Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amati F, Pennant M, Azuma K, Dube JJ, Toledo FG. 1.  et al. 2012. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity 20:1115–17 [Google Scholar]
  2. Atherton PJ, Smith K. 2.  2012. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 590:1049–57 [Google Scholar]
  3. Aversa Z, Alamdari N, Castillero E, Muscaritoli M, Rossi Fanelli F, Hasselgren PO. 3.  2012. β-Hydroxy-β-methylbutyrate (HMB) prevents dexamethasone-induced myotube atrophy. Biochem. Biophys. Res. Commun. 423:739–43 [Google Scholar]
  4. Baker DJ, Betik AC, Krause DJ, Hepple RT. 4.  2006. No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: Effects are independent of mitochondrial DNA integrity. J. Gerontol. A Biol. Sci. Med. Sci. 61:675–84 [Google Scholar]
  5. Barros RP, Gabbi C, Morani A, Warner M, Gustafsson JA. 5.  2009. Participation of ERα and ERβ in glucose homeostasis in skeletal muscle and white adipose tissue. Am. J. Physiol. Endocrinol. Metab. 297:E124–33 [Google Scholar]
  6. Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez-Jimenez F, Bartels SJ. 6.  2013. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survey 1999–2004. J. Am. Geriatr. Soc. 61:974–80 [Google Scholar]
  7. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ. 7.  2014. Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur. J. Clin. Nutr. 68:1001–7 [Google Scholar]
  8. Baumgartner RN. 8.  2000. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 904:437–48 [Google Scholar]
  9. Beregi E, Regius O, Huttl T, Gobl Z. 9.  1988. Age-related changes in the skeletal muscle cells. Z. Gerontol. 21:83–86 [Google Scholar]
  10. Blaauw B, Schiaffino S, Reggiani C. 10.  2013. Mechanisms modulating skeletal muscle phenotype. Compr. Physiol. 3:1645–87 [Google Scholar]
  11. Blunt BA, Barrettconnor E, Wingard DL. 11.  1991. Evaluation of fasting plasma-glucose as screening-test for NIDDM in older adults—Rancho Bernardo Study. Diabetes Care 14:989–93 [Google Scholar]
  12. Boland R, Vasconsuelo A, Milanesi L, Ronda AC, de Boland AR. 12.  2008. 17β-Estradiol signaling in skeletal muscle cells and its relationship to apoptosis. Steroids 73:859–63 [Google Scholar]
  13. Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN. 13.  et al. 2004. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 18:1144–46 [Google Scholar]
  14. Bonnefoy M, Gilbert T. 14.  2015. Body composition and comorbidity in the elderly. Geriatr. Psychol. Neuropsychiatr. Vieil. 13:29–36 [Google Scholar]
  15. Callahan DM, Bedrin NG, Subramanian M, Berking J, Ades PA. 15.  et al. 2014. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function. J. Appl. Physiol. 116:1582–92 [Google Scholar]
  16. Capllonch-Amer G, Sbert-Roig M, Galmes-Pascual BM, Proenza AM, Llado I. 16.  et al. 2014. Estradiol stimulates mitochondrial biogenesis and adiponectin expression in skeletal muscle. J. Endocrinol. 221:391–403 [Google Scholar]
  17. Carter SL, Rennie C, Tarnopolsky MA. 17.  2001. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 280:E898–907 [Google Scholar]
  18. Casperson SL, Sheffield-Moore M, Hewlings SJ, Paddon-Jones D. 18.  2012. Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clin. Nutr. 31:512–19 [Google Scholar]
  19. Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM. 19.  et al. 2004. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 59:242–48 [Google Scholar]
  20. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. 20.  2008. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:2–12 [Google Scholar]
  21. Chevalier S, Goulet ED, Burgos SA, Wykes LJ, Morais JA. 21.  2011. Protein anabolic responses to a fed steady state in healthy aging. J. Gerontol. A Biol. Sci. Med. Sci. 66:681–88 [Google Scholar]
  22. Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. 22.  2006. Mechanism of insulin's anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am. J. Physiol. Endocrinol. Metab. 291:E729–36 [Google Scholar]
  23. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL. 23.  et al. 2002. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. Relat. Metab. Disord. 26:1596–609 [Google Scholar]
  24. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M. 24.  et al. 1992. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J. Gerontol. 47:B71–76 [Google Scholar]
