Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akesson B, Panagiotidis G, Westermark P, Lundquist I. 1.  2003. Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul. Pept. 111:55–60 [Google Scholar]
  2. Alhadeff AL, Rupprecht LE, Hayes MR. 2.  2012. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153:647–58 [Google Scholar]
  3. Andrews PL, Horn CC. 3.  2006. Signals for nausea and emesis: implications for models of upper gastrointestinal diseases. Auton. Neurosci. 125:100–15 [Google Scholar]
  4. Asmar M, Bache M, Knop FK, Madsbad S, Holst JJ. 4.  2010. Do the actions of glucagon-like peptide-1 on gastric emptying, appetite, and food intake involve release of amylin in humans?. J. Clin. Endocrinol. Metab. 95:2367–75 [Google Scholar]
  5. Aston-Mourney K, Hull RL, Zraika S, Udayasankar J, Subramanian SL, Kahn SE. 5.  2011. Exendin-4 increases islet amyloid deposition but offsets the resultant beta cell toxicity in human islet amyloid polypeptide transgenic mouse islets. Diabetologia 54:1756–65 [Google Scholar]
  6. Babcock AM, Livosky M, Avery DD. 6.  1985. Cholecystokinin and bombesin suppress operant responding for food reward. Pharmacol. Biochem. Behav. 22:893–95 [Google Scholar]
  7. Badiani A, Leone P, Noel MB, Stewart J. 7.  1995. Ventral tegmental area opioid mechanisms and modulation of ingestive behavior. Brain Res. 670:264–76 [Google Scholar]
  8. Baggio LL, Drucker DJ. 8.  2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–57 [Google Scholar]
  9. Banks WA, Kastin AJ. 9.  1998. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19:883–89 [Google Scholar]
  10. Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB. 10.  1995. Permeability of the blood-brain barrier to amylin. Life Sci. 57:1993–2001 [Google Scholar]
  11. Barbano MF, Le Saux M, Cador M. 11.  2009. Involvement of dopamine and opioids in the motivation to eat: influence of palatability, homeostatic state, and behavioral paradigms. Psychopharmacology(Berl.) 203:475–87 [Google Scholar]
  12. Barrera JG, Jones KR, Herman JP, D'Alessio DA, Woods SC, Seeley RJ. 12.  2011. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J. Neurosci. 31:3904–13 [Google Scholar]
  13. Beales IL, Calam J. 13.  2003. Regulation of amylin release from cultured rabbit gastric fundic mucosal cells. BMC Physiol. 3:13 [Google Scholar]
  14. Beaumont K, Kenney MA, Young AA, Rink TJ. 14.  1993. High affinity amylin binding sites in rat brain. Mol. Pharmacol. 44:493–97 [Google Scholar]
  15. Becskei C, Riediger T, Zund D, Wookey P, Lutz TA. 15.  2004. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 1030:221–33 [Google Scholar]
  16. Benoit SC, Davis JF, Davidson TL. 16.  2010. Learned and cognitive controls of food intake. Brain Res. 1350:71–76 [Google Scholar]
  17. Bergenstal RM, Wysham C, MacConell L, Malloy J, Walsh B. 17.  et al. 2010. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet 376:431–39 [Google Scholar]
  18. Berthoud HR. 18.  2008. The vagus nerve, food intake and obesity. Regul. Pept. 149:15–25 [Google Scholar]
  19. Blonde L, Klein EJ, Han J, Zhang B, Mac SM. 19.  et al. 2006. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes. Metab. 8:436–47 [Google Scholar]
  20. Bose M, Machineni S, Olivan B, Teixeira J, McGinty JJ. 20.  et al. 2010. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity 18:1085–91 [Google Scholar]
  21. Brearley SG, Clements CV, Molassiotis A. 21.  2008. A review of patient self-report tools for chemotherapy-induced nausea and vomiting. Support. Care Cancer 16:1213–29 [Google Scholar]
  22. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD. 22.  et al. 2009. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122:248–56.e5 [Google Scholar]
  23. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. 23.  2004. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27:2628–35 [Google Scholar]
  24. Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E. 24.  et al. 2009. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374:39–47 [Google Scholar]
  25. Campbell JE, Drucker DJ. 25.  2013. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17:819–37 [Google Scholar]
