The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackroff K, Sclafani A. 1.  2014. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol. Behav. 133:92–98 [Google Scholar]
  2. Baylis LL, Rolls ET. 2.  1991. Responses of neurons in the primate taste cortex to glutamate. Physiol. Behav. 49:973–79 [Google Scholar]
  3. Baylis LL, Rolls ET, Baylis GC. 3.  1995. Afferent connections of the orbitofrontal cortex taste area of the primate. Neuroscience 64:801–12 [Google Scholar]
  4. Beaver JD, Lawrence AD, Ditzhuijzen JV, Davis MH, Woods A, Calder AJ. 4.  2006. Individual differences in reward drive predict neural responses to images of food. J. Neurosci. 26:5160–66 [Google Scholar]
  5. Begg DP, Woods SC. 5.  2013. The endocrinology of food intake. Nat. Rev. Endocrinol. 9:584–97 [Google Scholar]
  6. Berner LA, Bocarsly ME, Hoebel BG, Avena NM. 6.  2011. Pharmacological interventions for binge eating: lessons from animal models, current treatments, and future directions. Curr. Pharm. Des. 17:1180–87 [Google Scholar]
  7. Berridge KC, Robinson TE, Aldridge JW. 7.  2009. Dissecting components of reward: “liking,” “wanting,” and learning. Curr. Opin. Pharmacol. 9:65–73 [Google Scholar]
  8. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L. 8.  et al. 2010. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363:2211–19 [Google Scholar]
  9. Birch LL. 9.  1999. Development of food preferences. Annu. Rev. Nutr. 19:41–62 [Google Scholar]
  10. Booth DA. 10.  1985. Food-conditioned eating preferences and aversions with interoceptive elements: learned appetites and satieties. Ann. N. Y. Acad. Sci. 443:22–37 [Google Scholar]
  11. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 11.  2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–34 [Google Scholar]
  12. Buck L, Axel R. 12.  1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–87 [Google Scholar]
  13. Buck L, Bargmann CI. 13.  2013. Smell and taste: the chemical senses. Principles of Neural Science ER Kandel, JH Schwartz, TH Jessell, SA Siegelbaum, AJ Hudspeth 712–42 New York: McGraw-Hill [Google Scholar]
  14. Burton MJ, Rolls ET, Mora F. 14.  1976. Effects of hunger on the responses of neurones in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51:668–77 [Google Scholar]
  15. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. 15.  1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–49 [Google Scholar]
  16. Carmichael ST, Price JL. 16.  1996. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371:179–207 [Google Scholar]
  17. Cosgrove KP, Veldhuizen MG, Sandiego CM, Morris ED, Small DM. 17.  2015. Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse 69:195–202 [Google Scholar]
  18. Critchley HD, Rolls ET. 18.  1996. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75:1673–86 [Google Scholar]
  19. Critchley HD, Rolls ET. 19.  1996. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J. Neurophysiol. 75:1659–72 [Google Scholar]
  20. Critchley HD, Rolls ET. 20.  1996. Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem. Senses 21:135–45 [Google Scholar]
  21. Crum AJ, Corbin WR, Brownell KD, Salovey P. 21.  2011. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychol. 30:424–29; discussion 430–31 [Google Scholar]
  22. Cummings DE, Overduin J. 22.  2007. Gastrointestinal regulation of food intake. J. Clin. Investig. 117:13–23 [Google Scholar]
  23. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P. 23.  2003. The representation of umami taste in the human brain. J. Neurophysiol. 90:313–19 [Google Scholar]
  24. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F. 24.  2003. Human cortical responses to water in the mouth, and the effects of thirst. J. Neurophysiol. 90:1865–76 [Google Scholar]