  25. Collino S, Martin FP, Karagounis LG, Horcajada MN, Moco S. 25.  et al. 2013. Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mech. Ageing Dev. 134:541–47 [Google Scholar]
  26. Conley KE, Jubrias SA, Esselman PC. 26.  2000. Oxidative capacity and ageing in human muscle. J. Physiol. 526:Part 1203–10 [Google Scholar]
  27. Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A. 27.  et al. 2010. Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism 59:703–10 [Google Scholar]
  28. Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM. 28.  et al. 2005. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged versus young women. J. Appl. Physiol. 1985 99:1872–79 [Google Scholar]
  29. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T. 29.  et al. 2005. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19:422–24 [Google Scholar]
  30. Despres JP, Lemieux I. 30.  2006. Abdominal obesity and metabolic syndrome. Nature 444:881–87 [Google Scholar]
  31. Dieli-Conwright CM, Spektor TM, Rice JC, Todd Schroeder E. 31.  2009. Oestradiol and SERM treatments influence oestrogen receptor coregulator gene expression in human skeletal muscle cells. Acta Physiol. (Oxf.) 197:187–96 [Google Scholar]
  32. Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP. 32.  et al. 2009. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J. Clin. Endocrinol. Metab. 94:1630–37 [Google Scholar]
  33. Ding EL, Song Y, Manson JE, Rifai N, Buring JE, Liu S. 33.  2007. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia 50:2076–84 [Google Scholar]
  34. Donini LM, Savina C, Cannella C. 34.  2003. Eating habits and appetite control in the elderly: the anorexia of aging. Int. Psychogeriatr. 15:73–87 [Google Scholar]
  35. Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM. 35.  et al. 2012. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am. J. Physiol. Endocrinol. Metab. 302:E1113–22 [Google Scholar]
  36. Drummond MJ, Miyazaki M, Dreyer HC, Pennings B, Dhanani S. 36.  et al. 2009. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J. Appl. Physiol. 106:1403–11 [Google Scholar]
  37. Dubowitz N, Xue W, Long Q, Ownby JG, Olson DE. 37.  et al. 2014. Aging is associated with increased HbA1c levels, independently of glucose levels and insulin resistance, and also with decreased HbA1c diagnostic specificity. Diabet. Med. 31:927–35 [Google Scholar]
  38. Dukes A, Davis C, El Refaey M, Upadhyay S, Mork S. 38.  et al. 2015. The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro. Nutrition 31:1018–24 [Google Scholar]
  39. Eley HL, Russell ST, Tisdale MJ. 39.  2008. Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-α and angiotensin II by β-hydroxy-β-methylbutyrate. Am. J. Physiol. Endocrinol. Metab. 295:E1417–26 [Google Scholar]
  40. Eriksen MB, Glintborg D, Nielsen MF, Jakobsen MA, Brusgaard K. 40.  et al. 2014. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance. Biochem. Biophys. Res. Commun. 451:622–26 [Google Scholar]
  41. Fantin F, Di Francesco V, Fontana G, Zivelonghi A, Bissoli L. 41.  et al. 2007. Longitudinal body composition changes in old men and women: interrelationships with worsening disability. J. Gerontol. A Biol. Sci. Med. Sci. 62:1375–81 [Google Scholar]
  42. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB. 42.  et al. 2002. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 87:589–98 [Google Scholar]
  43. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE. 43.  et al. 2011. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 12:249–56 [Google Scholar]
  44. Flakoll P, Sharp R, Baier S, Levenhagen D, Carr C, Nissen S. 44.  2004. Effect of β-hydroxy-β-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition 20:445–51 [Google Scholar]
  45. Forsberg AM, Nilsson E, Werneman J, Bergstrom J, Hultman E. 45.  1991. Muscle composition in relation to age and sex. Clin. Sci. 81:249–56 [Google Scholar]
  46. Frederiksen L, Højlund K, Hougaard DM, Brixen K, Andersen M. 46.  2012. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Dordr.) 34:145–56 [Google Scholar]
  47. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. 47.  1991. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J. Appl. Physiol. 71:644–50 [Google Scholar]
  48. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM. 48.  et al. 2011. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 1:11 [Google Scholar]