  26. Carr KD, Simon EJ. 26.  1984. Potentiation of reward by hunger is opioid mediated. Brain Res. 297:369–73 [Google Scholar]
  27. Chan JL, Roth JD, Weyer C. 27.  2009. It takes two to tango: combined amylin/leptin agonism as a potential approach to obesity drug development. J. Invest. Med. 57:777–83 [Google Scholar]
  28. Chen L, Magliano DJ, Zimmet PZ. 28.  2012. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol. 8:228–36 [Google Scholar]
  29. Chia CW, Carlson OD, Kim W, Shin YK, Charles CP. 29.  et al. 2009. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58:1342–49 [Google Scholar]
  30. Clapper JR, Athanacio J, Wittmer C, Griffin PS, D'Souza L. 30.  et al. 2013. Effects of amylin and bupropion/naltrexone on food intake and body weight are interactive in rodent models. Eur. J. Pharmacol. 698:292–98 [Google Scholar]
  31. Craft S, Asthana S, Newcomer J, Wilkinson C, Matos I. 31.  et al. 1999. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry 56:1135–40 [Google Scholar]
  32. Davidson TL, Kanoski SE, Chan K, Clegg DJ, Benoit SC, Jarrard LE. 32.  2010. Hippocampal lesions impair retention of discriminative responding based on energy state cues. Behav. Neurosci. 124:97–105 [Google Scholar]
  33. Davidson TL, Kanoski SE, Walls EK, Jarrard LE. 33.  2005. Memory inhibition and energy regulation. Physiol. Behav. 86:731–46 [Google Scholar]
  34. De Jonghe BC, Hayes MR, Bence KK. 34.  2011. Melanocortin control of energy balance: evidence from rodent models. Cell Mol. Life Sci. 68:2569–88 [Google Scholar]
  35. De Jonghe BC, Horn CC. 35.  2008. Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R756–65 [Google Scholar]
  36. De Jonghe BC, Lawler MP, Horn CC, Tordoff MG. 36.  2009. Pica as an adaptive response: Kaolin consumption helps rats recover from chemotherapy-induced illness. Physiol. Behav. 97:87–90 [Google Scholar]
  37. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. 37.  2005. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28:1092–100 [Google Scholar]
  38. Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. 38.  2012. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J. Neurosci. 32:4812–20 [Google Scholar]
  39. DiLeone RJ, Taylor JR, Picciotto MR. 39.  2012. The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat. Neurosci. 15:1330–35 [Google Scholar]
  40. Donovan MJ, Paulino G, Raybould HE. 40.  2007. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol. Behav. 92:969–74 [Google Scholar]
  41. Dossat AM, Lilly N, Kay K, Williams DL. 41.  2011. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 31:14453–57 [Google Scholar]
  42. Drucker DJ. 42.  2013. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes 62:3316–23 [Google Scholar]
  43. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. 43.  1987. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 84:3434–38 [Google Scholar]
  44. Drucker DJ, Sherman SI, Bergenstal RM, Buse JB. 44.  2011. The safety of incretin-based therapies—review of the scientific evidence. J. Clin. Endocrinol. Metab. 96:2027–31 [Google Scholar]
  45. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL. 45.  et al. 2003. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9:1173–79 [Google Scholar]
  46. Egecioglu E, Engel JA, Jerlhag E. 46.  2013. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE 8:e69010 [Google Scholar]
  47. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. 47.  1964. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24:1076–82 [Google Scholar]
  48. Fehmann HC, Habener JF. 48.  1992. Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–66 [Google Scholar]
  49. Finkelstein EA, Brown DS, Wrage LA, Allaire BT, Hoerger TJ. 49.  2010. Individual and aggregate years-of-life-lost associated with overweight and obesity. Obesity(Silver Spring) 18:333–39 [Google Scholar]
  50. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. 50.  2009. Annual medical spending attributable to obesity: payer- and service-specific estimates. Health Aff.(Millwood) 28:w822–31 [Google Scholar]