  25. de Araujo IET, Rolls ET. 25.  2004. The representation in the human brain of food texture and oral fat. J. Neurosci. 24:3086–93 [Google Scholar]
  26. de Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N. 26.  2003. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18:2059–68 [Google Scholar]
  27. de Araujo IET, Rolls ET, Velazco MI, Margot C, Cayeux I. 27.  2005. Cognitive modulation of olfactory processing. Neuron 46:671–79 [Google Scholar]
  28. Deco G, Rolls ET. 28.  2005. Synaptic and spiking dynamics underlying reward reversal in orbitofrontal cortex. Cereb. Cortex 15:15–30 [Google Scholar]
  29. Deco G, Rolls ET, Albantakis L, Romo R. 29.  2013. Brain mechanisms for perceptual and reward-related decision-making. Prog. Neurobiol. 103:194–213 [Google Scholar]
  30. Depoortere I. 30.  2014. Taste receptors of the gut: emerging roles in health and disease. Gut 63:179–90 [Google Scholar]
  31. Everitt BJ, Robbins TW. 31.  2013. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37:1946–54 [Google Scholar]
  32. Farooqi IS, O'Rahilly S. 32.  2014. 20 years of leptin: human disorders of leptin action. J. Endocrinol. 223:T63–70 [Google Scholar]
  33. Farr OM, Gavrieli A, Mantzoros CS. 33.  2015. Leptin applications in 2015: What have we learned about leptin and obesity?. Curr. Opin. Endocrinol. Diabetes Obes. 22:353–59 [Google Scholar]
  34. Francis S, Rolls ET, Bowtell R, McGlone F, O'Doherty J. 34.  et al. 1999. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453–59 [Google Scholar]
  35. Ge T, Feng J, Grabenhorst F, Rolls ET. 35.  2012. Componential Granger causality, and its application to identifying the source and mechanisms of the top-down biased activation that controls attention to affective versus sensory processing. NeuroImage 59:1846–58 [Google Scholar]
  36. Gibbs J, Maddison SP, Rolls ET. 36.  1981. Satiety role of the small intestine examined in sham-feeding rhesus monkeys. J. Comp. Physiol. Psychol. 95:1003–15 [Google Scholar]
  37. Gilbertson TA. 37.  1998. Gustatory mechanisms for the detection of fat. Curr. Opin. Neurobiol. 8:447–52 [Google Scholar]
  38. Gilbertson TA, Fontenot DT, Liu L, Zhang H, Monroe WT. 38.  1997. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Physiol. 272:C1203–10 [Google Scholar]
  39. Gottfried JA. 39.  2010. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11:628–41 [Google Scholar]
  40. Gottfried JA. 40.  2015. Structural and functional imaging of the human olfactory system. Handbook of Olfaction and Gustation RL Doty 279–303 New York: Wiley Liss [Google Scholar]
  41. Gottfried JA, Zald DH. 41.  2005. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res. 50:287–304 [Google Scholar]
  42. Grabenhorst F, D'Souza A, Parris BA, Rolls ET, Passingham RE. 42.  2010. A common neural scale for the subjective pleasantness of different primary rewards. NeuroImage 51:1265–74 [Google Scholar]
  43. Grabenhorst F, Rolls ET. 43.  2008. Selective attention to affective value alters how the brain processes taste stimuli. Eur. J. Neurosci. 27:723–29 [Google Scholar]
  44. Grabenhorst F, Rolls ET. 44.  2010. Attentional modulation of affective versus sensory processing: functional connectivity and a top-down biased activation theory of selective attention. J. Neurophysiol. 104:1649–60 [Google Scholar]
  45. Grabenhorst F, Rolls ET. 45.  2011. Value, pleasure, and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 15:56–67 [Google Scholar]
  46. Grabenhorst F, Rolls ET. 46.  2014. The representation of oral fat texture in the human somatosensory cortex. Hum. Brain Mapp. 35:2521–30 [Google Scholar]
  47. Grabenhorst F, Rolls ET, Bilderbeck A. 47.  2008. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb. Cortex 18:1549–59 [Google Scholar]