  49. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM. 49.  et al. 2013. Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 68:599–607 [Google Scholar]
  50. Fu MH, Maher AC, Hamadeh MJ, Ye C, Tarnopolsky MA. 50.  2009. Exercise, sex, menstrual cycle phase, and 17β-estradiol influence metabolism-related genes in human skeletal muscle. Physiol. Genom. 40:34–47 [Google Scholar]
  51. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M. 51.  et al. 2006. The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 61:1059–64 [Google Scholar]
  52. Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D. 52.  et al. 2014. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J. Appl. Physiol. 116:998–1005 [Google Scholar]
  53. Guadalupe-Grau A, Rodriguez-Garcia L, Torres-Peralta R, Morales-Alamo D, Ponce-Gonzalez JG. 53.  et al. 2016. Greater basal skeletal muscle AMPKα phosphorylation in men than in women: associations with anaerobic performance. Eur. J. Sport Sci. 16455–64
  54. Haddad F, Zaldivar F, Cooper DM, Adams GR. 54.  2005. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 1985 98:911–17 [Google Scholar]
  55. Ham DJ, Caldow MK, Lynch GS, Koopman R. 55.  2014. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner. Amino Acids 46:2643–52 [Google Scholar]
  56. Haren MT, Siddiqui AM, Armbrecht HJ, Kevorkian RT, Kim MJ. 56.  et al. 2011. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int. J. Androl. 34:55–68 [Google Scholar]
  57. Hojlund K, Beck-Nielsen H. 57.  2006. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes?. Curr. Diabetes Rev. 2:375–95 [Google Scholar]
  58. Holmang A, Svedberg J, Jennische E, Bjorntorp P. 58.  1990. Effects of testosterone on muscle insulin sensitivity and morphology in female rats. Am. J. Physiol. 259:E555–60 [Google Scholar]
  59. Holz MK, Ballif BA, Gygi SP, Blenis J. 59.  2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–80 [Google Scholar]
  60. Horton TJ, Commerford SR, Pagliassotti MJ, Bessesen DH. 60.  2002. Postprandial leg uptake of triglyceride is greater in women than in men. Am. J. Physiol. Endocrinol. Metab. 283:E1192–202 [Google Scholar]
  61. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. 61.  2002. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am. J. Clin. Nutr. 76:473–81 [Google Scholar]
  62. Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Fiatarone Singh MA. 62.  2004. Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 80:475–82 [Google Scholar]
  63. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. 63.  2002. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 57:M772–77 [Google Scholar]
  64. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. 64.  2004. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 159:413–21 [Google Scholar]
  65. Janssen I, Heymsfield SB, Ross R. 65.  2002. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50:889–96 [Google Scholar]
  66. Janssen I, Heymsfield SB, Wang ZM, Ross R. 66.  2000. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 1985 89:81–88 [Google Scholar]
  67. Jensen MD. 67.  1995. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Investig. 96:2297–303 [Google Scholar]
  68. Johnson MA, Polgar J, Weightman D, Appleton D. 68.  1973. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 18:111–29 [Google Scholar]
  69. Kalyani RR, Kim C, Ferrucci L, Laughlin GA, Kritz-Silverstein D. 69.  et al. 2015. Sex differences in the association of fasting and postchallenge glucose levels with grip strength among older adults: the Rancho Bernardo Study. BMJ Open Diabetes Res. Care 3:e000086 [Google Scholar]
  70. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. 70.  2006. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 291:E381–87 [Google Scholar]
  71. Katsiaras A, Newman AB, Kriska A, Brach J, Krishnaswami S. 71.  et al. 2005. Skeletal muscle fatigue, strength, and quality in the elderly: the Health ABC Study. J. Appl. Physiol. 99:210–16 [Google Scholar]
  72. Kent-Braun JA, Ng AV, Young K. 72.  2000. Skeletal muscle contractile and noncontractile components in young and older women and men. J. Appl. Physiol. 88:662–68 [Google Scholar]
  73. Kiens B, Lithell H, Mikines KJ, Richter EA. 73.  1989. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J. Clin. Investig. 84:1124–29 [Google Scholar]
