Moderately elevated plasma total homocysteine (tHcy) is a strong modifiable risk factor for vascular dementia and Alzheimer's disease. Prospectively, elevated tHcy is associated with cognitive decline, white matter damage, brain atrophy, neurofibrillary tangles, and dementia. Most homocysteine-lowering trials with folate and vitamins B6 and/or B12 tested as protective agents against cognitive decline were poorly designed by including subjects unlikely to benefit during the trial period. In contrast, trials in high-risk subjects, which have taken into account the baseline B vitamin status, show a slowing of cognitive decline and of atrophy in critical brain regions, results that are consistent with modification of the Alzheimer's disease process. Homocysteine may interact with both risk factors and protective factors, thereby identifying people at risk but also providing potential strategies for early intervention. Public health steps to slow cognitive decline should be promoted in individuals who are at risk of dementia, and more trials are needed to see if simple interventions with nutrients can prevent progression to dementia.

[Erratum, Closure]

An erratum has been published for this article:
Homocysteine, B Vitamins, and Cognitive Impairment

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, van Dyck CH. 1.  et al. 2008. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 300:1774–83 [Google Scholar]
  2. Ames BN, Elson-Schwab I, Silver EA. 2.  2002. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased Km): relevance to genetic disease and polymorphisms. Am. J. Clin. Nutr. 75:616–58 [Google Scholar]
  3. Annerbo S, Kivipelto M, Lökk J. 3.  2009. A prospective study on the development of Alzheimer's disease with regard to thyroid-stimulating hormone and homocysteine. Dement. Geriatr. Cogn. Disord. 28:275–80 [Google Scholar]
  4. Annerbo S, Wahlund LO, Lökk J. 4.  2006. The significance of thyroid-stimulating hormone and homocysteine in the development of Alzheimer's disease in mild cognitive impairment: a 6-year follow-up study. Am. J. Alzheimers Dis. Other Demen. 21:182–88 [Google Scholar]
  5. Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen DL. 5.  et al. 2010. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer's disease. PLOS ONE 5:e12538 [Google Scholar]
  6. Barnes JL, Tian M, Edens NK, Morris MC. 6.  2014. Consideration of nutrient levels in studies of cognitive decline. Nutr. Rev. 72:707–19 [Google Scholar]
  7. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. 7.  2014. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 14:643 [Google Scholar]
  8. Blaise SA, Nédélec E, Schroeder H, Alberto JM, Bossenmeyer-Pourié C. 8.  et al. 2007. Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am. J. Pathol. 170:667–79 [Google Scholar]
  9. Blasko I, Jellinger K, Kemmler G, Krampla W, Jungwirth S. 9.  et al. 2008. Conversion from cognitive health to mild cognitive impairment and Alzheimer's disease: prediction by plasma amyloid beta 42, medial temporal lobe atrophy and homocysteine. Neurobiol. Aging 29:1–11 [Google Scholar]
  10. Carmel R, Jacobsen DW. 10.  2001. Homocysteine in Health and Disease Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  11. Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G. 11.  et al. 2013. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34:2091–99 [Google Scholar]
  12. Clarke R, Bennett D, Parish S, Lewington S, Skeaff M. 12.  et al. 2014. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am. J. Clin. Nutr. 100:657–66 [Google Scholar]
  13. Clarke R, Birks J, Nexo E, Ueland PM, Schneede J. 13.  et al. 2007. Low vitamin B-12 status and risk of cognitive decline in older adults. Am. J. Clin. Nutr. 86:1384–91 [Google Scholar]
  14. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 14.  1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55:1449–55 [Google Scholar]