  48. Grabenhorst F, Rolls ET, Margot C, da Silva MAAP, Velazco MI. 48.  2007. How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J. Neurosci. 27:13532–40 [Google Scholar]
  49. Grabenhorst F, Rolls ET, Parris BA. 49.  2008. From affective value to decision-making in the prefrontal cortex. Eur. J. Neurosci. 28:1930–39 [Google Scholar]
  50. Grabenhorst F, Rolls ET, Parris BA, D'Souza A. 50.  2010. How the brain represents the reward value of fat in the mouth. Cereb. Cortex 20:1082–91 [Google Scholar]
  51. Guest S, Grabenhorst F, Essick G, Chen Y, Young M. 51.  et al. 2007. Human cortical representation of oral temperature. Physiol. Behav. 92:975–84 [Google Scholar]
  52. Haber SN, Knutson B. 52.  2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26 [Google Scholar]
  53. Hare TA, Camerer CF, Rangel A. 53.  2009. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–48 [Google Scholar]
  54. Heitmann BL, Westerterp KR, Loos RJ, Sorensen TI, O'Dea K. 54.  et al. 2012. Obesity: lessons from evolution and the environment. Obes. Rev. 13:910–22 [Google Scholar]
  55. Hetherington MM. 55.  2007. Cues to overeat: psychological factors influencing overconsumption. Proc. Nutr. Soc. 66:113–23 [Google Scholar]
  56. Hetherington MM, Cecil JE, Jackson DM, Schwartz C. 56.  2011. Feeding infants and young children. From guidelines to practice. Appetite 57:791–95 [Google Scholar]
  57. Howard JD, Gottfried JA, Tobler PN, Kahnt T. 57.  2015. Identity-specific coding of future rewards in the human orbitofrontal cortex. PNAS 112:5195–200 [Google Scholar]
  58. Hunt JN. 58.  1980. A possible relation between the regulation of gastric emptying and food intake. Am. J. Physiol. 239:G1–4 [Google Scholar]
  59. Hussain SS, Bloom SR. 59.  2013. The regulation of food intake by the gut-brain axis: implications for obesity. Int. J. Obes. (Lond.) 37:625–33 [Google Scholar]
  60. Jacobson A, Green E, Murphy C. 60.  2010. Age-related functional changes in gustatory and reward processing regions: an fMRI study. NeuroImage 53:602–10 [Google Scholar]
  61. Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P. 61.  Behav. Weight Manag. Rev. Group. 2014. Diet or exercise interventions versus combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J. Acad. Nutr. Diet. 114:1557–68 [Google Scholar]
  62. Kadohisa M. 62.  2015. Beyond flavour to the gut and back. Flavour 4:1–11 [Google Scholar]
  63. Kadohisa M, Rolls ET, Verhagen JV. 63.  2004. Orbitofrontal cortex neuronal representation of temperature and capsaicin in the mouth. Neuroscience 127:207–21 [Google Scholar]
  64. Kadohisa M, Rolls ET, Verhagen JV. 64.  2005. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem. Senses 30:401–19 [Google Scholar]
  65. Kadohisa M, Rolls ET, Verhagen JV. 65.  2005. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132:33–48 [Google Scholar]
  66. Kokrashvili Z, Mosinger B, Margolskee RF. 66.  2009. T1r3 and α-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann. N. Y. Acad. Sci.117091–94 [Google Scholar]
  67. Kokrashvili Z, Mosinger B, Margolskee RF. 67.  2009. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am. J. Clin. Nutr. 90:822–25S [Google Scholar]
  68. Kringelbach ML, O'Doherty J, Rolls ET, Andrews C. 68.  2003. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13:1064–71 [Google Scholar]
  69. Levy DJ, Glimcher PW. 69.  2012. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22:1027–38 [Google Scholar]
  70. López-Caneda E, Rodríguez Holguín S, Cadaveira F, Corral M, Doallo S. 70.  2014. Impact of alcohol use on inhibitory control (and vice versa) during adolescence and young adulthood: a review. Alcohol Alcohol. 49:173–81 [Google Scholar]
  71. Luo Q, Ge T, Grabenhorst F, Feng J, Rolls ET. 71.  2013. Attention-dependent modulation of cortical taste circuits revealed by Granger causality with signal-dependent noise. PLOS Comput. Biol. 9:e1003265 [Google Scholar]