  74. Kiens B, Roepstorff C, Glatz JF, Bonen A, Schjerling P. 74.  et al. 2004. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J. Appl. Physiol. 97:1209–18 [Google Scholar]
  75. Kim J, Kundu M, Viollet B, Guan KL. 75.  2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 [Google Scholar]
  76. Kim YA, Kim YS, Oh SL, Kim HJ, Song W. 76.  2013. Autophagic response to exercise training in skeletal muscle with age. J. Physiol. Biochem. 69:697–705 [Google Scholar]
  77. Kitamura I, Koda M, Otsuka R, Ando F, Shimokata H. 77.  2014. Six-year longitudinal changes in body composition of middle-aged and elderly Japanese: age and sex differences in appendicular skeletal muscle mass. Geriatr. Gerontol. Int. 14:354–61 [Google Scholar]
  78. Kob R, Bollheimer LC, Bertsch T, Fellner C, Djukic M. 78.  et al. 2015. Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis?. Biogerontology 16:15–29 [Google Scholar]
  79. Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O. 79.  et al. 2008. Functional impact of 10 days of bed rest in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 63:1076–81 [Google Scholar]
  80. Kroemer G. 80.  2015. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Investig. 125:1–4 [Google Scholar]
  81. Kuhl H. 81.  2005. Breast cancer risk in the WHI study: the problem of obesity. Maturitas 51:83–97 [Google Scholar]
  82. Kumar V, Selby A, Rankin D, Patel R, Atherton P. 82.  et al. 2009. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 587:211–17 [Google Scholar]
  83. Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. 83.  2001. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur. J. Clin. Nutr. 55:663–72 [Google Scholar]
  84. La Colla A, Vasconsuelo A, Boland R. 84.  2013. Estradiol exerts antiapoptotic effects in skeletal myoblasts via mitochondrial PTP and MnSOD. J. Endocrinol. 216:331–41 [Google Scholar]
  85. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R. 85.  et al. 2008. Endurance exercise as a countermeasure for aging. Diabetes 57:2933–42 [Google Scholar]
  86. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ. 86.  et al. 2012. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab. 16:777–88 [Google Scholar]
  87. Lee D, Goldberg AL. 87.  2013. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J. Biol. Chem. 288:30515–26 [Google Scholar]
  88. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J. 88.  et al. 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. PNAS 105:3374–79 [Google Scholar]
  89. Levadoux E, Morio B, Montaurier C, Puissant V, Boirie Y. 89.  et al. 2001. Reduced whole-body fat oxidation in women and in the elderly. Int. J. Obes. Relat. Metab. Disord. 25:39–44 [Google Scholar]
  90. Li YP, Atkins CM, Sweatt JD, Reid MB. 90.  1999. Mitochondria mediate tumor necrosis factor-α/NF-κB signaling in skeletal muscle myotubes. Antioxid. Redox Signal. 1:97–104 [Google Scholar]
  91. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL. 91.  et al. 1997. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 83:1581–87 [Google Scholar]
  92. Llovera M, Lopez-Soriano FJ, Argiles JM. 92.  1993. Effects of tumor necrosis factor-α on muscle-protein turnover in female Wistar rats. J. Natl. Cancer Inst. 85:1334–39 [Google Scholar]
  93. Lowell BB, Shulman GI. 93.  2005. Mitochondrial dysfunction and type 2 diabetes. Science 307:384–87 [Google Scholar]
  94. Madeo F, Zimmermann A, Maiuri MC, Kroemer G. 94.  2015. Essential role for autophagy in life span extension. J. Clin. Investig. 125:85–93 [Google Scholar]
  95. Magkos F, Mohammed BS, Mittendorfer B. 95.  2009. Plasma lipid transfer enzymes in non-diabetic lean and obese men and women. Lipids 44:459–64 [Google Scholar]
  96. Maher AC, Akhtar M, Vockley J, Tarnopolsky MA. 96.  2010. Women have higher protein content of β-oxidation enzymes in skeletal muscle than men. PLOS ONE 5:e12025 [Google Scholar]
  97. Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J. 97.  et al. 2006. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech. Ageing Dev. 127:298–306 [Google Scholar]
  98. Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S. 98.  et al. 2015. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp. Gerontol. 65:1–7 [Google Scholar]