  15. Dacks PA, Bennett DA, Fillit HM. 15.  2014. Evidence needs to be translated, whether or not it is complete. JAMA Neurol. 71:137–38 [Google Scholar]
  16. Dangour AD, Allen E, Clarke R, Elbourne D, Fletcher AE. 16.  et al. 2015. Effects of vitamin B-12 supplementation on neurologic and cognitive function in older people: a randomized controlled trial. Am. J. Clin. Nutr. 102:639–47 [Google Scholar]
  17. de Jager CA, Dye L, de Bruin EA, Butler L, Fletcher J. 17.  et al. 2014. Criteria for validation and selection of cognitive tests for investigating the effects of foods and nutrients. Nutr. Rev. 72:162–79 [Google Scholar]
  18. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. 18.  2012. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int. J. Geriatr. Psychiatry 27:592–600 [Google Scholar]
  19. de Lau L, Smith AD, Refsum H, Johnston C, Breteler MM. 19.  2009. Plasma vitamin B12 status and cerebral white-matter lesions. J. Neurol. Neurosurg. Psychiatry 80:149–57 [Google Scholar]
  20. de Lau LML, Refsum H, Smith AD, Johnston C, Breteler MB. 20.  2007. Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am. J. Clin. Nutr. 86:728–34 [Google Scholar]
  21. Debette S, Markus HS. 21.  2010. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666 [Google Scholar]
  22. Deguchi T, Barchas J. 22.  1971. Inhibition of transmethylations of biogenic amines by S-adenosylhomo-cysteine. Enhancement of transmethylation by adenosylhomocysteinase. J. Biol. Chem. 246:3175–81 [Google Scholar]
  23. DeLong CJ, Shen YJ, Thomas MJ, Cui Z. 23.  1999. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J. Biol. Chem. 274:29683–88 [Google Scholar]
  24. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ. 24.  et al. 2003. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–75 [Google Scholar]
  25. Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF. 25.  2015. Vascular dysfunction in the pathogenesis of Alzheimer's disease—a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 82:593–606 [Google Scholar]
  26. Douaud G, Refsum H, de Jager CA, Jacoby R, Nichols TE. 26.  et al. 2013. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. PNAS 110:9523–28 [Google Scholar]
  27. Dufouil C, Alperovitch A, Ducros V, Tzourio C. 27.  2003. Homocysteine, white matter hyperintensities, and cognition in healthy elderly people. Ann. Neurol. 53:214–21 [Google Scholar]
  28. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J. 28.  et al. 2007. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369:208–16 [Google Scholar]
  29. Elias MF, Robbins MA, Budge MM, Elias PK, Brennan SL. 29.  et al. 2006. Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: The Maine-Syracuse study. Psychosom. Med. 68:547–54 [Google Scholar]
  30. Elias MF, Robbins MA, Budge MM, Elias PK, Dore GA. 30.  et al. 2008. Homocysteine and cognitive performance: modification by the ApoE genotype. Neurosci. Lett. 430:64–69 [Google Scholar]
  31. Elias MF, Sullivan LM, D'Agostino RB, Elias PK, Jacques PF. 31.  et al. 2005. Homocysteine and cognitive performance in the Framingham offspring study: age is important. Am. J. Epidemiol. 162:644–53 [Google Scholar]
  32. Feng C, Bai X, Xu Y, Hua T, Huang J, Liu X-Y. 32.  2013. Hyperhomocysteinemia associates with small vessel disease more closely than large vessel disease. Int. J. Med. Sci. 10:408–12 [Google Scholar]
  33. Feng L, Isaac V, Sim S, Ng TP, Krishnan KR, Chee MW. 33.  2013. Associations between elevated homocysteine, cognitive impairment, and reduced white matter volume in healthy old adults. Am. J. Geriatr. Psychiatry 21164–72 [Google Scholar]
  34. Feng L, Li J, Yap KB, Kua EH, Ng TP. 34.  2009. Vitamin B-12, apolipoprotein E genotype, and cognitive performance in community-living older adults: evidence of a gene-micronutrient interaction. Am. J. Clin. Nutr. 89:1263–68 [Google Scholar]
  35. Firbank MJ, Narayan SK, Saxby BK, Ford GA, O'Brien JT. 35.  2010. Homocysteine is associated with hippocampal and white matter atrophy in older subjects with mild hypertension. Int. Psychogeriatr. 22:804–11 [Google Scholar]