  51. Flegal KM, Carroll MD, Ogden CL, Curtin LR. 51.  2010. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–41 [Google Scholar]
  52. Froud T, Faradji RN, Pileggi A, Messinger S, Baidal DA. 52.  et al. 2008. The use of exenatide in islet transplant recipients with chronic allograft dysfunction: safety, efficacy, and metabolic effects. Transplantation 86:36–45 [Google Scholar]
  53. Fu Z, Gilbert ER, Liu D. 53.  2012. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9:25–53 [Google Scholar]
  54. Garcia J, Kimeldorf DJ, Koelling RA. 54.  1955. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157–58 [Google Scholar]
  55. Gault VA, Porter WD, Flatt PR, Holscher C. 55.  2010. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet. Int. J. Obes.(Lond.) 34:1341–44 [Google Scholar]
  56. Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J. 56.  et al. 1998. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem. Biophys. Res. Commun. 250:271–77 [Google Scholar]
  57. Gomez E, Pritchard C, Herbert TP. 57.  2002. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J. Biol. Chem. 277:48146–51 [Google Scholar]
  58. Graham DL, Erreger K, Galli A, Stanwood GD. 58.  2013. GLP-1 analog attenuates cocaine reward. Mol. Psychiatry 18:961–62 [Google Scholar]
  59. Gribble FM. 59.  2012. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc. Nutr. Soc. 71:456–62 [Google Scholar]
  60. Grill HJ, Hayes MR. 60.  2012. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 16:296–309 [Google Scholar]
  61. Grill HJ, Norgren R. 61.  1978. The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res. 143:263–79 [Google Scholar]
  62. Grill HJ, Norgren R. 62.  1978. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res. 143:281–97 [Google Scholar]
  63. Hallbrink M, Holmqvist T, Olsson M, Ostenson CG, Efendic S, Langel U. 63.  2001. Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Gαs and Gαi/Gαo activation. Biochim. Biophys. Acta 1546:79–86 [Google Scholar]
  64. Hayes MR. 64.  2012. Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects. Physiol. Behav. 106:413–16 [Google Scholar]
  65. Hayes MR, Bradley L, Grill HJ. 65.  2009. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150:2654–59 [Google Scholar]
  66. Hayes MR, De Jonghe BC, Kanoski SE. 66.  2010. Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol. Behav. 100:503–10 [Google Scholar]
  67. Hayes MR, Kanoski SE, De Jonghe BC, Leichner TM, Alhadeff AL. 67.  et al. 2011. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R1479–85 [Google Scholar]
  68. Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A. 68.  et al. 2011. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 13:320–30 [Google Scholar]
  69. Hayes MR, Skibicka KP, Grill HJ. 69.  2008. Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 149:4059–68 [Google Scholar]
  70. Hilton JM, Chai SY, Sexton PM. 70.  1995. In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience 69:1223–37 [Google Scholar]
  71. Hokfelt T, Cortes R, Schalling M, Ceccatelli S, Pelto-Huikko M. 71.  et al. 1991. Distribution patterns of CCK and CCK mRNA in some neuronal and non-neuronal tissues. Neuropeptides 19:Suppl.31–43 [Google Scholar]
  72. Holland PC, Petrovich GD. 72.  2005. A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiol. Behav. 86:747–61 [Google Scholar]
  73. Holst JJ. 73.  2007. The physiology of glucagon-like peptide 1. Physiol. Rev. 87:1409–39 [Google Scholar]
  74. Huang HJ, Chen YH, Liang KC, Jheng YS, Jhao JJ. 74.  et al. 2012. Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS ONE 7:e39656 [Google Scholar]
  75. Iwai T, Suzuki M, Kobayashi K, Mori K, Mogi Y, Oka J. 75.  2009. The influences of juvenile diabetes on memory and hippocampal plasticity in rats: improving effects of glucagon-like peptide-1. Neurosci. Res. 64:67–74 [Google Scholar]
  76. John LE, Kane MP, Busch RS, Hamilton RA. 76.  2007. Expanded use of exenatide in the management of type 2 diabetes. Diabetes Spectr. 20:59–63 [Google Scholar]
  77. Jones IR, Owens DR, Vora J, Luzio SD, Hayes TM. 77.  1989. A supplementary infusion of glucose-dependent insulinotropic polypeptide (GIP) with a meal does not significantly improve the beta cell response or glucose tolerance in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 7:263–69 [Google Scholar]