  99. McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. 99.  2000. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 278:E580–87 [Google Scholar]
  100. Melanson EL, Sharp TA, Seagle HM, Horton TJ, Donahoo WT. 100.  et al. 2002. Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. J. Appl. Physiol. 92:1045–52 [Google Scholar]
  101. Meyer C, Pimenta W, Woerle HJ, Van Haeften T, Szoke E. 101.  et al. 2006. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–14 [Google Scholar]
  102. Milanesi L, de Boland AR, Boland R. 102.  2008. Expression and localization of estrogen receptor α in the C2C12 murine skeletal muscle cell line. J. Cell Biochem. 104:1254–73 [Google Scholar]
  103. Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL. 103.  2012. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11:150–61 [Google Scholar]
  104. Minematsu A, Hazaki K, Harano A, Okamoto N, Kurumatani N. 104.  2016. Differences in physical function by body mass index in elderly Japanese individuals: the Fujiwara-kyo Study. Obes. Res. Clin. Pract. 10:41–48 [Google Scholar]
  105. Mitnitski A, Song X, Skoog I, Broe GA, Cox JL. 105.  et al. 2005. Relative fitness and frailty of elderly men and women in developed countries and their relationship with mortality. J. Am. Geriatr. Soc. 53:2184–89 [Google Scholar]
  106. Moghetti P, Tosi F, Bonin C, Di Sarra D, Fiers T. 106.  et al. 2013. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98:E628–37 [Google Scholar]
  107. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA. 107.  et al. 2015. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 70:57–62 [Google Scholar]
  108. Muller M, Grobbee DE, den Tonkelaar I, Lamberts SW, van der Schouw YT. 108.  2005. Endogenous sex hormones and metabolic syndrome in aging men. J. Clin. Endocrinol. Metab. 90:2618–23 [Google Scholar]
  109. Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. 109.  1998. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83:2001–5 [Google Scholar]
  110. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B. 110.  et al. 2003. Sarcopenia: alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 51:1602–9 [Google Scholar]
  111. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J. 111.  et al. 2013. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48:492–98 [Google Scholar]
  112. Ogborn DI, McKay BR, Crane JD, Safdar A, Akhtar M. 112.  et al. 2015. Effects of age and unaccustomed resistance exercise on mitochondrial transcript and protein abundance in skeletal muscle of men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308:R734–41 [Google Scholar]
  113. Oh C, Jho S, No JK, Kim HS. 113.  2015. Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutr. Res. 35:1–6 [Google Scholar]
  114. Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H. 114.  1992. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J. Clin. Endocrinol. Metab. 75:1002–4 [Google Scholar]
  115. Paddon-Jones D, Rasmussen BB. 115.  2009. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 12:86–90 [Google Scholar]
  116. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE. 116.  et al. 2004. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol. Endocrinol. Metab. 286:E321–28 [Google Scholar]
  117. Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R. 117.  et al. 2009. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32:1993–97 [Google Scholar]
  118. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA. 118.  2004. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J. Appl. Physiol. 97:243–48 [Google Scholar]
  119. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA. 119.  et al. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–67 [Google Scholar]
  120. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. 120.  2012. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl. Physiol. Nutr. Metab. 37:724–35 [Google Scholar]
  121. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C. 121.  et al. 2003. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–42 [Google Scholar]
  122. Petersson SJ, Christensen LL, Kristensen JM, Kruse R, Andersen M, Hojlund K. 122.  2014. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. Eur. J. Endocrinol. 171:77–88 [Google Scholar]