  36. Ford AH, Almeida OP. 36.  2012. Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J. Alzheimers Dis. 29:133–49 [Google Scholar]
  37. Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S. 37.  2011. Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol. Aging 32:187–99 [Google Scholar]
  38. Gabryelewicz T, Styczynska M, Luczywek E, Barczak A, Pfeffer A. 38.  et al. 2007. The rate of conversion of mild cognitive impairment to dementia: predictive role of depression. Int. J. Geriatr. Psychiatry 22:563–67 [Google Scholar]
  39. Garrard P, Jacoby R. 39.  2015. B-vitamin trials meta-analysis: less than meets the eye. Am. J. Clin. Nutr. 101:414–15 [Google Scholar]
  40. Garrod AE. 40.  1902. The incidence of alkaptonuria: a study in chemical individuality. Lancet 160:1616–20 [Google Scholar]
  41. Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ. 41.  et al. 2007. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am. J. Clin. Nutr. 85:511–17 [Google Scholar]
  42. Hainsworth A, Yeo NE, Weekman EM, Wilcock DM. 42.  2016. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochem. Biophys. Acta 18621008–17 [Google Scholar]
  43. Hankey GJ, Eikelboom JW, Yi Q, Lees KR, Chen C. 43.  et al. 2012. Antiplatelet therapy and the effects of B vitamins in patients with previous stroke or transient ischaemic attack: a post-hoc subanalysis of VITATOPS, a randomised, placebo-controlled trial. Lancet Neurol. 11:512–20 [Google Scholar]
  44. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. 44.  2006. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5:228–34 [Google Scholar]
  45. Hin H, Clarke R, Sherliker P, Atoyebi W, Emmens K. 45.  et al. 2006. Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age Ageing 35:416–22 [Google Scholar]
  46. Hogervorst E, Ribeiro HM, Molyneux A, Budge M, Smith AD. 46.  2002. Plasma homocysteine levels, cerebrovascular risk factors, and cerebral white matter changes (leukoaraiosis) in patients with Alzheimer disease. Arch. Neurol. 59:787–93 [Google Scholar]
  47. Hooshmand B, Mangialasche F, Kalpouzos G, Solomon A, Kåreholt A. 47.  et al. 2016. Vitamin B12, folate and sulphur amino acids in relation to markers of brain aging: a longitudinal population-based study. JAMA Psychiatry. In press [Google Scholar]
  48. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L. 48.  et al. 2013. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain 136:2707–16 [Google Scholar]
  49. Hooshmand B, Solomon A, Kåreholt I, Leiviskä J, Rusanen M. 49.  et al. 2010. Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology 75:1408–14 [Google Scholar]
  50. Hooshmand B, Solomon A, Kåreholt I, Rusanen M, Hänninen T. 50.  et al. 2012. Associations between serum homocysteine, holotranscobalamin, folate and cognition in the elderly: a longitudinal study. J. Intern. Med. 271:204–12 [Google Scholar]
  51. Hopkins SM, Gibney MJ, Nugent AP, McNulty H, Molloy AM. 51.  et al. 2015. Impact of voluntary fortification and supplement use on dietary intakes and biomarker status of folate and vitamin B-12 in Irish adults. Am. J. Clin. Nutr. 101:1163–72 [Google Scholar]
  52. Iadecola C. 52.  2013. The pathobiology of vascular dementia. Neuron 80:844–66 [Google Scholar]
  53. James MJ, Sullivan TR, Metcalf RG, Cleland LG. 53.  2014. Pitfalls in the use of randomised controlled trials for fish oil studies with cardiac patients. Br. J. Nutr. 112:812–20 [Google Scholar]
  54. Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. 54.  2015. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am. J. Clin. Nutr. 102:215–21 [Google Scholar]
  55. Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A. 55.  et al. 1994. Rapidly progressing atrophy of medial temporal lobe in Alzheimer's disease. Lancet 343:829–30 [Google Scholar]
  56. Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri MM. 56.  et al. 1992. Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 340:1179–83 [Google Scholar]