  78. Kanoski SE. 78.  2012. Cognitive and neuronal systems underlying obesity. Physiol. Behav. 106:337–44 [Google Scholar]
  79. Kanoski SE, Davidson TL. 79.  2011. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol. Behav. 103:59–68 [Google Scholar]
  80. Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR. 80.  2011. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152:3103–12 [Google Scholar]
  81. Kanoski SE, Fortin SM, Ricks KM, Grill HJ. 81.  2013. Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feeding via PI3K-Akt signaling. Biol. Psychiatry 73:915–23 [Google Scholar]
  82. Kanoski SE, Hayes MR, Greenwald HS, Fortin SM, Gianessi CA. 82.  et al. 2011. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology 36:1859–70 [Google Scholar]
  83. Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR. 83.  2012. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 62:1916–27 [Google Scholar]
  84. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. 84.  2008. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg. 247:401–7 [Google Scholar]
  85. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M. 85.  et al. 2001. Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem. 276:46046–53 [Google Scholar]
  86. Kastin AJ, Akerstrom V. 86.  2003. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int. J. Obes. Relat. Metab. Disord. 27:313–18 [Google Scholar]
  87. Kelley AE. 87.  1999. Functional specificity of ventral striatal compartments in appetitive behaviors. Ann. N. Y. Acad. Sci. 877:71–90 [Google Scholar]
  88. Kelley AE. 88.  2004. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27:765–76 [Google Scholar]
  89. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD. 89.  et al. 2005. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28:1083–91 [Google Scholar]
  90. Kennedy PJ, Shapiro ML. 90.  2004. Retrieving memories via internal context requires the hippocampus. J. Neurosci. 24:6979–85 [Google Scholar]
  91. Kenny PJ. 91.  2011. Common cellular and molecular mechanisms in obesity and drug addiction. Nat. Rev. Neurosci. 12:638–51 [Google Scholar]
  92. Kenny PJ. 92.  2011. Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–79 [Google Scholar]
  93. Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ. 93.  2004. Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res. 1026:284–94 [Google Scholar]
  94. Khanna G, O'Dorisio SM, Menda Y, Kirby P, Kao S, Sato Y. 94.  2008. Gastroenteropancreatic neuroendocrine tumors in children and young adults. Pediatr. Radiol. 38:251–59, quiz 358–59 [Google Scholar]
  95. Kindel TL, Yoder SM, Seeley RJ, D'Alessio DA, Tso P. 95.  2009. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J. Gastrointest. Surg. 13:1762–72 [Google Scholar]
  96. Kinzig KP, D'Alessio DA, Seeley RJ. 96.  2002. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J. Neurosci. 22:10470–76 [Google Scholar]
  97. Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF. 97.  et al. 2005. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115:3554–63 [Google Scholar]
  98. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. 98.  2007. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg. Obes. Relat. Dis. 3:597–601 [Google Scholar]
  99. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A. 99.  et al. 2006. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity(Silver Spring) 14:1553–61 [Google Scholar]
  100. Lamont BJ, Li Y, Kwan E, Brown TJ, Gaisano H, Drucker DJ. 100.  2012. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J. Clin. Invest. 122:388–402 [Google Scholar]
  101. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. 101.  1997. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77:257–70 [Google Scholar]
  102. Larsen PJ, Tang-Christensen M, Jessop DS. 102.  1997. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138:4445–55 [Google Scholar]
  103. Lutz TA. 103.  2010. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1475–84 [Google Scholar]