  72. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E. 72.  et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. PNAS 104:15075–80 [Google Scholar]
  73. Maruyama Y, Pereira E, Margolskee RF, Chaudhari N, Roper SD. 73.  2006. Umami responses in mouse taste cells indicate more than one receptor. J. Neurosci. 26:2227–34 [Google Scholar]
  74. McCabe C, Rolls ET. 74.  2007. Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur. J. Neurosci. 25:1855–64 [Google Scholar]
  75. Mombaerts P. 75.  2006. Axonal wiring in the mouse olfactory system. Annu. Rev. Cell Dev. Biol. 22:713–37 [Google Scholar]
  76. Mora F, Rolls ET, Burton MJ. 76.  1976. Modulation during learning of the responses of neurones in the lateral hypothalamus to the sight of food. Exp. Neurol. 53:508–19 [Google Scholar]
  77. Morton GJ, Meek TH, Schwartz MW. 77.  2014. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15:367–78 [Google Scholar]
  78. Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD. 78.  et al. 2015. Ghrelin. Mol. Metab. 4:437–60 [Google Scholar]
  79. Munzberg H, Myers MG. 79.  2005. Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 8:566–70 [Google Scholar]
  80. Murray S, Tulloch A, Gold MS, Avena NM. 80.  2014. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat. Rev. Endocrinol. 10:540–52 [Google Scholar]
  81. Nicolaidis S, Rowland N. 81.  1977. Intravenous self-feeding: long-term regulation of energy balance in rats. Science 195:589–91 [Google Scholar]
  82. O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F. 82.  2001. The representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85:1315–21 [Google Scholar]
  83. O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F. 83.  et al. 2000. Sensory-specific satiety related olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–97 [Google Scholar]
  84. O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. 84.  2002. Neural responses during anticipation of a primary taste reward. Neuron 33:815–26 [Google Scholar]
  85. O'Rahilly S. 85.  2009. Human genetics illuminates the paths to metabolic disease. Nature 462:307–14 [Google Scholar]
  86. Padoa-Schioppa C. 86.  2011. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34:333–59 [Google Scholar]
  87. Padoa-Schioppa C, Assad JA. 87.  2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26 [Google Scholar]
  88. Padoa-Schioppa C, Cai X. 88.  2011. The orbitofrontal cortex and the computation of subjective value: consolidated concepts and new perspectives. Ann. N. Y. Acad. Sci. 1239:130–37 [Google Scholar]
  89. Pager J, Giachetti I, Holley A, Le Magnen J. 89.  1972. A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol. Behav. 9:573–79 [Google Scholar]
  90. Palouzier-Paulignan B, Lacroix MC, Aime P, Baly C, Caillol M. 90.  et al. 2012. Olfaction under metabolic influences. Chem. Senses 37:769–97 [Google Scholar]
  91. Parker HE, Gribble FM, Reimann F. 91.  2014. The role of gut endocrine cells in control of metabolism and appetite. Exp. Physiol. 99:1116–20 [Google Scholar]
  92. Passingham REP, Wise SP. 92.  2012. The Neurobiology of the Prefrontal Cortex Oxford, UK: Oxford Univ. Press [Google Scholar]
  93. Peters A, McEwen BS. 93.  2015. Stress habituation, body shape and cardiovascular mortality. Neurosci. Biobehav. Rev. 56:139–50 [Google Scholar]
  94. Plassmann H, O'Doherty J, Rangel A. 94.  2007. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27:9984–88 [Google Scholar]
  95. Price SL, Bloom SR. 95.  2014. Protein PYY and its role in metabolism. Front. Horm. Res. 42:147–54 [Google Scholar]
  96. Pritchard TC, Edwards EM, Smith CA, Hilgert KG, Gavlick AM. 96.  et al. 2005. Gustatory neural responses in the medial orbitofrontal cortex of the Old World monkey. J. Neurosci. 25:6047–56 [Google Scholar]