  57. Jochemsen HM, Kloppenborg RP, de Groot LC, Kampman E, Mali WP. 57.  et al. 2013. Homocysteine, progression of ventricular enlargement, and cognitive decline: the Second Manifestations of ARTerial disease-Magnetic Resonance study. Alzheimers Dement. 9:302–9 [Google Scholar]
  58. Kang JH, Cook N, Manson J, Buring JE, Albert CM, Grodstein F. 58.  2008. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am. J. Clin. Nutr. 88:1602–10 [Google Scholar]
  59. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. 59.  2002. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288:2023–31 [Google Scholar]
  60. Kloppenborg RP, Geerlings MI, Visseren FL, Mali WP, Vermeulen M. 60.  et al. 2014. Homocysteine and progression of generalized small-vessel disease: the SMART-MR Study. Neurology 82:777–83 [Google Scholar]
  61. Kwok T, Lee J, Law CB, Pan PC, Yung CY. 61.  et al. 2011. A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clin. Nutr. 30:297–302 [Google Scholar]
  62. Lai WK, Kan MY. 62.  2015. Homocysteine induced endothelial dysfunction. Ann. Nutr. Metab. 67:1–12 [Google Scholar]
  63. Li J-G, Chu J, Barrero C, Merali S, Praticò D. 63.  2014. Homocysteine exacerbates β-amyloid, tau pathology, and cognitive deficit in a mouse model of Alzheimer's disease with plaques and tangles. Ann. Neurol. 75:851–63 [Google Scholar]
  64. Li J-G, Praticò D. 64.  2015. High levels of homocysteine results in cerebral amyloid angiopathy in mice. J. Alzheimers Dis. 43:29–35 [Google Scholar]
  65. Liew SC, Gupta ED. 65.  2015. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 58:1–10 [Google Scholar]
  66. Lipnicki DM, Sachdev PS, Crawford J, Reppermund S, Kochan NA. 66.  et al. 2013. Risk factors for late-life cognitive decline and variation with age and sex in the Sydney Memory and Ageing Study. PLOS ONE 8:e65841 [Google Scholar]
  67. Liu JJ, Green P, Mann JJ, Rapoport SI, Sublette ME. 67.  2015. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res. 1597:220–46 [Google Scholar]
  68. Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. 68.  2016. The role of Cdk5 in Alzheimer's disease. Mol. Neurobiol. In press [Google Scholar]
  69. Lökk J. 69.  2013. B-vitaminer kan prövas vid kognitiv svikt. Lakartidningen 110:1528 [Google Scholar]
  70. Luchsinger JA, Tang MX, Miller J, Green R, Mayeux R. 70.  2007. Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch. Neurol. 64:86–92 [Google Scholar]
  71. Luchsinger JA, Tang MX, Shea S, Miller J, Green R, Mayeux R. 71.  2004. Plasma homocysteine levels and risk of Alzheimer disease. Neurology 62:1972–76 [Google Scholar]
  72. Madsen SK, Rajagopalan P, Joshi SH, Toga AW, Thompson PM, Alzheimer's Disease Neuroimaging I. 72.  2015. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer's Disease Neuroimaging Initiative. Neurobiol. Aging 36:Suppl. 1S203–10 [Google Scholar]
  73. Martins CA, Oulhaj A, de Jager CA, Williams JH. 73.  2005. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology 65:1888–93 [Google Scholar]
  74. McCaddon A. 74.  2006. Homocysteine and cognition—a historical perspective. J. Alzheimers Dis. 9:361–80 [Google Scholar]
  75. McCaddon A, Hudson P, Davies G, Hughes A, Williams JH, Wilkinson C. 75.  2001. Homocysteine and cognitive decline in healthy elderly. Dement. Geriatr. Cogn. Disord. 12:309–13 [Google Scholar]
  76. McCaddon A, Miller JW. 76.  2015. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses and causality. Nutr. Rev. 73:723–35 [Google Scholar]
  77. McIlroy SP, Dynan KB, Lawson JT, Patterson CC, Passmore AP. 77.  2002. Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke 33:2351–56 [Google Scholar]
  78. McMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM. 78.  2006. A controlled trial of homocysteine lowering and cognitive performance. N. Engl. J. Med. 354:2764–72 [Google Scholar]
  79. Millan MJ. 79.  2014. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity?. Dialogues Clin. Neurosci. 16:373–93 [Google Scholar]