  123. Pirimoglu ZM, Arslan C, Buyukbayrak EE, Kars B, Karsidag YK. 123.  et al. 2011. Glucose tolerance of premenopausal women after menopause due to surgical removal of ovaries. Climacteric 14:453–57 [Google Scholar]
  124. Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H. 124.  et al. 2005. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28:1636–42 [Google Scholar]
  125. Pollanen E, Kangas R, Horttanainen M, Niskala P, Kaprio J. 125.  et al. 2015. Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell 14:236–48 [Google Scholar]
  126. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. 126.  1995. Oxidative capacity of human muscle fiber types: effects of age and training status. J. Appl. Physiol. 78:2033–38 [Google Scholar]
  127. Pronsato L, Boland R, Milanesi L. 127.  2012. Testosterone exerts antiapoptotic effects against H2O2 in C2C12 skeletal muscle cells through the apoptotic intrinsic pathway. J. Endocrinol. 212:371–81 [Google Scholar]
  128. Prothro JW, Rosenbloom CA. 128.  1995. Body measurements of black and white elderly persons with emphasis on body composition. Gerontology 41:22–38 [Google Scholar]
  129. Ramachandran R, Gravenstein KS, Metter EJ, Egan JM, Ferrucci L, Chia CW. 129.  2012. Selective contribution of regional adiposity, skeletal muscle, and adipokines to glucose disposal in older adults. J. Am. Geriatr. Soc. 60:707–12 [Google Scholar]
  130. Ravaglia G, Forti P, Maioli F, Bastagli L, Chiappelli M. 130.  et al. 2006. Metabolic syndrome: prevalence and prediction of mortality in elderly individuals. Diabetes Care 29:2471–76 [Google Scholar]
  131. Reid MB, Lannergren J, Westerblad H. 131.  2002. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: involvement of muscle myofilaments. Am. J. Respir. Crit. Care Med. 166:479–84 [Google Scholar]
  132. Remels AH, Gosker HR, Schrauwen P, Hommelberg PP, Sliwinski P. 132.  et al. 2010. TNF-α impairs regulation of muscle oxidative phenotype: implications for cachexia?. FASEB J. 24:5052–62 [Google Scholar]
  133. Rennie MJ. 133.  2009. Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl. Physiol. Nutr. Metab. 34:377–81 [Google Scholar]
  134. Rhee MK, Ziemer DC, Kolm P, Phillips LS. 134.  2006. Postchallenge glucose rises with increasing age even when glucose tolerance is normal. Diabet. Med. 23:1174–79 [Google Scholar]
  135. Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL. 135.  et al. 2002. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am. J. Physiol. Endocrinol. Metab. 282:E435–47 [Google Scholar]
  136. Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssen I. 136.  et al. 2009. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study. Am. J. Clin. Nutr. 89:1895–900 [Google Scholar]
  137. Rooyackers OE, Adey DB, Ades PA, Nair KS. 137.  1996. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. PNAS 93:15364–69 [Google Scholar]
  138. Rubbieri G, Mossello E, Di Bari M. 138.  2014. Techniques for the diagnosis of sarcopenia. Clin. Cases Miner. Bone Metab. 11:181–84 [Google Scholar]
  139. Rubinsztein DC, Marino G, Kroemer G. 139.  2011. Autophagy and aging. Cell 146:682–95 [Google Scholar]
  140. Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP. 140.  2006. Lower skeletal muscle capillarization and VEGF expression in aged versus young men. J. Appl. Physiol. 100:178–85 [Google Scholar]
  141. Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, Debeer J, Tarnopolsky MA. 141.  2010. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLOS ONE 5:e10778 [Google Scholar]
  142. Salehzadeh F, Rune A, Osler M, Al-Khalili L. 142.  2011. Testosterone or 17β-estradiol exposure reveals sex-specific effects on glucose and lipid metabolism in human myotubes. J. Endocrinol. 210:219–29 [Google Scholar]
  143. Samson MM, Meeuwsen IB, Crowe A, Dessens JA, Duursma SA, Verhaar HJ. 143.  2000. Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing 29:235–42 [Google Scholar]
  144. Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM. 144.  et al. 2015. Skeletal muscle mitochondrial function and fatigability in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 70:1379–85 [Google Scholar]
  145. Santosa S, Jensen MD. 145.  2015. The sexual dimorphism of lipid kinetics in humans. Front. Endocrinol. 6:103 [Google Scholar]
  146. Sato K, Iemitsu M, Aizawa K, Ajisaka R. 146.  2008. Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 294:E961–68 [Google Scholar]
