1932

Abstract

Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to () improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and () reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights () the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and () the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071715-050939
2016-07-17
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-071715-050939.html?itemId=/content/journals/10.1146/annurev-nutr-071715-050939&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham D, Rogers J, Gault P, Kushner JP, McClain DA. 1.  2006. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia 49:2546–51 [Google Scholar]
  2. Aigner E, Felder TK, Oberkofler H, Hahne P, Auer S. 2.  et al. 2013. Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J. Nutr. Biochem. 24:112–17 [Google Scholar]
  3. Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E. 3.  et al. 2011. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152:1314–26 [Google Scholar]
  4. Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. 4.  2014. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20:1427–35 [Google Scholar]
  5. Babitt JL, Lin HY. 5.  2011. The molecular pathogenesis of hereditary hemochromatosis. Semin. Liver Dis. 31:280–92 [Google Scholar]
  6. Bao W, Rong Y, Rong S, Liu L. 6.  2012. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 10:119 [Google Scholar]
  7. Bhattacharyya S, Ghosh J, Sil PC. 7.  2012. Iron induces hepatocytes death via MAPK activation and mitochondria-dependent apoptotic pathway: beneficial role of glycine. Free Radic. Res. 46:1296–307 [Google Scholar]
  8. Billings LK, Florez JC. 8.  2010. The genetics of type 2 diabetes: What have we learned from GWAS?. Ann. N. Y. Acad. Sci. 1212:59–77 [Google Scholar]
  9. Blasco G, Puig J, Daunis IEJ, Molina X, Xifra G. 9.  et al. 2014. Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case-control study. Diabetes Care 37:3076–83 [Google Scholar]
  10. Bluestone JA, Herold K, Eisenbarth G. 10.  2010. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–300 [Google Scholar]
  11. Boden G, Ruiz J, Urbain JL, Chen X. 11.  1996. Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. 271:E246–52 [Google Scholar]
  12. Bonaccorsi-Riani E, Danger R, Lozano JJ, Martinez-Picola M, Kodela E. 12.  et al. 2015. Iron deficiency impairs intra-hepatic lymphocyte mediated immune response. PLOS ONE 10:e0136106 [Google Scholar]
  13. Bonfils L, Ellervik C, Friedrich N, Linneberg A, Sandholt CH. 13.  et al. 2015. Fasting serum levels of ferritin are associated with impaired pancreatic beta cell function and decreased insulin sensitivity: a population-based study. Diabetologia 58:523–33 [Google Scholar]
  14. Borai A, Livingstone C, Farzal A, Baljoon D, Al Sofyani A. 14.  et al. 2015. Changes in metabolic indices in response to whole blood donation in male subjects with normal glucose tolerance. Clin. Biochem. 49:51–56 [Google Scholar]
  15. Boschero AC, Stoppiglia LF, Collares-Buzato CB, Bosqueiro JR, Delghingaro-Augusto V. 15.  et al. 2002. Expression of a thioredoxin peroxidase in insulin-producing cells. Diabetes Metab. 28:3S25–28; discussion 3S108–12 [Google Scholar]
  16. Boserup MW, Lichota J, Haile D, Moos T. 16.  2011. Heterogenous distribution of ferroportin-containing neurons in mouse brain. Biometals 24:357–75 [Google Scholar]
  17. Boveris A, Cadenas E. 17.  2000. Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–50 [Google Scholar]
  18. Bowers K, Yeung E, Williams MA, Qi L, Tobias DK. 18.  et al. 2011. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 34:1557–63 [Google Scholar]
  19. Breuer W, Shvartsman M, Cabantchik ZI. 19.  2008. Intracellular labile iron. Int. J. Biochem. Cell. Biol. 40:350–54 [Google Scholar]
  20. Brittenham GM, Griffith PM, Nienhuis AW, McLaren CE, Young NS. 20.  et al. 1994. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Engl. J. Med. 331:567–73 [Google Scholar]
  21. Brodie C, Siriwardana G, Lucas J, Schleicher R, Terada N. 21.  et al. 1993. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle. Cancer Res. 53:3968–75 [Google Scholar]
  22. Cai D. 22.  2013. Neuroinflammation in overnutrition-induced diseases. Vitam. Horm. 91:195–218 [Google Scholar]
  23. Cantor AG, Bougatsos C, Dana T, Blazina I, McDonagh M. 23.  2015. Routine iron supplementation and screening for iron deficiency anemia in pregnancy: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 162:566–76 [Google Scholar]
  24. Cario H, Holl RW, Debatin KM, Kohne E. 24.  2003. Insulin sensitivity and beta-cell secretion in thalassaemia major with secondary haemochromatosis: assessment by oral glucose tolerance test. Eur. J. Pediatr. 162:139–46 [Google Scholar]
  25. Carmona U, Li L, Zhang L, Knez M. 25.  2014. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage. Chem. Commun. (Camb.) 50:15358–61 [Google Scholar]