  97. Rolls BJ. 97.  2010. Dietary strategies for the prevention and treatment of obesity. Proc. Nutr. Soc. 69:70–79 [Google Scholar]
  98. Rolls BJ. 98.  2014. What is the role of portion control in weight management?. Int. J. Obes. (Lond.) 38:Suppl. 1S1–8 [Google Scholar]
  99. Rolls BJ, Rolls ET, Rowe EA. 99.  1983. Body fat control and obesity. Behav. Brain Sci. 4:744–45 [Google Scholar]
  100. Rolls BJ, Rolls ET, Rowe EA, Sweeney K. 100.  1981. Sensory specific satiety in man. Physiol. Behav. 27:137–42 [Google Scholar]
  101. Rolls BJ, Rowe EA, Rolls ET. 101.  1982. How sensory properties of foods affect human feeding behavior. Physiol. Behav. 29:409–17 [Google Scholar]
  102. Rolls BJ, Rowe EA, Rolls ET, Kingston B, Megson A, Gunary R. 102.  1981. Variety in a meal enhances food intake in man. Physiol. Behav. 26:215–21 [Google Scholar]
  103. Rolls BJ, Van Duijvenvoorde PM, Rolls ET. 103.  1984. Pleasantness changes and food intake in a varied four-course meal. Appetite 5:337–48 [Google Scholar]
  104. Rolls BJ, Van Duijenvoorde PM, Rowe EA. 104.  1983. Variety in the diet enhances intake in a meal and contributes to the development of obesity in the rat. Physiol. Behav. 31:21–27 [Google Scholar]
  105. Rolls ET. 105.  1981. Central nervous mechanisms related to feeding and appetite. Br. Med. Bull. 37:131–34 [Google Scholar]
  106. Rolls ET. 106.  2008. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol. Hung. 95:131–64 [Google Scholar]
  107. Rolls ET. 107.  2008. Memory, Attention, and Decision-Making: A Unifying Computational Neuroscience Approach Oxford, UK: Oxford Univ. Press [Google Scholar]
  108. Rolls ET. 108.  2009. The anterior and midcingulate cortices and reward. Cingulate Neurobiology and Disease BA Vogt 191–206 Oxford, UK: Oxford Univ. Press [Google Scholar]
  109. Rolls ET. 109.  2009. Functional neuroimaging of umami taste: what makes umami pleasant. Am. J. Clin. Nutr. 90:803–14S [Google Scholar]
  110. Rolls ET. 110.  2011. The neural representation of oral texture including fat texture. J. Texture Stud. 42:137–56 [Google Scholar]
  111. Rolls ET. 111.  2012. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet. Front. Comput. Neurosci. 6:351–70 [Google Scholar]
  112. Rolls ET. 112.  2012. Taste, olfactory, and food texture reward processing in the brain and the control of appetite. Proc. Nutr. Soc. 71:488–501 [Google Scholar]
  113. Rolls ET. 113.  2013. A biased activation theory of the cognitive and attentional modulation of emotion. Front. Hum. Neurosci. 7:74 [Google Scholar]
  114. Rolls ET. 114.  2014. Emotion and Decision-Making Explained Oxford, UK: Oxford Univ. Press [Google Scholar]
  115. Rolls ET. 115.  2015. Functions of the anterior insula in taste, autonomic, and related functions. Brain Cogn. doi: 10.1016/j.bandc.2015.07.002 [Google Scholar]
  116. Rolls ET. 116.  2015. Taste, olfactory, and food reward value processing in the brain. Prog. Neurobiol. 127–128:64–90 [Google Scholar]
  117. Rolls ET. 117.  2016. Cerebral Cortex: Principles of Operation. Oxford, UK: Oxford Univ. Press [Google Scholar]
  118. Rolls ET, Baylis LL. 118.  1994. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14:5437–52 [Google Scholar]
  119. Rolls ET, Burton MJ, Mora F. 119.  1976. Hypothalamic neuronal responses associated with the sight of food. Brain Res. 111:53–66 [Google Scholar]
  120. Rolls ET, Critchley H, Wakeman EA, Mason R. 120.  1996. Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5'-monophosphate. Physiol. Behav. 59:991–1000 [Google Scholar]
  121. Rolls ET, Critchley HD, Browning A, Hernadi I. 121.  1998. The neurophysiology of taste and olfaction in primates, and umami flavor. Ann. N. Y. Acad. Sci. 855:426–37 [Google Scholar]
