1932

Abstract

Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071812-161215
2014-07-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/nutr/34/1/annurev-nutr-071812-161215.html?itemId=/content/journals/10.1146/annurev-nutr-071812-161215&mimeType=html&fmt=ahah

Literature Cited

  1. Aigner E, Theurl I, Haufe H, Seifert M, Hohla F. 1.  et al. 2008. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 135:680–88 [Google Scholar]
  2. Arredondo M, Mendiburo MJ, Flores S, Singleton ST, Garrick MD. 2.  2014. Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells. Biometals 27:115–23 [Google Scholar]
  3. Arredondo M, Muñoz P, Mura CV, Núñez MT. 3.  2003. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284:C1525–30 [Google Scholar]
  4. Broderius M, Mostad E, Prohaska JR. 4.  2012. Suppressed hepcidin expression correlates with hypotransferrinemia in copper-deficient rat pups but not dams. Genes Nutr. 7:405–14 [Google Scholar]
  5. Broderius M, Mostad E, Wendroth K, Prohaska JR. 5.  2010. Levels of plasma ceruloplasmin protein are markedly lower following dietary copper deficiency in rodents. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151:473–79 [Google Scholar]
  6. Brubaker C, Sturgeon P. 6.  1956. Copper deficiency in infants; a syndrome characterized by hypocupremia, iron deficiency anemia, and hypoproteinemia. AMA J. Dis. Child. 92:254–65 [Google Scholar]
  7. Casareno RL, Waggoner D, Gitlin JD. 7.  1998. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 273:23625–28 [Google Scholar]
  8. Chen H, Attieh ZK, Syed BA, Kuo YM, Stevens V. 8.  et al. 2010. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J. Nutr. 140:1728–35 [Google Scholar]
  9. Chen H, Huang G, Su T, Gao H, Attieh ZK. 9.  et al. 2006. Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J. Nutr. 136:1236–41 [Google Scholar]
  10. 10.  Deleted in proof
  11. Cherukuri S, Potla R, Sarkar J, Nurko S, Harris ZL, Fox PL. 11.  2005. Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab. 2:309–19 [Google Scholar]
  12. Chloupkova M, Zhang AS, Enns CA. 12.  2010. Stoichiometries of transferrin receptors 1 and 2 in human liver. Blood Cells Mol. Dis. 44:28–33 [Google Scholar]
  13. Choi J, Masaratana P, Latunde-Dada GO, Arno M, Simpson RJ, McKie AT. 13.  2012. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J. Nutr. 142:1929–34 [Google Scholar]
  14. Chung J, Prohaska JR, Wessling-Resnick M. 14.  2004. Ferroportin-1 is not upregulated in copper-deficient mice. J. Nutr. 134:517–21 [Google Scholar]
  15. Collins JF. 15.  2006. Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol. Res. 39:25–37 [Google Scholar]
  16. Collins JF, Franck CA, Kowdley KV, Ghishan FK. 16.  2005. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G964–71 [Google Scholar]
  17. Collins JF, Hu Z, Ranganathan PN, Feng D, Garrick LM. 17.  et al. 2008. Induction of arachidonate 12-lipoxygenase (Alox15) in intestine of iron-deficient rats correlates with the production of biologically active lipid mediators. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G948–62 [Google Scholar]
  18. Collins JF, Prohaska JR, Knutson MD. 18.  2010. Metabolic crossroads of iron and copper. Nutr. Rev. 68:133–47 [Google Scholar]
  19. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI. 19.  et al. 2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1:191–200 [Google Scholar]
  20. Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P. 20.  et al. 2002. Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51:648–53 [Google Scholar]
  21. Ece A, Uyanik BS, Iscan A, Ertan P, Yigitoglu MR. 21.  1997. Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia. Biol. Trace Elem. Res. 59:31–39 [Google Scholar]
  22. El-Shobaki FA, Rummel W. 22.  1979. Binding of copper to mucosal transferrin and inhibition of intestinal iron absorption in rats. Res. Exp. Med. 174:187–95 [Google Scholar]
  23. Evans GW. 23.  1973. Copper homeostasis in the mammalian system. Physiol. Rev. 53:535–70 [Google Scholar]
  24. Feng W, Ye F, Xue W, Zhou Z, Kang YJ. 24.  2009. Copper regulation of hypoxia-inducible factor-1 activity. Mol. Pharmacol. 75:174–82 [Google Scholar]