  26. Cassat JE, Skaar EP. 26.  2013. Iron in infection and immunity. Cell Host Microbe 13:509–19 [Google Scholar]
  27. Chang SY, Kim DB, Ko SH, Jo YH, Kim MJ. 27.  2013. Induction mechanism of lipocalin-2 expression by co-stimulation with interleukin-1β and interferon-γ in RINm5F beta-cells. Biochem. Biophys. Res. Commun. 434:577–83 [Google Scholar]
  28. Chen L, Hambright WS, Na R, Ran Q. 28.  2015. Ablation of ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J. Biol. Chem. 290:28097–106 [Google Scholar]
  29. Chen YC, Wu YT, Wei YH. 29.  2015. Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes. Free Radic. Res. 49:1285–95 [Google Scholar]
  30. Cheng K, Ho K, Stokes R, Scott C, Lau SM. 30.  et al. 2010. Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. J. Clin. Investig. 120:2171–83 [Google Scholar]
  31. Chenoufi N, Baffet G, Drenou B, Cariou S, Desille M. 31.  et al. 1998. Deferoxamine arrests in vitro the proliferation of porcine hepatocyte in G1 phase of the cell cycle. Liver 18:60–66 [Google Scholar]
  32. Cherayil BJ. 32.  2010. Iron and immunity: immunological consequences of iron deficiency and overload. Arch. Immunol. Ther. Exp. 58:407–15 [Google Scholar]
  33. Chitturi S, George J. 33.  2003. Interaction of iron, insulin resistance, and nonalcoholic steatohepatitis. Curr. Gastroenterol. Rep. 5:18–25 [Google Scholar]
  34. Choi SL, Kim SJ, Lee KT, Kim J, Mu J. 34.  et al. 2001. The regulation of AMP-activated protein kinase by H2O2. Biochem. Biophys. Res. Commun. 287:92–97 [Google Scholar]
  35. Christoforidis A, Perifanis V, Athanassiou-Metaxa M. 35.  2006. Combined chelation therapy improves glucose metabolism in patients with β-thalassaemia major. Br. J. Haematol. 135:271–72 [Google Scholar]
  36. Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM. 36.  et al. 2004. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am. J. Physiol. Endocrinol. Metab. 286:E252–60 [Google Scholar]
  37. Conlan AR, Axelrod HL, Cohen AE, Abresch EC, Zuris J. 37.  et al. 2009. Crystal structure of Miner1: the redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. J. Mol. Biol. 392:143–53 [Google Scholar]
  38. Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA. 38.  et al. 2010. Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell function in the obese (ob/ob lep−/−) mouse. Am. J. Physiol. Endocrinol. Metab. 298:E1236–43 [Google Scholar]
  39. Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL. 39.  et al. 2004. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 145:5305–12 [Google Scholar]
  40. Cutler P. 40.  1989. Deferoxamine therapy in high-ferritin diabetes. Diabetes 38:1207–10 [Google Scholar]
  41. Datz C, Felder TK, Niederseer D, Aigner E. 41.  2013. Iron homeostasis in the metabolic syndrome. Eur. J. Clin. Investig. 43:215–24 [Google Scholar]
  42. De Sanctis V, Soliman A, Yassin M. 42.  2013. Iron overload and glucose metabolism in subjects with β-thalassaemia major: an overview. Curr. Diabetes Rev. 9:332–41 [Google Scholar]
  43. Del Guerra S, D'Aleo V, Gualtierotti G, Pandolfi R, Boggi U. 43.  et al. 2012. Evidence for a role of frataxin in pancreatic islets isolated from multi-organ donors with and without type 2 diabetes mellitus. Horm. Metab. Res. 44:471–75 [Google Scholar]
  44. Deschemin JC, Noordine ML, Remot A, Willemetz A, Afif C. 44.  et al. 2016. The microbiota shifts the iron sensing of intestinal cells. FASEB J. 30:252–61 [Google Scholar]
  45. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM. 45.  et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72 [Google Scholar]
  46. Dmochowski K, Finegood DT, Francombe W, Tyler B, Zinman B. 46.  1993. Factors determining glucose tolerance in patients with thalassemia major. J. Clin. Endocrinol. Metab. 77:478–83 [Google Scholar]
  47. Donath MY, Shoelson SE. 47.  2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11:98–107 [Google Scholar]
  48. El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J. 48.  et al. 2010. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 β-cells. Endocrinology 151:3061–73 [Google Scholar]
  49. Ellervik C, Mandrup-Poulsen T, Andersen HU, Tybjaerg-Hansen A, Frandsen M. 49.  et al. 2011. Elevated transferrin saturation and risk of diabetes: three population-based studies. Diabetes Care 34:2256–58 [Google Scholar]
  50. Ellervik C, Marott JL, Tybjaerg-Hansen A, Schnohr P, Nordestgaard BG. 50.  2014. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: general population study and metaanalysis. Clin. Chem. 60:1419–28 [Google Scholar]
  51. Elouil H, Cardozo AK, Eizirik DL, Henquin JC, Jonas JC. 51.  2005. High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NFκB. Diabetologia 48:496–505 [Google Scholar]
  52. Escobar-Morreale HF, Luque-Ramirez M, Alvarez-Blasco F, Botella-Carretero JI, Sancho J, San Millan JL. 52.  2005. Body iron stores are increased in overweight and obese women with polycystic ovary syndrome. Diabetes Care 28:2042–44 [Google Scholar]