  122. Rolls ET, Critchley HD, Browning AS, Hernadi A, Lenard L. 122.  1999. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci. 19:1532–40 [Google Scholar]
  123. Rolls ET, Critchley HD, Mason R, Wakeman EA. 123.  1996. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75:1970–81 [Google Scholar]
  124. Rolls ET, Critchley HD, Treves A. 124.  1996. The representation of olfactory information in the primate orbitofrontal cortex. J. Neurophysiol. 75:1982–96 [Google Scholar]
  125. Rolls ET, Critchley HD, Verhagen JV, Kadohisa M. 125.  2010. The representation of information about taste and odor in the orbitofrontal cortex. Chemosens. Percept. 3:16–33 [Google Scholar]
  126. Rolls ET, Deco G. 126.  2010. The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function Oxford, UK: Oxford Univ. Press [Google Scholar]
  127. Rolls ET, Grabenhorst F. 127.  2008. The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol. 86:216–44 [Google Scholar]
  128. Rolls ET, Grabenhorst F, Deco G. 128.  2010. Choice, difficulty, and confidence in the brain. NeuroImage 53:694–706 [Google Scholar]
  129. Rolls ET, Grabenhorst F, Deco G. 129.  2010. Decision-making, errors, and confidence in the brain. J. Neurophysiol. 104:2359–74 [Google Scholar]
  130. Rolls ET, Grabenhorst F, Franco L. 130.  2009. Prediction of subjective affective state from brain activations. J. Neurophysiol. 101:1294–308 [Google Scholar]
  131. Rolls ET, Grabenhorst F, Margot C, da Silva MAAP, Velazco MI. 131.  2008. Selective attention to affective value alters how the brain processes olfactory stimuli. J. Cogn. Neurosci. 20:1815–26 [Google Scholar]
  132. Rolls ET, Grabenhorst F, Parris BA. 132.  2010. Neural systems underlying decisions about affective odors. J. Cogn. Neurosci. 22:1069–82 [Google Scholar]
  133. Rolls ET, Judge SJ, Sanghera M. 133.  1977. Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res. 130:229–38 [Google Scholar]
  134. Rolls ET, Kellerhals MB, Nichols TE. 134.  2015. Age differences in the brain mechanisms of good taste. NeuroImage 113:298–309 [Google Scholar]
  135. Rolls ET, Kringelbach ML, de Araujo IET. 135.  2003. Different representations of pleasant and unpleasant odors in the human brain. Eur. J. Neurosci. 18:695–703 [Google Scholar]
  136. Rolls ET, McCabe C. 136.  2007. Enhanced affective brain representations of chocolate in cravers versus non-cravers. Eur. J. Neurosci. 26:1067–76 [Google Scholar]
  137. Rolls ET, Murzi E, Yaxley S, Thorpe SJ, Simpson SJ. 137.  1986. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res. 368:79–86 [Google Scholar]
  138. Rolls ET, Rolls BJ. 138.  1977. Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. Food Intake and Chemical Senses Y Katsuki, M Sato, S Takagi, Y Oomura 525–49 Tokyo: Univ. Tokyo Press [Google Scholar]
  139. Rolls ET, Rolls BJ, Rowe EA. 139.  1983. Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol. Behav. 30:185–92 [Google Scholar]
  140. Rolls ET, Rolls JH. 140.  1997. Olfactory sensory-specific satiety in humans. Physiol. Behav. 61:461–73 [Google Scholar]
  141. Rolls ET, Sanghera MK, Roper-Hall A. 141.  1979. The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res. 164:121–35 [Google Scholar]
  142. Rolls ET, Scott TR. 142.  2003. Central taste anatomy and neurophysiology. Handbook of Olfaction and Gustation RL Doty 679–705 New York: Dekker [Google Scholar]
  143. Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S. 143.  1988. The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J. Physiol. 397:1–12 [Google Scholar]
  144. Rolls ET, Sienkiewicz ZJ, Yaxley S. 144.  1989. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1:53–60 [Google Scholar]