  80. Miller RR, Leanza CM, Phillips EE, Blacquire KD. 80.  2003. Homocysteine-induced changes in brain membrane composition correlate with increased brain caspase-3 activities and reduced chick embryo viability. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136:521–32 [Google Scholar]
  81. Miwa K, Tanaka M, Okazaki S, Yagita Y, Sakaguchi M. 81.  et al. 2015. Increased total homocysteine levels predict the risk of incident dementia independent of cerebral small-vessel diseases and vascular risk factors. J. Alzheimers Dis. 49:503–13 [Google Scholar]
  82. Morris MC, Tangney CC. 82.  2011. A potential design flaw of randomized trials of vitamin supplements. JAMA 305:1348–49 [Google Scholar]
  83. Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM-F. 83.  et al. 1996. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia 7:76–81 [Google Scholar]
  84. Nagy Z, Smith MZ, Esiri MM, Barnetson L, Smith AD. 84.  2000. Hyperhomocysteinaemia in Alzheimer's disease and expression of cell cycle markers in the brain. J. Neurol. Neurosurg. Psychiatry 69:565–66 [Google Scholar]
  85. Narayan SK, Firbank MJ, Saxby BK, Stansby G, Hansrani M. 85.  et al. 2011. Elevated plasma homocysteine is associated with increased brain atrophy rates in older subjects with mild hypertension. Dement. Geriatr. Cogn. Disord. 31:341–48 [Google Scholar]
  86. Nie T, Lu T, Xie L, Huang P, Lu Y, Jiang M. 86.  2014. Hyperhomocysteinemia and risk of cognitive decline: a meta-analysis of prospective cohort studies. Eur. Neurol. 72:241–48 [Google Scholar]
  87. Nilsson K, Gustafson L, Fäldt R, Andersson A, Brattström L. 87.  et al. 1996. Hyperhomocysteinaemia—a common finding in a psychogeriatric population. Eur. J. Clin. Investig. 26:853–59 [Google Scholar]
  88. Nurk E, Refsum H, Tell GS, Engedal K, Vollset SE. 88.  et al. 2005. Plasma total homocysteine and memory in the elderly: the Hordaland Homocysteine study. Ann. Neurol. 58:847–57 [Google Scholar]
  89. Obeid R, Herrmann W. 89.  2006. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 580:2994–3005 [Google Scholar]
  90. Obeid R, Kasoha M, Knapp JP, Kostopoulos P, Becker G. 90.  et al. 2007. Folate and methylation status in relation to phosphorylated Tau protein(181P) and β-amyloid(1–42) in cerebrospinal fluid. Clin. Chem. 53:1129–36 [Google Scholar]
  91. Obeid R, Kostopoulos P, Knapp JP, Kasoha M, Becker G. 91.  et al. 2007. Biomarkers of folate and vitamin B12 are related in blood and cerebrospinal fluid. Clin. Chem. 53:326–33 [Google Scholar]
  92. Oulhaj A, Jernerén F, Refsum H, Smith AD, de Jager CA. 92.  2016. Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J. Alzheimers Dis. 50:547–57 [Google Scholar]
  93. Oulhaj A, Refsum H, Beaumont H, Williams J, King E. 93.  et al. 2010. Homocysteine as a predictor of cognitive decline in Alzheimer's disease. Int. J. Geriatr. Psychiatry 25:82–90 [Google Scholar]
  94. Pacheco-Quinto J, Rodriguez de Turco EB, Derosa S, Howard A, Cruz-Sanchez F. 94.  et al. 2006. Hyperhomocysteinemic Alzheimer's mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiol. Dis. 22:651–56 [Google Scholar]
  95. Park SY, An SA, Lee HB, Kim Y, Kim NK. 95.  et al. 2013. Different impact of hyperhomocysteinemia on cerebral small vessel ischemia and cervico-cerebral atherosclerosis in non-stroke individuals. Thromb. Res. 131:e12–16 [Google Scholar]
  96. Peng Q, Lao X, Huang X, Qin X, Li S, Zeng Z. 96.  2015. The MTHFR C677T polymorphism contributes to increased risk of Alzheimer's disease: evidence based on 40 case-control studies. Neurosci. Lett. 586:36–42 [Google Scholar]
  97. Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ. 97.  2005. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am. J. Clin. Nutr. 82:442–50 [Google Scholar]
  98. Pfeiffer CM, Osterloh JD, Kennedy-Stephenson J, Picciano MF, Yetley EA. 98.  et al. 2008. Trends in circulating concentrations of total homocysteine among US adolescents and adults: findings from the 1991–1994 and 1999–2004 National Health and Nutrition Examination Surveys. Clin. Chem. 54:801–13 [Google Scholar]