  147. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. 147.  2013. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280:4294–314 [Google Scholar]
  148. Schiaffino S, Mammucari C. 148.  2011. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1:4 [Google Scholar]
  149. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J. 149.  et al. 2005. Decline in skeletal muscle mitochondrial function with aging in humans. PNAS 102:5618–23 [Google Scholar]
  150. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. 150.  1990. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322:223–28 [Google Scholar]
  151. Singh A, Hamilton-Fairley D, Koistinen R, Seppala M, James VH. 151.  et al. 1990. Effect of insulin-like growth factor-type I (IGF-I) and insulin on the secretion of sex hormone binding globulin and IGF-I binding protein (IBP-I) by human hepatoma cells. J. Endocrinol. 124:R1–3 [Google Scholar]
  152. Smith GI, Atherton P, Villareal DT, Frimel TN, Rankin D. 152.  et al. 2008. Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65–80 year old men and women. PLOS ONE 3:e1875 [Google Scholar]
  153. Smith GI, Patterson BW, Klein SJ, Mittendorfer B. 153.  2015. Effect of hyperinsulinaemia-hyperamino-acidaemia on leg muscle protein synthesis and breakdown: reassessment of the two-pool arterio-venous balance model. J. Physiol. 593:4245–57 [Google Scholar]
  154. Smith GI, Villareal DT, Sinacore DR, Shah K, Mittendorfer B. 154.  2012. Muscle protein synthesis response to exercise training in obese, older men and women. Med. Sci. Sports Exerc. 44:1259–66 [Google Scholar]
  155. Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE. 155.  et al. 2014. Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J. Clin. Endocrinol. Metab. 99:256–65 [Google Scholar]
  156. Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS. 156.  et al. 2011. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell 10:931–48 [Google Scholar]
  157. Stout JR, Smith-Ryan AE, Fukuda DH, Kendall KL, Moon JR. 157.  et al. 2013. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+ yrs: a randomized, double-blind pilot trial. Exp. Gerontol. 48:1303–10 [Google Scholar]
  158. Straight CR, Brady AO, Evans E. 158.  2015. Sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women. Menopause 22:297–303 [Google Scholar]
  159. Su J, Ekman C, Oskolkov N, Lahti L, Strom K. 159.  et al. 2015. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet. Muscle 5:35 [Google Scholar]
  160. Suetta C, Aagaard P, Magnusson SP, Andersen LL, Sipila S. 160.  et al. 2007. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women: effects of unilateral long-term disuse due to hip-osteoarthritis. J. Appl. Physiol. 102:942–48 [Google Scholar]
  161. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D. 161.  2007. Aging does not impair the anabolic response to a protein-rich meal. Am. J. Clin. Nutr. 86:451–56 [Google Scholar]
  162. Szoke E, Shrayyef MZ, Messing S, Woerle HJ, van Haeften TW. 162.  et al. 2008. Effect of aging on glucose homeostasis—accelerated deterioration of beta-cell function in individuals with impaired glucose tolerance. Diabetes Care 31:539–43 [Google Scholar]
  163. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. 163.  2007. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R1271–78 [Google Scholar]
  164. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. 164.  2010. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid. Redox Signal. 12:503–35 [Google Scholar]
  165. Thalacker-Mercer AE, Dell'Italia LJ, Cui X, Cross JM, Bamman MM. 165.  2010. Differential genomic responses in old versus young humans despite similar levels of modest muscle damage after resistance loading. Physiol. Genom. 40:141–49 [Google Scholar]
  166. Thalacker-Mercer AE, Fleet JC, Craig BA, Campbell WW. 166.  2010. The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males. J. Nutr. Biochem. 21:1076–82 [Google Scholar]
  167. Thalacker-Mercer AE, Fleet JC, Craig BA, Carnell NS, Campbell WW. 167.  2007. Inadequate protein intake affects skeletal muscle transcript profiles in older humans. Am. J. Clin. Nutr. 85:1344–52 [Google Scholar]
  168. Tomiya A, Aizawa T, Nagatomi R, Sensui H, Kokubun S. 168.  2004. Myofibers express IL-6 after eccentric exercise. Am. J. Sports Med. 32:503–8 [Google Scholar]