  25. Fox PL. 25.  2003. The copper-iron chronicles: the story of an intimate relationship. Biometals 16:9–40 [Google Scholar]
  26. Gao J, Zhao N, Knutson MD, Enns CA. 26.  2008. The hereditary hemochromatosis protein, HFE, inhibits iron uptake via down-regulation of Zip14 in HepG2 cells. J. Biol. Chem. 283:21462–68 [Google Scholar]
  27. Garrick MD, Gniecko K, Liu Y, Cohan DS, Garrick LM. 27.  1993. Transferrin and the transferrin cycle in Belgrade rat reticulocytes. J. Biol. Chem. 268:14867–74 [Google Scholar]
  28. Gauss GH, Kleven MD, Sendamarai AK, Fleming MD, Lawrence CM. 28.  2013. The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site. J. Biol. Chem. 288:20668–82 [Google Scholar]
  29. Gitlin JD, Schroeder JJ, Lee-Ambrose LM, Cousins RJ. 29.  1992. Mechanisms of caeruloplasmin biosynthesis in normal and copper-deficient rats. Biochem. J. 282:835–39 [Google Scholar]
  30. Goodman JR, Dalman PR. 30.  1969. Role of copper in iron localization in developing erythrocytes. Blood 34:747–53 [Google Scholar]
  31. Graham RM, Chua AC, Herbison CE, Olynyk JK, Trinder D. 31.  2007. Liver iron transport. World J. Gastroenterol. 13:4725–36 [Google Scholar]
  32. Gulec S, Collins JF. 32.  2013. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a) protein with diminished activity (Brindled; MoBr/y. PLoS ONE 8:e66010 [Google Scholar]
  33. Gulec S, Collins JF. 33.  2014. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1). J. Nutr. 144:12–19 [Google Scholar]
  34. Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. 34.  2005. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Investig. 115:1258–66 [Google Scholar]
  35. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF. 35.  et al. 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–88 [Google Scholar]
  36. Gunshin H, Starr CN, Direnzo C, Fleming MD, Jin J. 36.  et al. 2005. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106:2879–83 [Google Scholar]
  37. Gupta A, Lutsenko S. 37.  2009. Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med. Chem. 1:1125–42 [Google Scholar]
  38. Han O, Kim EY. 38.  2007. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J. Cell Biochem. 101:1000–10 [Google Scholar]
  39. Han O, Wessling-Resnick M. 39.  2002. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G527–33 [Google Scholar]
  40. Harris ZL, Durley AP, Man TK, Gitlin JD. 40.  1999. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96:10812–17 [Google Scholar]
  41. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Gitlin JD. 41.  1995. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci. USA 92:2539–43 [Google Scholar]
  42. Hart EB, Steenbock H, Waddell J, Elvehjem CA. 42.  1928. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77:797–812 [Google Scholar]
  43. Hayashi H, Hattori A, Tatsumi Y, Hayashi K, Katano Y. 43.  et al. 2013. Various copper and iron overload patterns in the livers of patients with Wilson disease and idiopathic copper toxicosis. Med. Mol. Morphol. 46:133–40 [Google Scholar]
  44. Hellman NE, Gitlin JD. 44.  2002. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22:439–58 [Google Scholar]
  45. Hu Z, Gulec S, Collins JF. 45.  2010. Cross-species comparison of genomewide gene expression profiles reveals induction of hypoxia-inducible factor-responsive genes in iron-deprived intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 299:C930–38 [Google Scholar]
  46. Illing AC, Shawki A, Cunningham CL, Mackenzie B. 46.  2012. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem. 287:30485–96 [Google Scholar]
  47. Iwańska S, Strusińska D. 47.  1978. Copper metabolism in different states of erythropoiesis activity. Acta Physiol. Pol. 29:465–74 [Google Scholar]
  48. Jenkitkasemwong S, Broderius M, Nam H, Prohaska JR, Knutson MD. 48.  2010. Anemic copper-deficient rats, but not mice, display low hepcidin expression and high ferroportin levels. J. Nutr. 140:723–30 [Google Scholar]
  49. Jiang L, Garrick MD, Garrick LM, Zhao L, Collins JF. 49.  2013. Divalent metal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells. J. Nutr. 143:1927–33 [Google Scholar]