  99. Philip D, Buch A, Moorthy D, Scott TM, Parnell LD. 99.  et al. 2015. Dihydrofolate reductase 19-bp deletion polymorphism modifies the association of folate status with memory in a cross-sectional multi-ethnic study of adults. Am. J. Clin. Nutr. 102:1279–88 [Google Scholar]
  100. Pikula A, Beiser AS, DeCarli C, Himali JJ, Debette S. 100.  et al. 2012. Multiple biomarkers and risk of clinical and subclinical vascular brain injury: the Framingham Offspring Study. Circulation 125:2100–7 [Google Scholar]
  101. Popp J, Lewczuk P, Linnebank M, Cvetanovska G, Smulders Y. 101.  et al. 2009. Homocysteine metabolism and cerebrospinal fluid markers for Alzheimer's disease. J. Alzheimers Dis. 18:819–28 [Google Scholar]
  102. Pynn CJ, Henderson NG, Clark H, Koster G, Bernhard W, Postle AD. 102.  2011. Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo. J. Lipid Res. 52:399–407 [Google Scholar]
  103. Rajagopalan P, Hua X, Toga AW, Jack CR, Weiner MW, Thompson PM. 103.  2011. Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport 22:391–95 [Google Scholar]
  104. Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L. 104.  et al. 2005. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr. 82:636–43 [Google Scholar]
  105. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG. 105.  et al. 2006. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J. Nutr. 136:1731S–40 [Google Scholar]
  106. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R. 106.  et al. 2004. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin. Chem. 50:3–32 [Google Scholar]
  107. Refsum H, Ueland P, Nygård O, Vollset SE. 107.  1998. Homocysteine and cardiovascular disease. Annu. Rev. Med. 49:31–62 [Google Scholar]
  108. Reitz C, Tang MX, Miller J, Green R, Luchsinger JA. 108.  2009. Plasma homocysteine and risk of mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 27:11–17 [Google Scholar]
  109. Risacher SL, Shen L, West JD, Kim S, McDonald BC. 109.  et al. 2010. Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol. Aging 31:1401–18 [Google Scholar]
  110. Robbins MA, Elias MF, Budge MM, Brennan SL, Elias PK. 110.  2005. Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study. Clin. Chem. Lab. Med. 43:1101–6 [Google Scholar]
  111. Rosenberg IH, Rosenberg LE. 111.  1998. The implications of genetic diversity for nutrient requirements: the case of folate. Nutr. Rev. 56:S47–53 [Google Scholar]
  112. Sachdev PS, Valenzuela M, Wang XL, Looi JC, Brodaty H. 112.  2002. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 58:1539–41 [Google Scholar]
  113. Satija A, Yu E, Willett WC, Hu FB. 113.  2015. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 6:5–18 [Google Scholar]
  114. Schafer JH, Glass TA, Bolla KI, Mintz M, Jedlicka AE, Schwartz BS. 114.  2005. Homocysteine and cognitive function in a population-based study of older adults. J. Am. Geriatr. Soc. 53:381–88 [Google Scholar]
  115. Selhub J. 115.  1999. Homocysteine metabolism. Annu. Rev. Nutr. 19:217–46 [Google Scholar]
  116. Selhub J, Bagley LC, Miller J, Rosenberg IH. 116.  2000. B vitamins, homocysteine, and neurocognitive function in the elderly. Am. J. Clin. Nutr. 71:614S–20 [Google Scholar]
  117. Selley ML. 117.  2003. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer's disease. Neurobiol. Aging 24:903–7 [Google Scholar]
  118. Selley ML. 118.  2007. A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer's disease. Neurobiol. Aging 28:1834–39 [Google Scholar]
  119. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH. 119.  et al. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med. 346:476–83 [Google Scholar]
  120. Seshadri S, Wolf PA, Beiser AS, Selhub J, Au R. 120.  et al. 2008. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch. Neurol. 65:642–49 [Google Scholar]
