 57.  et al. (CKD-EPI Investig.) 2012. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367:20–29 [Google Scholar]
  58. 58. Inst. Med. Panel Macronutr., Inst. Med. Standing Comm. Sci. Eval. Diet. Ref. Intakes. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: Natl. Acad. Press
  59. Jacobsen FK, Christensen CK, Mogensen CE, Andresen F, Heilskov NS. 59.  1979. Pronounced increase in serum creatinine concentration after eating cooked meat. BMJ 11049–50 [Google Scholar]
  60. Jakobsen LH, Kondrup J, Zellner M, Tetens I, Roth E. 60.  2011. Effect of a high protein meat diet on muscle and cognitive functions: a randomised controlled dietary intervention trial in healthy men. Clin. Nutr. 30:303–11 [Google Scholar]
  61. Jameel N, Pugh JA, Mitchell BD, Stern MP. 61.  1992. Dietary protein intake is not correlated with clinical proteinuria in NIDDM. Diabetes Care 15:178–83 [Google Scholar]
  62. Jesudason DR, Clifton P. 62.  2012. Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician. Int. J. Obes. 36:1421–27 [Google Scholar]
  63. Jesudason DR, Pedersen E, Clifton PM. 63.  2013. Weight-loss diets in people with type 2 diabetes and renal disease: a randomized controlled trial of the effect of different dietary protein amounts. Am. J. Clin. Nutr. 98:494–501 [Google Scholar]
  64. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S. 64.  et al. 2013. Chronic kidney disease: global dimensions and perspectives. Lancet 382:260–72 [Google Scholar]
  65. Jia Y, Hwang SY, House JD, Ogborn MR, Weiler HA. 65.  et al. 2010. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140:1646–52 [Google Scholar]
  66. Juraschek SP, Appel LJ, Anderson CAM, Miller ER III. 66.  2013. Effect of high-protein diet on kidney function in healthy adults: results from the OmniHeart trial. Am. J. Kidney Dis. 61:547–54 [Google Scholar]
  67. Kamper AL, Thomsen HS, Nielsen SL, Strandgaard S. 67.  1990. Initial effect of enalapril on kidney function in patients with moderate to severe chronic nephropathy. Scand. J. Urol. Nephrol. 24:69–73 [Google Scholar]
  68. Kamper A-L. 68.  2007. The importance of a correct evaluation of progression in studies on chronic kidney disease. Nephrol. Dial. Transplant. 22:3–5 [Google Scholar]
  69. 69. Kidney Dis. Improv. Glob. Outcomes (KDIGO) CKD Work Group. 2013. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3:1–150 [Google Scholar]
  70. King AJ, Levey AS. 70.  1993. Dietary protein and renal function. J. Am. Soc. Nephrol. 3:1723–37 [Google Scholar]
  71. Kipnis V, Midthune D, Freedman LS, Bingham S, Schatzkin A. 71.  et al. 2001. Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am. J. Epidemiol. 153:394–403 [Google Scholar]
  72. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L. 72.  et al. (Modif. Diet Ren. Dis. Study Group) 1994. The effects of dietary protein restriction and blood pressure control on the progression of renal disease. N. Engl. J. Med. 330:877–84 [Google Scholar]
  73. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P. 73.  et al. 2004. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35 [Google Scholar]
  74. Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC. 74.  2003. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann. Int. Med. 138:460–67 [Google Scholar]
  75. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D. 75.  et al. 2004. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–21 [Google Scholar]
  76. Krebs JD, Elley CR, Parry-Strong A, Lunt H, Drury PL. 76.  et al. 2012. The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 55:905–14 [Google Scholar]
  77. Lagiou P, Sandin S, Lof M, Trichopoulos D, Adami HO, Weiderpass E. 77.  2012. Low carbohydrate-high protein diet and incidence of cardiovascular disease in Swedish women: prospective cohort study. BMJ 344:e4026 [Google Scholar]
  78. Lagiou P, Sandin S, Weiderpass E, Lagiou A, Mucci L. 78.  et al. 2007. Low carbohydrate-high protein diet and mortality in a cohort of Swedish women. J. Int. Med. 261:366–74 [Google Scholar]
  79. Larsen RN, Mann NJ, Maclean E, Shaw JE. 79.  2011. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial. Diabetologia 54:731–40 [Google Scholar]
  80. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A. 80.  et al. (Diogenes Proj.) 2010. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363:2102–13 [Google Scholar]
  81. Levey AS, Bosch JP, Lewis IB, Greene T, Rogers N. 81.  et al. (Modif. Diet Ren. Dis. Study Group) 1999. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann. Intern. Med. 130:461–70 [Google Scholar]
  82. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III. 82.  et al. 2009. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 50:604–12 [Google Scholar]