  169. Toth MJ, Poehlman ET, Matthews DE, Tchernof A, MacCoss MJ. 169.  2001. Effects of estradiol and progesterone on body composition, protein synthesis, and lipoprotein lipase in rats. Am. J. Physiol. Endocrinol. Metab. 280:E496–501 [Google Scholar]
  170. Tucker MZ, Turcotte LP. 170.  2002. Impaired fatty acid oxidation in muscle of aging rats perfused under basal conditions. Am. J. Physiol. Endocrinol. Metab. 282:E1102–9 [Google Scholar]
  171. Tucker MZ, Turcotte LP. 171.  2003. Aging is associated with elevated muscle triglyceride content and increased insulin-stimulated fatty acid uptake. Am. J. Physiol. Endocrinol. Metab. 285:E827–35 [Google Scholar]
  172. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR. 172.  et al. 1995. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am. J. Physiol. 269:E820–26 [Google Scholar]
  173. Usui T, Kajita K, Kajita T, Mori I, Hanamoto T. 173.  et al. 2014. Elevated mitochondrial biogenesis in skeletal muscle is associated with testosterone-induced body weight loss in male mice. FEBS Lett. 588:1935–41 [Google Scholar]
  174. Vainshtein A, Grumati P, Sandri M, Bonaldo P. 174.  2014. Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J. Mol. Med. (Berl.) 92:127–37 [Google Scholar]
  175. Vasconsuelo A, Milanesi L, Boland R. 175.  2008. 17β-Estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J. Endocrinol. 196:385–97 [Google Scholar]
  176. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M. 176.  et al. 2005. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J. Gerontol. A Biol. Sci. Med. Sci. 60:324–33 [Google Scholar]
  177. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M. 177.  et al. 2002. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 50:897–904 [Google Scholar]
  178. Visser M, Pahor M, Tylavsky F, Kritchevsky SB, Cauley JA. 178.  et al. 2003. One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J. Appl. Physiol. 94:2368–74 [Google Scholar]
  179. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. 179.  2000. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J. Clin. Endocrinol. Metab. 85:4481–90 [Google Scholar]
  180. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. 180.  2001. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA 286:1206–12 [Google Scholar]
  181. Vrbikova J, Hainer V. 181.  2009. Obesity and polycystic ovary syndrome. Obes. Facts 2:26–35 [Google Scholar]
  182. Weigt C, Hertrampf T, Flenker U, Hulsemann F, Kurnaz P. 182.  et al. 2015. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J. Steroid Biochem. Mol. Biol. 154:12–22 [Google Scholar]
  183. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. 183.  2009. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. PNAS 106:20405–10 [Google Scholar]
  184. West DW, Burd NA, Churchward-Venne TA, Camera DM, Mitchell CJ. 184.  et al. 2012. Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J. Appl. Physiol. 112:1805–13 [Google Scholar]
  185. White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. 185.  2013. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell Endocrinol. 365:174–86 [Google Scholar]
  186. Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D. 186.  et al. 2009. Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am. J. Clin. Nutr. 90:1343–50 [Google Scholar]
  187. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. 187.  2003. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J. Gerontol. A Biol. Sci. Med. Sci. 58:618–25 [Google Scholar]
  188. Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C. 188.  2010. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp. Gerontol. 45:138–48 [Google Scholar]
  189. Zamboni M, Zoico E, Scartezzini T, Mazzali G, Tosoni P. 189.  et al. 2003. Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin. Exp. Res. 15:321–27 [Google Scholar]
  190. Zhao J, Brault JJ, Schild A, Cao P, Sandri M. 190.  et al. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6:472–83 [Google Scholar]
  191. Zoth N, Weigt C, Zengin S, Selder O, Selke N. 191.  et al. 2012. Metabolic effects of estrogen substitution in combination with targeted exercise training on the therapy of obesity in ovariectomized Wistar rats. J. Steroid Biochem. Mol. Biol. 130:64–72 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error