  121. Smith AD. 121.  2008. The worldwide challenge of the dementias: a role for B vitamins and homocysteine?. Food Nutr. Bull. 29:S143–72 [Google Scholar]
  122. Smith AD, de Jager CA, Refsum H, Rosenberg IH. 122.  2015. Homocysteine lowering, B vitamins, and cognitive aging. Am. J. Clin. Nutr. 101:415–16 [Google Scholar]
  123. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C. 123.  et al. 2010. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLOS ONE 5:e12244 [Google Scholar]
  124. Smith GD, Ebrahim S. 124.  2003. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32:1–22 [Google Scholar]
  125. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM. 125.  et al. 2015. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 11:710–17 [Google Scholar]
  126. Sontag JM, Sontag E. 126.  2014. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front. Mol. Neurosci. 7:16 [Google Scholar]
  127. Stabler SP. 127.  2013. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 368:149–60 [Google Scholar]
  128. Stern Y, Liu XH, Albert M, Brandt J, Jacobs DM. 128.  et al. 1996. Application of a growth curve approach to modeling the progression of Alzheimer's disease. J. Gerontol. A Biol. Sci. Med. Sci. 51:M179–84 [Google Scholar]
  129. Strike SC, Carlisle A, Gibson EL, Dyall SC. 129.  2015. A high omega-3 fatty acid multinutrient supplement benefits cognition and mobility in older women: a randomized, double-blind, placebo-controlled pilot study. J. Gerontol. A Biol. Sci. Med. Sci. 71:236–42 [Google Scholar]
  130. Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM. 130.  2013. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J. Cereb. Blood Flow Metab. 33:708–15 [Google Scholar]
  131. Tacconi M, Wurtman RJ. 131.  1985. Phosphatidylcholine produced in rat synaptosomes by N-methylation is enriched in polyunsaturated fatty acids. PNAS 82:4828–31 [Google Scholar]
  132. Tangney CC, Aggarwal NT, Li H, Wilson RS, Decarli C. 132.  et al. 2011. Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology 77:1276–82 [Google Scholar]
  133. Toda N, Okamura T. 133.  2012. Cerebral blood flow regulation by nitric oxide in Alzheimer's disease. J. Alzheimers Dis. 32:569–78 [Google Scholar]
  134. Troen AM, Chao WH, Crivello NA, D'Anci KE, Shukitt-Hale B. 134.  et al. 2008. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine. J. Nutr. 138:2502–9 [Google Scholar]
  135. Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH. 135.  2008. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. PNAS 105:12474–79 [Google Scholar]
  136. Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A. 136. , 3rd. 2005. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am. J. Clin. Nutr. 82:627–35 [Google Scholar]
  137. Ueland PM, Refsum H, Beresford SA, Vollset SE. 137.  2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72:324–32 [Google Scholar]
  138. 138. Univ. Oxford. 2014. Taking B vitamins won't prevent Alzheimer's disease. Univ. Oxford News Events, July 15. http://www.ox.ac.uk/news/2014-07-15-taking-b-vitamins-won%E2%80%99t-prevent-alzheimer%E2%80%99s-disease [Google Scholar]
  139. van der Zwaluw NL, Dhonukshe-Rutten RA, van Wijngaarden JP, Brouwer-Brolsma EM, van de Rest O. 139.  et al. 2014. Results of 2-year vitamin B treatment on cognitive performance: secondary data from an RCT. Neurology 83:2158–66 [Google Scholar]
  140. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A. 140.  et al. 2002. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Ann. Neurol. 51:285–89 [Google Scholar]
  141. Vogiatzoglou A, Refsum H, Johnston C, Smith SM, Bradley KM. 141.  et al. 2008. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 71:826–32 [Google Scholar]
  142. Vogiatzoglou A, Smith AD, Nurk E, Drevon CA, Ueland PM. 142.  et al. 2013. Cognitive function in an elderly population: interaction between vitamin B12 status, depression, and apolipoprotein E ε4: the Hordaland Homocysteine Study. Psychosom. Med. 75:20–29 [Google Scholar]