  53. Escolar E, Lamas GA, Mark DB, Boineau R, Goertz C. 53.  et al. 2014. The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the Trial to Assess Chelation Therapy (TACT). Circ. Cardiovasc. Qual. Outcomes 7:15–24 [Google Scholar]
  54. Facchini FS. 54.  1998. Effect of phlebotomy on plasma glucose and insulin concentrations. Diabetes Care 21:2190 [Google Scholar]
  55. Failla ML, Kennedy ML, Chen ML. 55.  1988. Iron metabolism in genetically obese (ob/ob) mice. J. Nutr. 118:46–51 [Google Scholar]
  56. Fajans SS, Bell GI. 56.  2011. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34:1878–84 [Google Scholar]
  57. Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. 57.  2006. Effect of enhanced iron chelation therapy on glucose metabolism in patients with β-thalassaemia major. Br. J. Haematol. 134:438–44 [Google Scholar]
  58. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA. 58.  et al. 1996. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13:399–408 [Google Scholar]
  59. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. 59.  2002. Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–54 [Google Scholar]
  60. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. 60.  2005. Iron stores, blood donation, and insulin sensitivity and secretion. Clin. Chem. 51:1201–5 [Google Scholar]
  61. Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Hernandez-Aguado I, Ricart W. 61.  2002. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes 51:1000–4 [Google Scholar]
  62. Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Lopez-Bermejo A, Ricart W. 62.  2002. Blood letting in high-ferritin type 2 diabetes: effects on vascular reactivity. Diabetes Care 25:2249–55 [Google Scholar]
  63. Fernandez-Real JM, Ricart-Engel W, Arroyo E, Balanca R, Casamitjana-Abella R. 63.  et al. 1998. Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 21:62–68 [Google Scholar]
  64. Festa M, Ricciardelli G, Mele G, Pietropaolo C, Ruffo A, Colonna A. 64.  2000. Overexpression of H ferritin and up-regulation of iron regulatory protein genes during differentiation of 3T3-L1 pre-adipocytes. J. Biol. Chem. 275:36708–12 [Google Scholar]
  65. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D. 65.  et al. 2012. Adipocyte iron regulates adiponectin and insulin sensitivity. J. Clin. Investig. 122:3529–40 [Google Scholar]
  66. Gamberini MR, Fortini M, De Sanctis V, Gilli G, Testa MR. 66.  2004. Diabetes mellitus and impaired glucose tolerance in thalassaemia major: incidence, prevalence, risk factors and survival in patients followed in the Ferrara Center. Pediatr. Endocrinol. Rev. 2:Suppl. 2285–91 [Google Scholar]
  67. Ganz T, Nemeth E. 67.  2015. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15:500–10 [Google Scholar]
  68. Gao Y, Li Z, Gabrielsen JS, Simcox JA, Lee SH. 68.  et al. 2015. Adipocyte iron regulates leptin and food intake. J. Clin. Investig. 125:3681–91 [Google Scholar]
  69. Gehrmann W, Elsner M, Lenzen S. 69.  2010. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes. Metab. 12:Suppl. 2149–58 [Google Scholar]
  70. Gerhart-Hines Z, Lazar MA. 70.  2015. Circadian metabolism in the light of evolution. Endocr. Rev. 36:289–304 [Google Scholar]
  71. Ghio AJ. 71.  2009. Disruption of iron homeostasis and lung disease. Biochim. Biophys. Acta 1790:731–39 [Google Scholar]
  72. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. 72.  2005. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–50 [Google Scholar]
  73. Guillygomarc'h A, Mendler MH, Moirand R, Laine F, Quentin V. 73.  et al. 2001. Venesection therapy of insulin resistance-associated hepatic iron overload. J. Hepatol. 35:344–49 [Google Scholar]
  74. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ. 74.  et al. 2005. Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–49 [Google Scholar]
  75. Guo LY, Alekseev O, Li Y, Song Y, Dunaief JL. 75.  2014. Iron increases APP translation and amyloid-beta production in the retina. Exp. Eye Res. 129:31–37 [Google Scholar]
  76. Haataja L, Gurlo T, Huang CJ, Butler PC. 76.  2008. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29:303–16 [Google Scholar]
  77. Hansen JB, Moen IW, Mandrup-Poulsen T. 77.  2014. Iron: the hard player in diabetes pathophysiology. Acta Physiol. (Oxf.) 210:717–32 [Google Scholar]
  78. Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J. 78.  et al. 2012. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab. 16:449–61 [Google Scholar]
  79. Harrison-Findik DD. 79.  2007. Role of alcohol in the regulation of iron metabolism. World J. Gastroenterol. 13:4925–30 [Google Scholar]
  80. Hatunic M, Finucane FM, Brennan AM, Norris S, Pacini G, Nolan JJ. 80.  2010. Effect of iron overload on glucose metabolism in patients with hereditary hemochromatosis. Metabolism 59:380–84 [Google Scholar]