  104. Lutz TA. 104.  2012. Control of energy homeostasis by amylin. Cell Mol. Life Sci. 69:1947–65 [Google Scholar]
  105. Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E. 105.  1998. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19:309–17 [Google Scholar]
  106. Lutz TA, Tschudy S, Rushing PA, Scharrer E. 106.  2000. Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21:233–38 [Google Scholar]
  107. Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E. 107.  2012. Glucagon-like peptide-1 cleavage product GLP-1(9–36) amide rescues synaptic plasticity and memory deficits in Alzheimer's disease model mice. J. Neurosci. 32:13701–8 [Google Scholar]
  108. MacDonald AF, Billington CJ, Levine AS. 108.  2003. Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the ventral tegmental area and in the nucleus accumbens shell region in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R999–1004 [Google Scholar]
  109. MacDonald AF, Billington CJ, Levine AS. 109.  2004. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. Brain Res. 1018:78–85 [Google Scholar]
  110. McClean P, Kung K, McCurtin R, Gault V, Holscher C. 110.  2009. Novel GLP-1 analogues cross the blood brain barrier: a link between diabetes and Alzheimer's disease. Proc. Soc. Neurosci. Annu. Meet., Chicago, IL
  111. McClean PL, Gault VA, Harriott P, Holscher C. 111.  2010. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease. Eur. J. Pharmacol. 630:158–62 [Google Scholar]
  112. McClean PL, Parthsarathy V, Faivre E, Holscher C. 112.  2011. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J. Neurosci. 31:6587–94 [Google Scholar]
  113. McIntyre N, Holdsworth CD, Turner DS. 113.  1964. New interpretation of oral glucose tolerance. Lancet 2:20–21 [Google Scholar]
  114. McMahon LR, Wellman PJ. 114.  1997. Decreased intake of a liquid diet in nonfood-deprived rats following intra-PVN injections of GLP-1 (7–36) amide. Pharmacol. Biochem. Behav. 58:673–77 [Google Scholar]
  115. McMahon LR, Wellman PJ. 115.  1998. PVN infusion of GLP-1-(7–36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am. J. Physiol. 274:R23–29 [Google Scholar]
  116. Meeran K, O'Shea D, Edwards CM, Turton MD, Heath MM. 116.  et al. 1999. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology 140:244–50 [Google Scholar]
  117. Merchenthaler I, Lane M, Shughrue P. 117.  1999. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403:261–80 [Google Scholar]
  118. Miao XY, Liu Y, Li CL, Gu ZY, Liu P. 118.  et al. 2013. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides 39:71–79 [Google Scholar]
  119. Mietlicki-Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL. 119.  et al. 2013. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am. J. Physiol. Endocrinol. Metab. 305:E1367–74 [Google Scholar]
  120. Mietlicki-Baase EG, Rupprecht LE, Olivos DR, Zimmer DJ, Alter MD. 120.  et al. 2013. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 38:1685–97 [Google Scholar]
  121. Miner P, Borkuhova Y, Shimonova L, Khaimov A, Bodnar RJ. 121.  2010. GABA-A and GABA-B receptors mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions. Brain Res. 1355:86–96 [Google Scholar]
  122. Mitchell D, Wells C, Hoch N, Lind K, Woods SC, Mitchell LK. 122.  1976. Poison induced pica in rats. Physiol. Behav. 17:691–97 [Google Scholar]
  123. Mollet A, Gilg S, Riediger T, Lutz TA. 123.  2004. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav. 81:149–55 [Google Scholar]
  124. Montanya E, Sesti G. 124.  2009. A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon-like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin. Ther. 31:2472–88 [Google Scholar]
  125. Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S. 125.  et al. 1999. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 140:1132–40 [Google Scholar]
  126. Morinigo R, Lacy AM, Casamitjana R, Delgado S, Gomis R, Vidal J. 126.  2006. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes. Surg. 16:1594–601 [Google Scholar]
  127. Morinigo R, Moize V, Musri M, Lacy AM, Navarro S. 127.  et al. 2006. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91:1735–40 [Google Scholar]