  143. Vry MS, Haerter K, Kastrup O, Gizewski E, Frings M, Maschke M. 143.  2005. Vitamine-B12-deficiency causing isolated and partially reversible leukoencephalopathy. J. Neurol. 252:980–82 [Google Scholar]
  144. Wald DS, Kasturiratne A, Simmonds M. 144.  2010. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am. J. Med. 123:522–27.e2 [Google Scholar]
  145. Wald DS, Kasturiratne A, Simmonds M. 145.  2011. Serum homocysteine and dementia: meta-analysis of eight cohort studies including 8669 participants. Alzheimers Dement. 7:412–17 [Google Scholar]
  146. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. 146.  2013. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis. 33:Suppl. 1S123–39 [Google Scholar]
  147. Watkins SM, Zhu X, Zeisel SH. 147.  2003. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J. Nutr. 133:3386–91 [Google Scholar]
  148. Wei W, Liu Y-H, Zhang CE, Wang Q, Wei Z. 148.  et al. 2011. Folate/vitamin-B12 prevents chronic hyperhomocysteinemia-induced tau hyperphosphorylation and memory deficits in aged rats. J. Alzheimers Dis. 27:639–50 [Google Scholar]
  149. Wen Y, Yang S, Liu R, Simpkins JW. 149.  2004. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res. 1022:30–38 [Google Scholar]
  150. Wen Y, Yang SH, Liu R, Perez EJ, Brun-Zinkernagel AM. 150.  et al. 2007. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim. Biophys. Acta 1772:473–83 [Google Scholar]
  151. Whalley LJ, Staff RT, Murray AD, Duthie SJ, Collins AR. 151.  et al. 2003. Plasma vitamin C, cholesterol and homocysteine are associated with grey matter volume determined by MRI in non-demented old people. Neurosci. Lett. 341:173–76 [Google Scholar]
  152. Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D. 152.  et al. 2014. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol. Aging 35:271–78 [Google Scholar]
  153. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA. 153.  et al. 2008. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 71:743–49 [Google Scholar]
  154. Williams JH, Pereira EA, Budge MM, Bradley KM. 154.  2002. Minimal hippocampal width relates to plasma homocysteine in community-dwelling older people. Age Ageing 31:440–44 [Google Scholar]
  155. Williams RJ. 155.  1986. Biochemical Individuality: Basis for the Genetotrophic Concept New Canaan, CT: Keats [Google Scholar]
  156. Wilson RS, Beckett LA, Barnes LL, Schneider JA, Bach J. 156.  et al. 2002. Individual differences in rates of change in cognitive abilities of older persons. Psychol. Aging 17:179–93 [Google Scholar]
  157. Yan J, Ginsberg SD, Powers B, Alldred MJ, Saltzman A. 157.  et al. 2014. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. FASEB J. 28:4312–23 [Google Scholar]
  158. Yang LK, Wong KC, Wu MY, Liao SL, Kuo CS, Huang RFS. 158.  2007. Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients. J. Am. Coll. Nutr. 26:272–78 [Google Scholar]
  159. Ye W, Blain SW. 159.  2010. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons. Brain 133:2295–312 [Google Scholar]
  160. Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S. 160.  et al. 2014. DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer's disease. Sci. Rep. 4:7130 [Google Scholar]
  161. Zhang CE, Tian Q, Wei W, Peng JH, Liu GP. 161.  et al. 2008. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol. Aging 29:1654–65 [Google Scholar]
  162. Zhuo JM, Wang H, Praticò D. 162.  2011. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither?. Trends Pharmacol. Sci. 32:562–71 [Google Scholar]
  163. Zylberstein DE, Lissner L, Björkelund C, Mehlig K, Thelle DS. 163.  et al. 2011. Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol. Aging 32:380–86 [Google Scholar]
  164. Zylberstein DE, Skoog I, Björkelund C, Guo X, Hultén B. 164.  et al. 2008. Homocysteine levels and lacunar brain infarcts in elderly women: the prospective population study of women in Gothenburg. J. Am. Geriatr. Soc. 56:1087–91 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error