  81. Hatunic M, Finucane FM, Norris S, Pacini G, Nolan JJ. 81.  2010. Glucose metabolism after normalization of markers of iron overload by venesection in subjects with hereditary hemochromatosis. Metabolism 59:1811–15 [Google Scholar]
  82. He MJ, Jiang J, Liu S, Cheng H. 82.  2013. Effect of iron supplementation on glucose transporter 4 expression in adipose tissue and skeletal muscle of pregnant rats. Open J. Obstet. Gynecol. 3:500–7 [Google Scholar]
  83. Heath AL, Fairweather-Tait SJ. 83.  2002. Clinical implications of changes in the modern diet: iron intake, absorption and status. Best Pract. Res. Clin. Haematol. 15:225–41 [Google Scholar]
  84. Hider RC, Kong XL. 84.  2011. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179–87 [Google Scholar]
  85. Hotamisligil GS. 85.  2003. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab. Disord. 27:Suppl. 3S53–55 [Google Scholar]
  86. Houschyar KS, Ludtke R, Dobos GJ, Kalus U, Broecker-Preuss M. 86.  et al. 2012. Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial. BMC Med. 10:54 [Google Scholar]
  87. Hramiak IM, Finegood DT, Adams PC. 87.  1997. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin. Investig. Med. 20:110–18 [Google Scholar]
  88. Huang J, Gabrielsen JS, Cooksey RC, Luo B, Boros LG. 88.  et al. 2007. Increased glucose disposal and AMP-dependent kinase signaling in a mouse model of hemochromatosis. J. Biol. Chem. 282:37501–7 [Google Scholar]
  89. Huang J, Jones D, Luo B, Sanderson M, Soto J. 89.  et al. 2011. Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60:80–87 [Google Scholar]
  90. Huang J, Simcox J, Mitchell TC, Jones D, Cox J. 90.  et al. 2013. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J. 27:2845–54 [Google Scholar]
  91. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE. 91.  et al. 1999. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–16 [Google Scholar]
  92. Hurrell R, Egli I. 92.  2010. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 91:1461–67S [Google Scholar]
  93. 93. Int. Diabetes Fed. 2016. About diabetes—facts and figures. Brussels: IDF. http://www.idf.org/wdd-index/ [Google Scholar]
  94. Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S. 94.  et al. 2004. Pioglitazone improves insulin secretory capacity and prevents the loss of β-cell mass in obese diabetic db/db mice: possible protection of β cells from oxidative stress. Metabolism 53:488–94 [Google Scholar]
  95. Iwasaki T, Nakajima A, Yoneda M, Yamada Y, Mukasa K. 95.  et al. 2005. Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care 28:2486–91 [Google Scholar]
  96. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P. 96.  et al. 2015. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64:731–42 [Google Scholar]
  97. Javadian P, Alimohamadi S, Gharedaghi MH, Hantoushzadeh S. 97.  2014. Gestational diabetes mellitus and iron supplement; effects on pregnancy outcome. Acta Med. Iran 52:385–89 [Google Scholar]
  98. Jehn M, Clark JM, Guallar E. 98.  2004. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 27:2422–28 [Google Scholar]
  99. Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. 99.  2004. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291:711–17 [Google Scholar]
  100. Jonas JC, Guiot Y, Rahier J, Henquin JC. 100.  2003. Haeme-oxygenase 1 expression in rat pancreatic beta cells is stimulated by supraphysiological glucose concentrations and by cyclic AMP. Diabetologia 46:1234–44 [Google Scholar]
  101. Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S. 101.  et al. 2008. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol. Med. 14:98–108 [Google Scholar]
  102. Kaasik K, Lee CC. 102.  2004. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–71 [Google Scholar]
  103. Kahn SE, Cooper ME, Del Prato S. 103.  2014. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–83 [Google Scholar]
  104. Kahn SE, Hull RL, Utzschneider KM. 104.  2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–46 [Google Scholar]
  105. Karpe F, Dickmann JR, Frayn KN. 105.  2011. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60:2441–49 [Google Scholar]
  106. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. 106.  2011. Human nutrition, the gut microbiome and the immune system. Nature 474:327–36 [Google Scholar]
  107. Kawabata H, Germain RS, Vuong PT, Nakamaki T, Said JW, Koeffler HP. 107.  2000. Transferrin receptor 2-α supports cell growth both in iron-chelated cultured cells and in vivo. J. Biol. Chem. 275:16618–25 [Google Scholar]
  108. Kaye TB, Guay AT, Simonson DC. 108.  1993. Non-insulin-dependent diabetes mellitus and elevated serum ferritin level. J. Diabetes Complicat. 7:246–49 [Google Scholar]
  109. Kim MJ, Kim HK, Chung JH, Lim BO, Yamada K. 109.  et al. 2005. Increased expression of hypothalamic NADPH-diaphorase neurons in mice with iron supplement. Biosci. Biotechnol. Biochem. 69:1978–81 [Google Scholar]