  128. Mumphrey MB, Patterson LM, Zheng H, Berthoud HR. 128.  2013. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol. Motil. 25:e70–79 [Google Scholar]
  129. Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D. 129.  et al. 2013. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J. Clin. Endocrinol. Metab. 98:4391–99 [Google Scholar]
  130. Narayanan NS, Guarnieri DJ, DiLeone RJ. 130.  2010. Metabolic hormones, dopamine circuits, and feeding. Front. Neuroendocrinol. 31:104–12 [Google Scholar]
  131. Neff KJ, le Roux CW. 131.  2013. Bariatric surgery: a best practice article. J. Clin. Pathol. 66:90–8 [Google Scholar]
  132. Neff KJ, O'Shea D, le Roux CW. 132.  2013. Glucagon like peptide-1 (GLP-1) dynamics following bariatric surgery: a signpost to a new frontier. Curr. Diabetes Rev. 9:93–101 [Google Scholar]
  133. Nishizawa M, Nakabayashi H, Kawai K, Ito T, Kawakami S. 133.  et al. 2000. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor. J. Auton. Nerv. Syst. 80:14–21 [Google Scholar]
  134. Nishizawa M, Nakabayashi H, Uchida K, Nakagawa A, Niijima A. 134.  1996. The hepatic vagal nerve is receptive to incretin hormone glucagon-like peptide-1, but not to glucose-dependent insulinotropic polypeptide, in the portal vein. J. Auton. Nerv. Syst. 61:149–54 [Google Scholar]
  135. Norgren R, Hajnal A, Mungarndee SS. 135.  2006. Gustatory reward and the nucleus accumbens. Physiol. Behav. 89:531–35 [Google Scholar]
  136. Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. 136.  1990. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Invest. 85:973–76 [Google Scholar]
  137. Paulino G, Barbier de la Serre C, Knotts TA, Oort PJ, Newman JW. 137.  et al. 2009. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 296:E898–903 [Google Scholar]
  138. Perfetti R, Merkel P. 138.  2000. Glucagon-like peptide-1: a major regulator of pancreatic beta-cell function. Eur. J. Endocrinol. 143:717–25 [Google Scholar]
  139. Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH. 139.  2002. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 302:881–88 [Google Scholar]
  140. Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP. 140.  et al. 2003. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J. Neurosci. Res. 72:603–12 [Google Scholar]
  141. Peterli R, Wolnerhanssen B, Peters T, Devaux N, Kern B. 141.  et al. 2009. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250:234–41 [Google Scholar]
  142. Peters JH, Gallaher ZR, Ryu V, Czaja K. 142.  2013. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J. Comp. Neurol. 521:3584–99 [Google Scholar]
  143. Pierce RC, Kumaresan V. 143.  2006. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse?. Neurosci. Biobehav. Rev. 30:215–38 [Google Scholar]
  144. Pinkney J, Fox T, Ranganath L. 144.  2010. Selecting GLP-1 agonists in the management of type 2 diabetes: differential pharmacology and therapeutic benefits of liraglutide and exenatide. Ther. Clin. Risk Manag. 6:401–11 [Google Scholar]
  145. Potes CS, Lutz TA, Riediger T. 145.  2010. Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res. 1334:31–44 [Google Scholar]
  146. Potes CS, Turek VF, Cole RL, Vu C, Roland BL. 146.  et al. 2010. Noradrenergic neurons of the area postrema mediate amylin's hypophagic action. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:R623–31 [Google Scholar]
  147. Qi T, Ly K, Poyner DR, Christopoulos G, Sexton PM, Hay DL. 147.  2011. Structure-function analysis of amino acid 74 of human RAMP1 and RAMP3 and its role in peptide interactions with adrenomedullin and calcitonin gene-related peptide receptors. Peptides 32:1060–67 [Google Scholar]
  148. Reidelberger RD, Haver AC, Apenteng BA, Anders KL, Steenson SM. 148.  2011. Effects of exendin-4 alone and with peptide YY(3–36) on food intake and body weight in diet-induced obese rats. Obesity 19:121–27 [Google Scholar]
  149. Riediger T, Schmid HA, Lutz TA, Simon E. 149.  2002. Amylin and glucose co-activate area postrema neurons of the rat. Neurosci. Lett. 328:121–24 [Google Scholar]