  145. Rolls ET, Thorpe SJ, Maddison SP. 145.  1983. Responses of striatal neurons in the behaving monkey. 1: Head of the caudate nucleus. Behav. Brain Res. 7:179–210 [Google Scholar]
  146. Rolls ET, Treves A. 146.  2011. The neuronal encoding of information in the brain. Prog. Neurobiol. 95:448–90 [Google Scholar]
  147. Rolls ET, Verhagen JV, Kadohisa M. 147.  2003. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness and capsaicin. J. Neurophysiol. 90:3711–24 [Google Scholar]
  148. Rolls ET, Yaxley S, Sienkiewicz ZJ. 148.  1990. Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J. Neurophysiol. 64:1055–66 [Google Scholar]
  149. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. 149.  2011. Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–69 [Google Scholar]
  150. Sanghera MK, Rolls ET, Roper-Hall A. 150.  1979. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63:610–26 [Google Scholar]
  151. Schachter S. 151.  1971. Importance of cognitive control in obesity. Am. Psychol. 26:129–44 [Google Scholar]
  152. Schultz W. 152.  2007. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30:259–88 [Google Scholar]
  153. Schultz W. 153.  2013. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23:229–38 [Google Scholar]
  154. Sclafani A. 154.  2013. Gut-brain nutrient signaling. Appetition versus satiation. Appetite 71:454–58 [Google Scholar]
  155. Sclafani A, Ackroff K, Schwartz GJ. 155.  2003. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol. Behav. 78:285–94 [Google Scholar]
  156. Scott TR, Karadi Z, Oomura Y, Nishino H, Plata-Salaman CR. 156.  et al. 1993. Gustatory neural coding in the amygdala of the alert macaque monkey. J. Neurophysiol. 69:1810–20 [Google Scholar]
  157. Scott TR, Plata-Salaman CR. 157.  1999. Taste in the monkey cortex. Physiol. Behav. 67:489–511 [Google Scholar]
  158. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET. 158.  1986. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J. Neurophysiol. 56:876–90 [Google Scholar]
  159. Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET. 159.  1986. Taste responses in the nucleus tractus solitarius of the behaving monkey. J. Neurophysiol. 55:182–200 [Google Scholar]
  160. Seeley RJ, Kaplan JM, Grill HJ. 160.  1995. Effect of occluding the pylorus on intraoral intake: a test of the gastric hypothesis of meal termination. Physiol. Behav. 58:245–49 [Google Scholar]
  161. Silventoinen K, Magnusson PK, Tynelius P, Kaprio J, Rasmussen F. 161.  2008. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet. Epidemiol. 32:341–49 [Google Scholar]
  162. Simmons WK, Martin A, Barsalou LW. 162.  2005. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb. Cortex 15:1602–8 [Google Scholar]
  163. Small DM. 163.  2010. Taste representation in the human insula. Brain Struct. Funct. 214:551–61 [Google Scholar]
  164. Small DM, Prescott J. 164.  2005. Odor/taste integration and the perception of flavor. Exp. Brain Res. 166:345–57 [Google Scholar]
  165. Small DM, Scott TR. 165.  2009. Symposium overview: What happens to the pontine processing? Repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann. N. Y. Acad. Sci. 1170343–46 [Google Scholar]
  166. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D. 166.  2004. Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92:1892–903 [Google Scholar]
  167. Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV. 167.  et al. 1999. Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10:7–14 [Google Scholar]
  168. Smith DG, Robbins TW. 168.  2013. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol. Psychiatry 73:804–10 [Google Scholar]
  169. Sobel N, Prabkakaran V, Zhao Z, Desmond JE, Glover GH. 169.  et al. 2000. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 83:537–51 [Google Scholar]
  170. Sternson SM. 170.  2013. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77:810–24 [Google Scholar]