  110. Korac A, Verec M, Davidovic V. 110.  2003. Insulin-induced iron loading in the rat brown adipose tissue: histochemical and electron-microscopic study. Eur. J. Histochem. 47:241–44 [Google Scholar]
  111. Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y. 111.  2008. Pancreatic β-cells express hepcidin, an iron-uptake regulatory peptide. J. Endocrinol. 197:241–49 [Google Scholar]
  112. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. 112.  1999. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–39 [Google Scholar]
  113. Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB. 113.  et al. 2012. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18:1539–49 [Google Scholar]
  114. Kuvibidila SR, Kitchens D, Baliga BS. 114.  1999. In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. J. Cell. Biochem. 74:468–78 [Google Scholar]
  115. Kwon MY, Park E, Lee SJ, Chung SW. 115.  2015. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6:24393–403 [Google Scholar]
  116. Laine F, Reymann JM, Morel F, Langouet S, Perrin M. 116.  et al. 2006. Effects of phlebotomy therapy on cytochrome P450 2e1 activity and oxidative stress markers in dysmetabolic iron overload syndrome: a randomized trial. Aliment. Pharmacol. Ther. 24:1207–13 [Google Scholar]
  117. Lakka TA, Nyyssonen K, Salonen JT. 117.  1994. Higher levels of conditioning leisure time physical activity are associated with reduced levels of stored iron in Finnish men. Am. J. Epidemiol. 140:148–60 [Google Scholar]
  118. Lambers DS, Clark KE. 118.  1996. The maternal and fetal physiologic effects of nicotine. Semin. Perinatol. 20:115–26 [Google Scholar]
  119. Lao TT, Chan PL, Tam KF. 119.  2001. Gestational diabetes mellitus in the last trimester—a feature of maternal iron excess?. Diabet. Med. 18:218–23 [Google Scholar]
  120. Lao TT, Ho LF. 120.  2004. Impact of iron deficiency anemia on prevalence of gestational diabetes mellitus. Diabetes Care 27:650–56 [Google Scholar]
  121. Lao TT, Tam KF. 121.  1997. Maternal serum ferritin and gestational impaired glucose tolerance. Diabetes Care 20:1368–69 [Google Scholar]
  122. Lauenborg J, Hansen T, Jensen DM, Vestergaard H, Molsted-Pedersen L. 122.  et al. 2004. Increasing incidence of diabetes after gestational diabetes: a long-term follow-up in a Danish population. Diabetes Care 27:1194–99 [Google Scholar]
  123. Lee DH, Folsom AR, Jacobs DR Jr. 123.  2004. Dietary iron intake and type 2 diabetes incidence in postmenopausal women: the Iowa Women's Health Study. Diabetologia 47:185–94 [Google Scholar]
  124. Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ. 124.  et al. 2013. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 154:1029–38 [Google Scholar]
  125. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J. 125.  et al. 2009. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–81 [Google Scholar]
  126. Lenzen S. 126.  2008. Oxidative stress: the vulnerable β-cell. Biochem. Soc. Trans. 36:343–47 [Google Scholar]
  127. Ley SH, Hamdy O, Mohan V, Hu FB. 127.  2014. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383:1999–2007 [Google Scholar]
  128. Li D. 128.  1998. Effects of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues. Hokkaido Igaku Zasshi 73:215–25 [Google Scholar]
  129. Lim E, Park S, Kim H. 129.  1998. Effect of taurine supplementation on the lipid peroxide formation and the activities of glutathione-related enzymes in the liver and islet of type I and II diabetic model mice. Adv. Exp. Med. Biol. 442:99–103 [Google Scholar]
  130. Llanos P, Contreras-Ferrat A, Barrientos G, Valencia M, Mears D, Hidalgo C. 130.  2015. Glucose-dependent insulin secretion in pancreatic β-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. PLOS ONE 10:e0129238 [Google Scholar]
  131. Lu JP, Hayashi K. 131.  1994. Selective iron deposition in pancreatic islet B cells of transfusional iron-overloaded autopsy cases. Pathol. Int. 44:194–99 [Google Scholar]
  132. Lu JP, Hayashi K, Awai M. 132.  1989. Transferrin receptor expression in normal, iron-deficient and iron-overloaded rats. Acta Pathol. Jpn. 39:759–64 [Google Scholar]
  133. Lukaski HC, Hall CB, Nielsen FH. 133.  1990. Thermogenesis and thermoregulatory function of iron-deficient women without anemia. Aviat. Space Environ. Med. 61:913–20 [Google Scholar]
  134. Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ. 134.  et al. 2007. The transcription factor HIF-1α plays a critical role in the growth factor–dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21:1037–49 [Google Scholar]
  135. MacDonald MJ, Cook JD, Epstein ML, Flowers CH. 135.  1994. Large amount of (apo)ferritin in the pancreatic insulin cell and its stimulation by glucose. FASEB J. 8:777–81 [Google Scholar]
  136. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H. 136.  et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–31 [Google Scholar]