  83. Lew Q-LJ, Jafar TH, Koh HWL, Jin A, Chow KY. 83.  et al. 2017. Red meat intake and risk of ESRD. J. Am. Soc. Nephrol. 28:304–12 [Google Scholar]
  84. Li Z, Treyzon L, Chen S, Yan E, Thames G, Carpenter CL. 84.  2010. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial. Nutr. J. 9:72 [Google Scholar]
  85. Lin J, Fung TT, Hu FB, Curhan GC. 85.  2011. Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses' Health Study. Am. J. Kidney Dis. 57:245–54 [Google Scholar]
  86. Lin J, Hu FB, Curhan GC. 86.  2010. Associations of diet with albuminuria and kidney function decline. Clin. J. Am. Soc. Nephrol. 5:836–43 [Google Scholar]
  87. Lopez-Giacoman S, Madero M. 87.  2015. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 4:57–73 [Google Scholar]
  88. Luyckx VA, Brenner BM. 88.  2010. The clinical importance of nephron mass. J. Am. Soc. Nephrol. 21:898–910 [Google Scholar]
  89. Ma JM, Jacques PF, Hwang SJ, Troy LM, McKeown NM. 89.  et al. 2016. Dietary guideline adherence index and kidney measures in the Framingham Heart study. Am. J. Kidney Dis. 68:703–15 [Google Scholar]
  90. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. 90.  2010. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78:303–9 [Google Scholar]
  91. Maroni BJ, Steinman TI, Mitch WE. 91.  1985. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27:58–65 [Google Scholar]
  92. Mattos CB, Viana LV, Paula TP, Sarmento RA, Almeida JC. 92.  et al. 2015. Increased protein intake is associated with uncontrolled blood pressure by 24-h ambulatory blood pressure monitoting in patients with type 2 diabetes. J. Am. Coll. Nutr. 34:232–39 [Google Scholar]
  93. Miliku K, Voortman T, van den Hooven EH, Hofman A, Franco OH, Jaddoe VWV. 93.  2015. First-trimester maternal protein intake and childhood kidney outcomes: the Generation R Study. Am. J. Clin. Nutr. 102:123–29 [Google Scholar]
  94. 94. Modif. Diet Ren. Dis. Study Group. 1992. The Modification of Diet in Renal Disease (MDRD) Study: design, methods, and results from the feasibility study. Am. J. Kidney Dis. 20:18–33 [Google Scholar]
  95. Moustgaard J. 95.  1947. Variation of the renal function in normal and unilaterally nephrectomized dogs. Am. J. Vet. Res. 8:301–6 [Google Scholar]
  96. Nakamura H, Ebe N, Ito S, Shibata A. 96.  1993. Renal effects of different types of protein in healthy volunteer subjects and diabetic patients. Diabetes Care 16:1071–75 [Google Scholar]
  97. Nettleton JA, Steffen LM, Palmas W, Burke GL, Jacobs DR Jr. 97.  2008. Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 87:1825–36 [Google Scholar]
  98. 98. Nord. Counc. Minist. 2014. Nordic Nutritional Recommendations 2012: Integrating Nutrition and Physical Activity Copenhagen: Nord. Counc. Minist. [Google Scholar]
  99. Nyengaard JR, Bendtsen TJ. 99.  1992. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232:194–201 [Google Scholar]
  100. Orita Y, Okada M, Harada S, Horio M. 100.  2004. Skim soy protein enhances GFR as much as beefsteak protein in healthy human subjects. Clin. Exp. Nephrol. 8:103–8 [Google Scholar]
  101. Ramel A, Arnarson A, Geirsdottir OG, Jonsson PV, Thorsdottir I. 101.  2013. Glomerular filtration rate after a 12-wk resistance exercise program with post-exercise protein ingestion in community dwelling elderly. Nutrition 29:719–23 [Google Scholar]
  102. Remer T. 102.  2001. Influence of nutrition on acid-base balance—metabolic aspects. Eur. J. Nutr. 40:214–20 [Google Scholar]
  103. Ricos C, Jimenez CV, Hernandez A, Simon M, Perich C. 103.  et al. 1994. Biological variation in urine samples used for analyte measurements. Clin. Chem. 40:472–77 [Google Scholar]
  104. Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. 104.  2004. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7:17–25 [Google Scholar]
  105. Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R. 105.  et al. 2012. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 66:780–88 [Google Scholar]
  106. Schwingshackl L, Hoffmann G. 106.  2013. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr. J. 12:48 [Google Scholar]
  107. Schwingshackl L, Hoffmann G. 107.  2014. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: a systematic review and meta-analysis. PLOS ONE 9:e97656 [Google Scholar]
  108. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S. 108.  et al. (DIRECT Group) 2008. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359:229–41 [Google Scholar]
  109. Shemesh O, Golbetz H, Kriss JP, Myers BD. 109.  1985. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–38 [Google Scholar]
  110. Shen Q, Xu H, Wei L-M, Chen J, Liu H-M. 110.  2011. Intrauterine growth restriction and postnatal high-protein diet affect the kidneys in adult rats. Nutrition 27:364–71 [Google Scholar]