  50. Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S. 50.  et al. 1999. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J. Biol. Chem. 274:20826–32 [Google Scholar]
  51. Kelly EJ, Palmiter RD. 51.  1996. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat. Genet. 13:219–22 [Google Scholar]
  52. Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ. 52.  2010. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 11:353–63 [Google Scholar]
  53. Kim H, Son HY, Bailey SM, Lee J. 53.  2009. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G356–64 [Google Scholar]
  54. Knutson M, Wessling-Resnick M. 54.  2003. Iron metabolism in the reticuloendothelial system. Crit. Rev. Biochem. Mol. Biol. 38:61–88 [Google Scholar]
  55. Knutson MD. 55.  2007. Steap proteins: implications for iron and copper metabolism. Nutr. Rev. 65:335–40 [Google Scholar]
  56. Kono S. 56.  2013. Aceruloplasminemia: an update. Int. Rev. Neurobiol. 110:125–51 [Google Scholar]
  57. Konz T, Alonso-García J, Montes-Bayón M, Sanz-Medel A. 57.  2013. Comparison of copper labeling followed by liquid chromatography-inductively coupled plasma mass spectrometry and immunochemical assays for serum hepcidin-25 determination. Anal. Chim. Acta 799:1–7 [Google Scholar]
  58. Laftah AH, Latunde-Dada GO, Fakih S, Hider RC, Simpson RJ, McKie AT. 58.  2009. Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). Br. J. Nutr. 101:1150–56 [Google Scholar]
  59. Lambe T, Simpson RJ, Dawson S, Bouriez-Jones T, Crockford TL. 59.  et al. 2009. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood 113:1805–8 [Google Scholar]
  60. Larin D, Mekios C, Das K, Ross B, Yang AS, Gilliam TC. 60.  1999. Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J. Biol. Chem. 274:28497–504 [Google Scholar]
  61. Latunde-Dada GO, Xiang L, Simpson RJ, McKie AT. 61.  2011. Duodenal cytochrome b (Cybrd 1) and HIF-2α expression during acute hypoxic exposure in mice. Eur. J. Nutr. 50:699–704 [Google Scholar]
  62. Lee GR, Nacht S, Lukens JN, Cartwright GE. 62.  1968. Iron metabolism in copper-deficient swine. J. Clin. Investig. 47:2058–69 [Google Scholar]
  63. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G. 63.  et al. 2008. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15:1723–33 [Google Scholar]
  64. Linder MC, Zerounian NR, Moriya M, Malpe R. 64.  2003. Iron and copper homeostasis and intestinal absorption using the Caco2 cell model. Biometals 16:145–60 [Google Scholar]
  65. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. 65.  2006. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. USA 103:13612–17 [Google Scholar]
  66. Maine GN, Burstein E. 66.  2007. COMMD proteins: COMMing to the scene. Cell Mol. Life Sci. 64:1997–2005 [Google Scholar]
  67. Maine GN, Mao X, Muller PA, Komarck CM, Klomp LW, Burstein E. 67.  2009. COMMD1 expression is controlled by critical residues that determine XIAP binding. Biochem. J. 417:601–9 [Google Scholar]
  68. Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A. 68.  et al. 2010. Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides 31:1995–2002 [Google Scholar]
  69. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I. 69.  et al. 2005. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–19 [Google Scholar]
  70. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. 70.  2009. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Investig. 119:1159–66 [Google Scholar]
  71. Matak P, Zumerle S, Mastrogiannaki M, El Balkhi S, Delga S. 71.  et al. 2013. Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PLoS ONE 8:e59538 [Google Scholar]
  72. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G. 72.  et al. 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–59 [Google Scholar]
  73. Mostad EJ, Prohaska JR. 73.  2011. Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp. Biol. Med. 236:298–308 [Google Scholar]
  74. Mukhopadhyay CK, Mazumder B, Fox PL. 74.  2000. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275:21048–54 [Google Scholar]