  137. Masuda Y, Ichii H, Vaziri ND. 137.  2013. At pharmacologically relevant concentrations intravenous iron preparations cause pancreatic beta cell death. Am. J. Transl. Res. 6:64–70 [Google Scholar]
  138. Mateos F, Brock JH, Perez-Arellano JL. 138.  1998. Iron metabolism in the lower respiratory tract. Thorax 53:594–600 [Google Scholar]
  139. May ME, Parmley RT, Spicer SS, Ravenel DP, May EE, Buse MG. 139.  1980. Iron nitrilotriacetate–induced experimental diabetes in rats. J. Lab. Clin. Med. 95:525–35 [Google Scholar]
  140. McClain DA, Abraham D, Rogers J, Brady R, Gault P. 140.  et al. 2006. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia 49:1661–69 [Google Scholar]
  141. Mehdad A, Campos NA, Fernandes Arruda S, Machado de Almeida Siqueira E. 141.  2015. Iron deprivation may enhance insulin receptor and Glut4 transcription in skeletal muscle of adult rats. J. Nutr. Health Aging 19:846–54 [Google Scholar]
  142. Merkel PA, Simonson DC, Amiel SA, Plewe G, Sherwin RS. 142.  et al. 1988. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N. Engl. J. Med. 318:809–14 [Google Scholar]
  143. Messina MF, Lombardo F, Meo A, Miceli M, Wasniewska M. 143.  et al. 2002. Three-year prospective evaluation of glucose tolerance, β-cell function and peripheral insulin sensitivity in non-diabetic patients with thalassemia major. J. Endocrinol. Investig. 25:497–501 [Google Scholar]
  144. Michels K, Nemeth E, Ganz T, Mehrad B. 144.  2015. Hepcidin and host defense against infectious diseases. PLOS Pathog. 11:e1004998 [Google Scholar]
  145. Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A. 145.  et al. 2012. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 55:2613–21 [Google Scholar]
  146. Moreno-Navarrete JM, Ortega F, Moreno M, Ricart W, Fernandez-Real JM. 146.  2014. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis. Diabetologia 57:1957–67 [Google Scholar]
  147. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV. 147.  et al. 2012. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44:981–90 [Google Scholar]
  148. Mukherjee S, Dey SG. 148.  2013. Heme bound amylin: spectroscopic characterization, reactivity, and relevance to type 2 diabetes. Inorg. Chem. 52:5226–35 [Google Scholar]
  149. Mursu J, Robien K, Harnack LJ, Park K, Jacobs DR Jr. 149.  2011. Dietary supplements and mortality rate in older women: the Iowa Women's Health Study. Arch. Intern. Med. 171:1625–33 [Google Scholar]
  150. Nakabayashi H, Ohta Y, Yamamoto M, Susuki Y, Taguchi A. 150.  et al. 2013. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells. Biochem. Biophys. Res. Commun. 434:370–75 [Google Scholar]
  151. Nandal A, Ruiz JC, Subramanian P, Ghimire-Rijal S, Sinnamon RA. 151.  et al. 2011. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 14:647–57 [Google Scholar]
  152. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A. 152.  et al. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–93 [Google Scholar]
  153. Nielsen JH. 153.  1989. Mechanisms of pancreatic beta-cell growth and regeneration: studies on rat insulinoma cells. Exp. Clin. Endocrinol. 93:277–85 [Google Scholar]
  154. Ohta T, Yamamoto M, Numata M, Iseki S, Kitagawa H. 154.  et al. 1997. Differential expression of vacuolar-type H+-ATPase between normal human pancreatic islet B-cells and insulinoma cells. Int. J. Oncol. 11:597–601 [Google Scholar]
  155. Oppenheimer SJ. 155.  2001. Iron and its relation to immunity and infectious disease. J. Nutr. 131:616–33S; discussion 633–35S [Google Scholar]
  156. Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M. 156.  et al. 2007. MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. PNAS 104:14342–47 [Google Scholar]
  157. Pan X, Tamilselvam B, Hansen EJ, Daefler S. 157.  2010. Modulation of iron homeostasis in macrophages by bacterial intracellular pathogens. BMC Microbiol. 10:64 [Google Scholar]
  158. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. 158.  2009. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol. Cell. Biol. 29:1007–16 [Google Scholar]
  159. Patel RR, Yi ES, Ryu JH. 159.  2009. Systemic iron overload associated with Welder's siderosis. Am. J. Med. Sci. 337:57–59 [Google Scholar]
  160. Pateva IB, Kerling EH, Reddy M, Chen D, Carlson SE, Tancabelic J. 160.  2015. Effect of maternal cigarette smoking on newborn iron stores. Clin. Res. Trials 1:4–7 [Google Scholar]
  161. Pedersen P, Milman N. 161.  2009. Extrinsic factors modifying expressivity of the HFE variant C282Y, H63D, S65C phenotypes in 1,294 Danish men. Ann. Hematol. 88:957–65 [Google Scholar]
  162. Piel FB, Weatherall DJ. 162.  2014. The α-thalassemias. N. Engl. J. Med. 371:1908–16 [Google Scholar]
  163. Pietrangelo A. 163.  2004. Hereditary hemochromatosis—a new look at an old disease. N. Engl. J. Med. 350:2383–97 [Google Scholar]