  150. Riediger T, Zuend D, Becskei C, Lutz TA. 150.  2004. The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R114–22 [Google Scholar]
  151. Rinaman L. 151.  1999. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277:R582–90 [Google Scholar]
  152. Rinaman L. 152.  2010. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 1350:18–34 [Google Scholar]
  153. Rinaman L, Card JP, Schwaber JS, Miselis RR. 153.  1989. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9:1985–96 [Google Scholar]
  154. Roth JD. 154.  2013. Amylin and the regulation of appetite and adiposity: recent advances in receptor signaling, neurobiology and pharmacology. Curr. Opin. Endocrinol. Diabetes Obes. 20:8–13 [Google Scholar]
  155. Roth JD, Erickson MR, Chen S, Parkes DG. 155.  2012. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br. J. Pharmacol. 166:121–36 [Google Scholar]
  156. Roth JD, Maier H, Chen S, Roland BL. 156.  2009. Implications of amylin receptor agonism: integrated neurohormonal mechanisms and therapeutic applications. Arch. Neurol. 66:306–10 [Google Scholar]
  157. Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C. 157.  et al. 2008. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl. Acad. Sci. USA 105:7257–62 [Google Scholar]
  158. Rubino F, Schauer PR, Kaplan LM, Cummings DE. 158.  2010. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu. Rev. Med. 61:393–411 [Google Scholar]
  159. Rupprecht LE, Mietlicki-Baase EG, Zimmer DJ, McGrath LE, Olivos DR, Hayes MR. 159.  2013. Hindbrain GLP-1 receptor-mediated suppression of food intake requires a PI3K-dependent decrease in phosphorylation of membrane-bound Akt. Am. J. Physiol. Endocrinol. Metab. 305:E751–59 [Google Scholar]
  160. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D'Alessio DA. 160.  et al. 2001. Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142:5035 [Google Scholar]
  161. Russell-Jones D. 161.  2010. The safety and tolerability of GLP-1 receptor agonists in the treatment of type-2 diabetes. Int. J. Clin. Pract. 64:1402–14 [Google Scholar]
  162. Sadry SA, Drucker DJ. 162.  2013. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat. Rev. Endocrinol. 9:425–33 [Google Scholar]
  163. Sandoval D, Barrera JG, Stefater MA, Sisley S, Woods SC. 163.  et al. 2012. The anorectic effect of GLP-1 in rats is nutrient dependent. PLoS ONE 7:e51870 [Google Scholar]
  164. Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ. 164.  2008. Arcuate GLP-1 receptors regulate glucose homeostasis but not food intake. Diabetes 57:2046–54 [Google Scholar]
  165. Sarwer DB, Faulconbridge LF, Steffen KJ, Roerig JL, Mitchell JE. 165.  2011. Bariatric procedures: managing patients after surgery. Curr. Psychiatry 10:19–31 [Google Scholar]
  166. Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V. 166.  2003. Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R1427–35 [Google Scholar]
  167. Schmidt HD, Anderson SM, Famous KR, Kumaresan V, Pierce RC. 167.  2005. Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur. J. Pharmacol. 526:65–76 [Google Scholar]
  168. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML. 168.  et al. 2014. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. In press
  169. Schultz W. 169.  1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80:1–27 [Google Scholar]
  170. Schwartz GJ, Zeltser LM. 170.  2013. Functional organization of neuronal and humoral signals regulating feeding behavior. Annu. Rev. Nutr. 33:1–21 [Google Scholar]
  171. Sclafani A. 171.  2004. Oral and postoral determinants of food reward. Physiol. Behav. 81:773–79 [Google Scholar]
  172. Sclafani A, Ackroff K. 172.  2004. The relationship between food reward and satiation revisited. Physiol. Behav. 82:89–95 [Google Scholar]
  173. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF. 173.  et al. 2009. Leptin targets in the mouse brain. J. Comp. Neurol. 514:518–32 [Google Scholar]
  174. Seino S, Takahashi H, Fujimoto W, Shibasaki T. 174.  2009. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes. Metab. 11:Suppl. 4180–88 [Google Scholar]
  175. Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K. 175.  1994. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62:553–67 [Google Scholar]