  75. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A. 75.  et al. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–93 [Google Scholar]
  76. Nose Y, Kim BE, Thiele DJ. 76.  2006. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 4:235–44 [Google Scholar]
  77. Nose Y, Rees EM, Thiele DJ. 77.  2006. Structure of the Ctr1 copper trans‘PORE’ter reveals novel architecture. Trends Biochem. Sci. 31:604–7 [Google Scholar]
  78. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A. 78.  et al. 2005. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37:1264–69 [Google Scholar]
  79. Ohgami RS, Campagna DR, McDonald A, Fleming MD. 79.  2006. The Steap proteins are metalloreductases. Blood 108:1388–94 [Google Scholar]
  80. Osaki S, Johnson DA, Frieden E. 80.  1971. The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J. Biol. Chem. 246:3018–23 [Google Scholar]
  81. Owen CA Jr. 81.  1973. Effects of iron on copper metabolism and copper on iron metabolism in rats. Am. J. Physiol. 224:514–18 [Google Scholar]
  82. Palumaa P, Kangur L, Voronova A, Sillard R. 82.  2004. Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem. J. 382:307–14 [Google Scholar]
  83. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA. 83.  et al. 2007. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol. Cell. Biol. 27:912–25 [Google Scholar]
  84. Patel BN, David S. 84.  1997. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272:20185–90 [Google Scholar]
  85. Pelucchi S, Mariani R, Calza S, Fracanzani AL, Modignani GL. 85.  et al. 2012. CYBRD1 as a modifier gene that modulates iron phenotype in HFE p.C282Y homozygous patients. Haematologica 97:1818–25 [Google Scholar]
  86. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. 86.  1996. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15:6084–95 [Google Scholar]
  87. Pollack S, George JN, Reba RC, Kaufman RM, Crosby WH. 87.  1965. The absorption of nonferrous metals in iron deficiency. J. Clin. Investig. 44:1470–73 [Google Scholar]
  88. Pourvali K, Matak P, Latunde-Dada GO, Solomou S, Mastrogiannaki M. 88.  et al. 2012. Basal expression of copper transporter 1 in intestinal epithelial cells is regulated by hypoxia-inducible factor 2α. FEBS Lett. 586:2423–27 [Google Scholar]
  89. Prohaska JR. 89.  2011. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv. Nutr. 2:89–95 [Google Scholar]
  90. Prohaska JR, Broderius M. 90.  2012. Copper deficiency has minimal impact on ferroportin expression or function. Biometals 25:633–42 [Google Scholar]
  91. Pyatskowit JW, Prohaska JR. 91.  2008. Copper deficient rats and mice both develop anemia but only rats have lower plasma and brain iron levels. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 147:316–23 [Google Scholar]
  92. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S. 92.  et al. 2006. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–28 [Google Scholar]
  93. Qiu L, Ding X, Zhang Z, Kang YJ. 93.  2012. Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1. J. Pharmacol. Exp. Ther. 342:561–67 [Google Scholar]
  94. Ranganathan PN, Lu Y, Fuqua BK, Collins JF. 94.  2012. Discovery of a cytosolic/soluble ferroxidase in rodent enterocytes. Proc. Natl. Acad. Sci. USA 109:3564–69 [Google Scholar]
  95. Ranganathan PN, Lu Y, Fuqua BK, Collins JF. 95.  2012. Immunoreactive hephaestin and ferroxidase activity are present in the cytosolic fraction of rat enterocytes. Biometals 25:687–95 [Google Scholar]
  96. Ranganathan PN, Lu Y, Jiang L, Kim C, Collins JF. 96.  2011. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake. Blood 118:3146–53 [Google Scholar]
  97. Ravia JJ, Stephen RM, Ghishan FK, Collins JF. 97.  2005. Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J. Biol. Chem. 280:36221–27 [Google Scholar]
  98. Reeves PG, DeMars LC. 98.  2004. Copper deficiency reduces iron absorption and biological half-life in male rats. J. Nutr. 134:1953–57 [Google Scholar]
  99. Reeves PG, DeMars LC. 99.  2005. Repletion of copper-deficient rats with dietary copper restores duodenal hephaestin protein and iron absorption. Exp. Biol. Med. 230:320–25 [Google Scholar]