  111. Shipley RE, Study RS. 111.  1951. Changes in renal blood flow, excretion of inulin, glomerular filtration rate, tissue pressure and urine flow with alteration of renal artery blood pressure. Am. J. Physiol. 167:676–88 [Google Scholar]
  112. Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R. 112.  et al. (CKD Progn. Consort.). 2013. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 369:932–43 [Google Scholar]
  113. Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A. 113.  et al. 2015. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am. J. Kidney Dis. 66:945–50 [Google Scholar]
  114. Sjögren P, Becker W, Warensjö E, Olsson E, Byberg L. 114.  et al. 2010. Mediterranean and carbohydrate-restricted diets and mortality among elderly men: a cohort study in Sweden. Am. J. Clin. Nutr. 92:967–74 [Google Scholar]
  115. Skov AR, Toubro S, Bülow J, Krabbe K, Parving HH, Astrup A. 115.  1999. Changes in renal function during weight loss induced by high versus low-protein low-fat diets in overweight subjects. Int. J. Obes. Relat. Metab. Disord. 23:1170–77 [Google Scholar]
  116. Smith GI, Yoshino J, Kelly SC, Reeds DN, Okunade A. 116.  et al. 2016. High-protein intake during weight loss therapy eliminates the weight-loss-induced improvement in insulin action in obese postmenopausal women. Cell Rep 17:849–61 [Google Scholar]
  117. Stentz FB, Brewer A, Wan J, Garber C, Daniels B. 117.  et al. 2016. Remission of pre-diabetes to normal glucose tolerance in obese adults with high protein versus high carbohydrate diet: randomized controlled trial. BMJ Open Diabetes Res. Care 4:000258 [Google Scholar]
  118. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M. 118.  et al. 2008. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am. J. Kidney Dis. 51:395–406 [Google Scholar]
  119. Summerson JH, Bell RA, Konen JC. 119.  1996. Dietary protein intake, clinical proteinuria, and microalbuminuria in non-insulin-dependent diabetes mellitus. J. Ren. Nutr. 6:89–93 [Google Scholar]
  120. Tay J, Thompson CH, Luscombe-Marsh ND, Noakes M, Buckley JD. 120.  et al. 2015. Long-term effects of a very low carbohydrate compared with a high carbohydrate diet on renal function in individuals with type 2 diabetes: a randomized trial. Medicine 94:e2181 [Google Scholar]
  121. Tirosh A, Golan R, Harman-Boehm I, Henkin Y, Schwarzfuchs D. 121.  et al. 2013. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 36:2225–32 [Google Scholar]
  122. Trichopoulou A, Psaltopoulou T, Orfanos P, Hsieh C-C, Trichopoulos D. 122.  2007. Low-carbohydrate-high-protein diet and long-term survival in a general population cohort. Eur. J. Clin. Nutr. 61:575–81 [Google Scholar]
  123. Wagner EA, Falciglia GA, Amlal H, Levin L, Soleimani M. 123.  2007. Short-term exposure to a high-protein diet differentially affects glomerular filtration rate but not acid-base balance in older compared to younger adults. J. Am. Diet. Assoc. 107:1404–8 [Google Scholar]
  124. Wakefield AP, House JD, Ogborn MR, Weiler HA, Aukema HM. 124.  2011. A diet with 35% of energy from protein leads to kidney damage in female Sprague-Dawley rats. Br. J. Nutr. 106:656–63 [Google Scholar]
  125. Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS. 125.  2008. Functional impact of high protein intake on healthy elderly people. Am. J. Physiol. Endocrinol. Metab. 295:E921–28 [Google Scholar]
  126. Watzadse G. 126.  1928. Uber die Harnbildung in der Froschniere. XIV Mitteilung: Bedeutung der Aminosauren fur die Nierentatigkeit. Arch. Ges. Physiol. 219:694–705 [Google Scholar]
  127. Wesson DE, Simoni J, Broglio K, Sheather S. 127.  2011. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am. J. Physiol. Ren. Physiol. 300:F830–37 [Google Scholar]
  128. Wheeler ML, Fineberg SE, Fineberg NS, Gibson RG, Hackward LL. 128.  2002. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters. Diabetes Care 25:1277–82 [Google Scholar]
  129. 129. WHO (World Health Organ.), Food Agric. Organ. UN, UN Univ. 2007. Protein and Amino Acids Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNO Expert Consultation. WHO Technical Report Series, No. 935 Geneva: WHO Press [Google Scholar]
  130. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C. 130.  et al. 1985. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 122:51–65 [Google Scholar]
  131. Woods LL. 131.  1993. Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int 44:659–75 [Google Scholar]
  132. Workeneh B, Mitch WE. 132.  2013. High-protein diet in diabetic nephropathy: What is really safe?. Am. J. Clin. Nutr. 98:266–68 [Google Scholar]
  133. Xu X, Qin X, Li Y, Sun D, Wang J. 133.  et al. [Ren. Substudy China Stroke Prim. Prev. Trial (CSPPT)]. 2016. Efficacy of folic acid therapy on the progression of chronic kidney disease. JAMA Intern. Med. 176:1443–50 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error