  176. Sherwin R, Jastreboff AM. 176.  2012. Year in diabetes 2012: the diabetes tsunami. J. Clin. Endocrinol. Metab. 97:4293–301 [Google Scholar]
  177. Shin AC, Zheng H, Berthoud HR. 177.  2012. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann. Surg. 255:294–301 [Google Scholar]
  178. Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR. 178.  2010. Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 151:1588–97 [Google Scholar]
  179. Singh-Franco D, Perez A, Harrington C. 179.  2011. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 13:169–80 [Google Scholar]
  180. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C. 180.  et al. 2004. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351:2683–93 [Google Scholar]
  181. Skibicka KP. 181.  2013. The central GLP-1: implications for food and drug reward. Front. Neurosci. 7:181 [Google Scholar]
  182. Skofitsch G, Wimalawansa SJ, Jacobowitz DM, Gubisch W. 182.  1995. Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can. J. Physiol. Pharmacol. 73:945–56 [Google Scholar]
  183. Strain GW, Gagner M, Pomp A, Dakin G, Inabnet WB. 183.  et al. 2009. Comparison of weight loss and body composition changes with four surgical procedures. Surg. Obes. Relat. Dis. 5:582–87 [Google Scholar]
  184. Stylopoulos N, Hoppin AG, Kaplan LM. 184.  2009. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity(Silver Spring) 17:1839–47 [Google Scholar]
  185. Thorens B. 185.  2011. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13:Suppl. 182–88 [Google Scholar]
  186. Thorens B. 186.  2012. Sensing of glucose in the brain. Handb. Exp. Pharmacol. 209:277–94 [Google Scholar]
  187. Tracy AL, Jarrard LE, Davidson TL. 187.  2001. The hippocampus and motivation revisited: appetite and activity. Behav. Brain Res. 127:13–23 [Google Scholar]
  188. Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. 188.  2010. Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity(Silver Spring) 18:21–26 [Google Scholar]
  189. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM. 189.  et al. 1996. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72 [Google Scholar]
  190. Vahl TP, Tauchi M, Durler TS, Elfers EE, Fernandes TM. 190.  et al. 2007. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148:4965–73 [Google Scholar]
  191. Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M. 191.  et al. 2011. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–29 [Google Scholar]
  192. Wan S, Browning KN, Travagli RA. 192.  2007. Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28:2184–91 [Google Scholar]
  193. Wan S, Coleman FH, Travagli RA. 193.  2007. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1474–82 [Google Scholar]
  194. Wang FB, Powley TL. 194.  2007. Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell Tissue Res. 329:221–30 [Google Scholar]
  195. Wang XH, Li L, Holscher C, Pan YF, Chen XR, Qi JS. 195.  2010. Val8-glucagon-like peptide-1 protects against Abeta1-40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 170:1239–48 [Google Scholar]
  196. Watts AG, Donovan CM. 196.  2010. Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation. Front. Neuroendocrinol. 31:32–43 [Google Scholar]
  197. Wood JM, Chapman K, Eilers J. 197.  2011. Tools for assessing nausea, vomiting, and retching. Cancer Nurs. 34:E14–24 [Google Scholar]
  198. Young A. 198.  2005. Inhibition of gastric emptying. Adv. Pharmacol. 52:99–121 [Google Scholar]
  199. Young A. 199.  2005. Inhibition of glucagon secretion. Adv. Pharmacol. 52:151–71 [Google Scholar]
  200. Zhao S, Kanoski SE, Yan J, Grill HJ, Hayes MR. 200.  2012. Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner. Int. J. Obes.(Lond.) 36:1522–28 [Google Scholar]
  201. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM. 201.  et al. 2009. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1273–82 [Google Scholar]
  202. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. 202.  2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494:528–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error