  100. Reeves PG, DeMars LC. 100.  2006. Signs of iron deficiency in copper-deficient rats are not affected by iron supplements administered by diet or by injection. J. Nutr. Biochem. 17:635–42 [Google Scholar]
  101. Reeves PG, DeMars LC, Johnson WT, Lukaski HC. 101.  2005. Dietary copper deficiency reduces iron absorption and duodenal enterocyte hephaestin protein in male and female rats. J. Nutr. 135:92–98 [Google Scholar]
  102. Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ. 102.  2000. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782–93 [Google Scholar]
  103. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. 103.  2009. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9:152–64 [Google Scholar]
  104. Shaw GC, Cope JJ, Li L, Corson K, Hersey C. 104.  et al. 2006. Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100 [Google Scholar]
  105. Singh NP, Medeiros DM. 105.  1984. Effect of copper deficiency and sodium intake upon liver lipid and mineral composition in the rat. Biol. Trace Elem. Res. 6:423–29 [Google Scholar]
  106. Sourkes TL, Lloyd K, Birnbaum H. 106.  1968. Inverse relationship of hepatic copper and iron concentrations in rats fed deficient diets. Can. J. Biochem. 46:267–71 [Google Scholar]
  107. Taylor M, Qu A, Anderson ER, Matsubara T, Martin A. 107.  et al. 2011. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140:2044–55 [Google Scholar]
  108. Thackeray EW, Sanderson SO, Fox JC, Kumar N. 108.  2011. Hepatic iron overload or cirrhosis may occur in acquired copper deficiency and is likely mediated by hypoceruloplasminemia. J. Clin. Gastroenterol. 45:153–58 [Google Scholar]
  109. Tselepis C, Ford SJ, McKie AT, Vogel W, Zoller H. 109.  et al. 2010. Characterization of the transition-metal-binding properties of hepcidin. Biochem. J. 427:289–96 [Google Scholar]
  110. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C. 110.  et al. 1999. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21:195–99 [Google Scholar]
  111. Wang B, Dong D, Kang YJ. 111.  2013. Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity. Exp. Biol. Med. 238:1017–23 [Google Scholar]
  112. Wang CY, Knutson MD. 112.  2013. Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice. Hepatology 58:788–98 [Google Scholar]
  113. Wee NK, Weinstein DC, Fraser ST, Assinder SJ. 113.  2013. The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int. J. Biochem. Cell Biol. 45:960–63 [Google Scholar]
  114. White C, Kambe T, Fulcher YG, Sachdev SW, Bush AI. 114.  et al. 2009. Copper transport into the secretory pathway is regulated by oxygen in macrophages. J. Cell Sci. 122:1315–21 [Google Scholar]
  115. Williams DM, Kennedy FS, Green BG. 115.  1983. Hepatic iron accumulation in copper-deficient rats. Br. J. Nutr. 50:653–60 [Google Scholar]
  116. Williams DM, Loukopoulos D, Lee GR, Cartwright GE. 116.  1976. Role of copper in mitochondrial iron metabolism. Blood 48:77–85 [Google Scholar]
  117. Wyman S, Simpson RJ, McKie AT, Sharp PA. 117.  2008. Dctyb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582:1901–6 [Google Scholar]
  118. Xie L, Collins JF. 118.  2011. Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2α) in intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 300:C1298–305 [Google Scholar]
  119. Xie L, Collins JF. 119.  2013. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J. Biol. Chem. 288:23943–52 [Google Scholar]
  120. Yeh KY, Yeh M, Mims L, Glass J. 120.  2009. Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G55–65 [Google Scholar]
  121. Zhang B, Georgiev O, Hagmann M, Gunes C, Cramer M. 121.  et al. 2003. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol. Cell. Biol. 23:8471–85 [Google Scholar]
  122. Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A. 122.  et al. 2001. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120:1412–19 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071812-161215
Loading
/content/journals/10.1146/annurev-nutr-071812-161215
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error