  164. Pietrangelo A. 164.  2010. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139:393–408.e2 [Google Scholar]
  165. Platis O, Anagnostopoulos G, Farmaki K, Posantzis M, Gotsis E, Tolis G. 165.  2004. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr. Endocrinol. Rev. 2:Suppl. 2279–81 [Google Scholar]
  166. Poggiali E, Migone De Amicis M, Motta I. 166.  2014. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur. J. Intern. Med. 25:12–17 [Google Scholar]
  167. Prentki M, Nolan CJ. 167.  2006. Islet β cell failure in type 2 diabetes. J. Clin. Investig. 116:1802–12 [Google Scholar]
  168. Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. 168.  1997. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am. J. Clin. Nutr. 66:1178–82 [Google Scholar]
  169. Pyatskowit JW, Prohaska JR. 169.  2008. Iron injection restores brain iron and hemoglobin deficits in perinatal copper-deficient rats. J. Nutr. 138:1880–86 [Google Scholar]
  170. Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ. 170.  et al. 2012. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15:918–24 [Google Scholar]
  171. Rahier J, Loozen S, Goebbels RM, Abrahem M. 171.  1987. The haemochromatotic human pancreas: a quantitative immunohistochemical and ultrastructural study. Diabetologia 30:5–12 [Google Scholar]
  172. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. 172.  2009. The role of iron in type 2 diabetes in humans. Biochim. Biophys. Acta 1790:671–81 [Google Scholar]
  173. Redmon JB, Pyzdrowski KL, Robertson RP. 173.  1993. No effect of deferoxamine therapy on glucose homeostasis and insulin secretion in individuals with NIDDM and elevated serum ferritin. Diabetes 42:544–49 [Google Scholar]
  174. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE. 174.  et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214 [Google Scholar]
  175. Robson-Doucette CA, Sultan S, Allister EM, Wikstrom JD, Koshkin V. 175.  et al. 2011. Beta-cell uncoupling protein 2 regulates reactive oxygen species production, which influences both insulin and glucagon secretion. Diabetes 60:2710–19 [Google Scholar]
  176. Rosenzweig PH, Volpe SL. 176.  1999. Iron, thermoregulation, and metabolic rate. Crit. Rev. Food Sci. Nutr. 39:131–48 [Google Scholar]
  177. Rumberger JM, Peters T Jr, Burrington C, Green A. 177.  2004. Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes 53:2535–41 [Google Scholar]
  178. Rund D, Rachmilewitz E. 178.  2005. β-thalassemia. N. Engl. J. Med. 353:1135–46 [Google Scholar]
  179. Rush D. 179.  2000. Nutrition and maternal mortality in the developing world. Am. J. Clin. Nutr. 72:212–40S [Google Scholar]
  180. Salonen JT, Tuomainen TP, Nyyssonen K, Lakka HM, Punnonen K. 180.  1998. Relation between iron stores and non-insulin dependent diabetes in men: case-control study. BMJ 317:727–30 [Google Scholar]
  181. Sanchez M, Galy B, Dandekar T, Bengert P, Vainshtein Y. 181.  et al. 2006. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J. Biol. Chem. 281:22865–74 [Google Scholar]
  182. Scholl TO. 182.  2005. Iron status during pregnancy: setting the stage for mother and infant. Am. J. Clin. Nutr. 81:1218–22S [Google Scholar]
  183. Schulze MB, Hu FB. 183.  2005. Primary prevention of diabetes: What can be done and how much can be prevented?. Annu. Rev. Public Health 26:445–67 [Google Scholar]
  184. Shirasuga N, Hayashi K, Awai M. 184.  1989. Pancreatic islets after repeated injection of Fe3+-NTA. An ultrastructural study of diabetic rats. Acta Pathol. Jpn. 39:159–68 [Google Scholar]
  185. Shirwany NA, Zou MH. 185.  2014. AMPK: a cellular metabolic and redox sensor. A minireview. Front. Biosci. (Landmark Ed.) 19:447–74 [Google Scholar]
  186. Siah CW, Ombiga J, Adams LA, Trinder D, Olynyk JK. 186.  2006. Normal iron metabolism and the pathophysiology of iron overload disorders. Clin. Biochem. Rev. 27:5–16 [Google Scholar]
  187. Sies H. 187.  1993. Strategies of antioxidant defense. Eur. J. Biochem. 215:213–19 [Google Scholar]
  188. Simcox JA, McClain DA. 188.  2013. Iron and diabetes risk. Cell Metab. 17:329–41 [Google Scholar]
  189. Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R. 189.  et al. 2015. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes 64:1108–19 [Google Scholar]
  190. Skaar EP. 190.  2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLOS Pathog. 6:e1000949 [Google Scholar]
  191. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D. 191.  et al. 2010. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59:3229–39 [Google Scholar]
  192. Stein J, Hartmann F, Dignass AU. 192.  2010. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 7:599–610 [Google Scholar]
  193. Sugimoto Y, Yamada J, Yoshikawa T. 193.  1999. A neuronal nitric oxide synthase inhibitor 7-nitroindazole reduces the 5-HT1A receptor against 8-OH-DPAT-elicited hyperphagia in rats. Eur. J. Pharmacol. 376:1–5 [Google Scholar]