  171. Strait CE, Sleezer BJ, Hayden BY. 171.  2015. Signatures of value comparison in ventral striatum neurons. PLOS Biol. 13:e1002173 [Google Scholar]
  172. Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. 172.  2010. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57:359–72 [Google Scholar]
  173. Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE. 173.  et al. 2012. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes. Rev. 13:835–47 [Google Scholar]
  174. Thorpe SJ, Rolls ET, Maddison S. 174.  1983. Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp. Brain Res. 49:93–115 [Google Scholar]
  175. van der Klaauw AA, Farooqi IS. 175.  2015. The hunger genes: pathways to obesity. Cell 161:119–32 [Google Scholar]
  176. Verhagen JV, Kadohisa M, Rolls ET. 176.  2004. The primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature and taste of foods. J. Neurophysiol. 92:1685–99 [Google Scholar]
  177. Verhagen JV, Rolls ET, Kadohisa M. 177.  2003. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J. Neurophysiol. 90:1514–25 [Google Scholar]
  178. Volkow ND, Wang GJ, Tomasi D, Baler RD. 178.  2013. Obesity and addiction: neurobiological overlaps. Obes. Rev. 14:2–18 [Google Scholar]
  179. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J. 179.  et al. 2004. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage 21:1790–97 [Google Scholar]
  180. Wilks DC, Besson H, Lindroos AK, Ekelund U. 180.  2011. Objectively measured physical activity and obesity prevention in children, adolescents and adults: a systematic review of prospective studies. Obes. Rev. 12:e119–29 [Google Scholar]
  181. Williams GV, Rolls ET, Leonard CM, Stern C. 181.  1993. Neuronal responses in the ventral striatum of the behaving macaque. Behav. Brain Res. 55:243–52 [Google Scholar]
  182. Wilson FAW, Rolls ET. 182.  2005. The primate amygdala and reinforcement: a dissociation between rule-based and associatively-mediated memory revealed in amygdala neuronal activity. Neuroscience 133:1061–72 [Google Scholar]
  183. Wise SP. 183.  2008. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31:599–608 [Google Scholar]
  184. Woods SC. 184.  2013. Metabolic signals and food intake. Forty years of progress. Appetite 71:440–44 [Google Scholar]
  185. Woods SC, Begg DP. 185.  2016. Regulation of the motivation to eat. Curr. Topics Behav. Neurosci. In press [Google Scholar]
  186. Yan J, Scott TR. 186.  1996. The effect of satiety on responses of gustatory neurons in the amygdala of alert cynomolgus macaques. Brain Res. 740:193–200 [Google Scholar]
  187. Yaxley S, Rolls ET, Sienkiewicz ZJ. 187.  1988. The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol. Behav. 42:223–29 [Google Scholar]
  188. Yaxley S, Rolls ET, Sienkiewicz ZJ. 188.  1990. Gustatory responses of single neurons in the insula of the macaque monkey. J. Neurophysiol. 63:689–700 [Google Scholar]
  189. Yaxley S, Rolls ET, Sienkiewicz ZJ, Scott TR. 189.  1985. Satiety does not affect gustatory activity in the nucleus of the solitary tract of the alert monkey. Brain Res. 347:85–93 [Google Scholar]
  190. Zald DH, Hagen MC, Pardo JV. 190.  2002. Neural correlates of tasting concentrated quinine and sugar solutions. J. Neurophysiol. 87:1068–75 [Google Scholar]
  191. Zald DH, Lee JT, Fluegel KW, Pardo JV. 191.  1998. Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–54 [Google Scholar]
  192. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E. 192.  1992. Functional localization of human olfactory cortex. Nature 360:339–40 [Google Scholar]
  193. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I. 193.  et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115:255–66 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error