  194. Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y. 194.  2006. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J. Cell Sci. 119:4531–40 [Google Scholar]
  195. Swaminathan S, Fonseca VA, Alam MG, Shah SV. 195.  2007. The role of iron in diabetes and its complications. Diabetes Care 30:1926–33 [Google Scholar]
  196. Tamir S, Zuris JA, Agranat L, Lipper CH, Conlan AR. 196.  et al. 2013. Nutrient-deprivation autophagy factor-1 (NAF-1): biochemical properties of a novel cellular target for anti-diabetic drugs. PLOS ONE 8:e61202 [Google Scholar]
  197. Tanaka Y, Tran PO, Harmon J, Robertson RP. 197.  2002. A role for glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a model of glucose toxicity. PNAS 99:12363–68 [Google Scholar]
  198. Tinkov AA, Polyakova VS, Nikonorov AA. 198.  2013. Chronic administration of iron and copper potentiates adipogenic effect of high fat diet in Wistar rats. Biometals 26:447–63 [Google Scholar]
  199. Toumba M, Sergis A, Kanaris C, Skordis N. 199.  2007. Endocrine complications in patients with thalassaemia major. Pediatr. Endocrinol. Rev. 5:642–48 [Google Scholar]
  200. Tran PO, Parker SM, LeRoy E, Franklin CC, Kavanagh TJ. 200.  et al. 2004. Adenoviral overexpression of the glutamylcysteine ligase catalytic subunit protects pancreatic islets against oxidative stress. J. Biol. Chem. 279:53988–93 [Google Scholar]
  201. Trousseau A. 201.  1865. Glycosurie, diabète, sucré. Clin. Méd. del'Hotel-Dieu Paris 2:663–98 [Google Scholar]
  202. 202. UKPDS 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–53 [Google Scholar]
  203. Utzschneider KM, Kowdley KV. 203.  2010. Hereditary hemochromatosis and diabetes mellitus: implications for clinical practice. Nat. Rev. Endocrinol. 6:26–33 [Google Scholar]
  204. Vari IS, Balkau B, Kettaneh A, Andre P, Tichet J. 204.  et al. 2007. Ferritin and transferrin are associated with metabolic syndrome abnormalities and their change over time in a general population: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 30:1795–801 [Google Scholar]
  205. Wang X, Fang X, Wang F. 205.  2015. Pleiotropic actions of iron balance in diabetes mellitus. Rev. Endocr. Metab. Disord. 16:15–23 [Google Scholar]
  206. Wen H, Ting JP, O'Neill LA. 206.  2012. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation?. Nat. Immunol. 13:352–57 [Google Scholar]
  207. Wenzel BJ, Stults HB, Mayer J. 207.  1962. Hypoferraemia in obese adolescents. Lancet 2:327–28 [Google Scholar]
  208. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG. 208.  2001. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin. Exp. Res. 25:1037–45 [Google Scholar]
  209. Wiley SE, Andreyev AY, Divakaruni AS, Karisch R, Perkins G. 209.  et al. 2013. Wolfram syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis. EMBO Mol. Med. 5:904–18 [Google Scholar]
  210. Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE. 210.  2007. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. PNAS 104:5318–23 [Google Scholar]
  211. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM. 211.  et al. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–4 [Google Scholar]
  212. Wolf G, Aumann N, Michalska M, Bast A, Sonnemann J. 212.  et al. 2010. Peroxiredoxin III protects pancreatic β cells from apoptosis. J. Endocrinol. 207:163–75 [Google Scholar]
  213. Wolff NA, Garrick LM, Zhao L, Garrick MD, Thevenod F. 213.  2014. Mitochondria represent another locale for the divalent metal transporter 1 (DMT1). Channels (Austin) 8:458–66 [Google Scholar]
  214. Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L. 214.  et al. 2014. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 28:2134–45 [Google Scholar]
  215. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. 215.  2014. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLOS ONE 9:e114174 [Google Scholar]
  216. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R. 216.  et al. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–31 [Google Scholar]
  217. Yin L, Wu N, Lazar MA. 217.  2010. Nuclear receptor Rev-erbα: a heme receptor that coordinates circadian rhythm and metabolism. Nucl. Recept. Signal. 8:e001 [Google Scholar]
  218. You SA, Wang Q. 218.  2005. Ferritin in atherosclerosis. Clin. Chim. Acta 357:1–16 [Google Scholar]
  219. Zafon C, Lecube A, Simo R. 219.  2010. Iron in obesity. An ancient micronutrient for a modern disease. Obes. Rev. 11:322–28 [Google Scholar]
  220. Zein S, Rachidi S, Hininger-Favier I. 220.  2014. Is oxidative stress induced by iron status associated with gestational diabetes mellitus?. J. Trace Elem. Med. Biol. 28:65–69 [Google Scholar]
  221. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. 221.  2008. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071715-050939
Loading
/content/journals/10.1146/annurev-nutr-071715-050939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error