CD36 (cluster of differentiation 36) is a scavenger receptor that functions in high-affinity tissue uptake of long-chain fatty acids (FAs) and contributes under excessive fat supply to lipid accumulation and metabolic dysfunction. This review describes recent evidence regarding the CD36 FA binding site and a potential mechanism for FA transfer. It also presents the view that CD36 and FA signaling coordinate fat utilization, a view that is based on newly identified CD36 actions that involve oral fat perception, intestinal fat absorption, secretion of the peptides cholecystokinin and secretin, regulation of hepatic lipoprotein output, activation of beta oxidation by muscle, and regulation of the production of the FA-derived bioactive eicosanoids. Thus abnormalities of fat metabolism and the associated pathology might involve dysfunction of CD36-mediated signal transduction in addition to the changes in FA uptake.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abumrad NA, Davidson NO. 1.  2012. Role of the gut in lipid homeostasis. Physiol. Rev. 92:1061–85 [Google Scholar]
  2. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. 2.  1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268:17665–68 [Google Scholar]
  3. Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE. 3.  2012. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 15:171–85 [Google Scholar]
  4. Babnigg G, Bowersox SR, Villereal ML. 4.  1997. The role of pp60csrc in the regulation of calcium entry via store-operated calcium channels. J. Biol. Chem. 272:29434–37 [Google Scholar]
  5. Baillie AGS, Coburn CT, Abumrad NA. 5.  1996. Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol. 153:75–81 [Google Scholar]
  6. Bartoshuk LM. 6.  1978. The psychophysics of taste. Am. J. Clin. Nutr. 31:1068–77 [Google Scholar]
  7. Behrens M, Meyerhof W. 7.  2013. Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. Semin. Cell Dev. Biol. 24:215–21 [Google Scholar]
  8. Bentley AA, Adams JC. 8.  2010. The evolution of thrombospondins and their ligand-binding activities. Mol. Biol. Evol. 27:2187–97 [Google Scholar]
  9. Canton J, Neculai D, Grinstein S. 9.  2013. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13:621–34 [Google Scholar]
  10. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R. 10.  et al. 2010. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30:8376–82 [Google Scholar]
  11. Chandra R, Liddle RA. 11.  2007. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes. 14:63–67 [Google Scholar]
  12. Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux KP 3rd, Primeaux SD. 12.  2013. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:R1346–55 [Google Scholar]
  13. Chey WY, Chang TM. 13.  2003. Secretin, 100 years later. J. Gastroenterol. 38:1025–35 [Google Scholar]
  14. Coburn CT, Abumrad NA. 14.  2003. Structure Function of CD36 and Evidence for Its Role in Facilitating Fatty Acid Transport Weinheim, Ger: Wiley-VCH [Google Scholar]
  15. Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. 15.  2000. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275:32523–29 [Google Scholar]
  16. Coort SL, Willems J, Coumans WA, van der Vusse GJ, Bonen A. 16.  et al. 2002. Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol. Cell Biochem. 239:213–19 [Google Scholar]
  17. Covey SD, Brunet RH, Gandhi SG, McFarlane N, Boreham DR. 17.  et al. 2007. Cholesterol depletion inhibits fatty acid uptake without affecting CD36 or caveolin-1 distribution in adipocytes. Biochem. Biophys. Res. Commun. 355:67–71 [Google Scholar]
  18. Decrock E, De Bock M, Wang N, Gadicherla AK, Bol M. 18.  et al. 2013. IP3, a small molecule with a powerful message. Biochim. Biophys. Acta 1833:1772–86 [Google Scholar]
  19. Dramane G, Abdoul-Azize S, Hichami A, Vogtle T, Akpona S. 19.  et al. 2012. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J. Clin. Invest. 122:2267–82 [Google Scholar]
  20. Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM. 20.  et al. 2005. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Invest. 115:1290–97 [Google Scholar]
  21. Edfalk S, Steneberg P, Edlund H. 21.  2008. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–87 [Google Scholar]
  22. El-Yassimi A, Hichami A, Besnard P, Khan NA. 22.  2008. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J. Biol. Chem. 283:12949–59 [Google Scholar]
  23. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA. 23.  et al. 2009. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. USA 106:15430–35 [Google Scholar]
  24. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. 24.  2008. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134:424–31 [Google Scholar]
  25. Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse JD. 25.  et al. 2012. G protein-coupled receptors in human fat taste perception. Chem. Senses 37:123–39 [Google Scholar]
  26. Gilbertson TA, Khan NA. 26.  2013. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog. Lipid Res. 53C:82–92 [Google Scholar]
  27. Glatz JF, Angin Y, Steinbusch LK, Schwenk RW, Luiken JJ. 27.  2013. CD36 as a target to prevent cardiac lipotoxicity and insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids 88:71–77 [Google Scholar]
  28. Glatz JF, Luiken JJ, Bonen A. 28.  2010. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90:367–417 [Google Scholar]
  29. Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P. 29.  et al. 2008. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G1281–87 [Google Scholar]
  30. Grosdidier A, Zoete V, Michielin O. 30.  2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39:W270–77 [Google Scholar]
  31. Hajri T, Han XX, Bonen A, Abumrad NA. 31.  2002. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J. Clin. Invest. 109:1381–89 [Google Scholar]
  32. Hamilton JA, Guo W, Kamp F. 32.  2002. Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins?. Mol. Cell Biochem. 239:17–23 [Google Scholar]
  33. Harmon CM, Abumrad NA. 33.  1993. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133:43–49 [Google Scholar]
  34. Hirano K, Kuwasako T, Nakagawa-Toyama Y, Janabi M, Yamashita S, Matsuzawa Y. 34.  2003. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc. Med. 13:136–41 [Google Scholar]
  35. Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G. 35.  2008. Free fatty acid receptors and drug discovery. Biol. Pharm. Bull. 31:1847–51 [Google Scholar]
  36. Hsieh J, Longuet C, Maida A, Bahrami J, Xu E. 36.  et al. 2009. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:997–1005.e4 [Google Scholar]
  37. Jenkins CM, Cedars A, Gross RW. 37.  2009. Eicosanoid signalling pathways in the heart. Cardiovasc. Res. 82:240–49 [Google Scholar]
  38. Kar NS, Ashraf MZ, Valiyaveettil M, Podrez EA. 38.  2008. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 283:8765–71 [Google Scholar]
  39. Kawai T, Fushiki T. 39.  2003. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R477–54 [Google Scholar]
  40. Keller KL. 40.  2012. Genetic influences on oral fat perception and preference: presented at the symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, June 12, 2011. J. Food Sci. 77:S143–47 [Google Scholar]
  41. Kelley LA, Sternberg MJ. 41.  2009. Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4:363–71 [Google Scholar]
  42. Kiviluoto S, Vervliet T, Ivanova H, Decuypere JP, De Smedt H. 42.  et al. 2013. Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. Biochim. Biophys. Acta 1833:1612–24 [Google Scholar]
  43. Kuda O, Jenkins CM, Skinner JR, Moon SH, Su X. 43.  et al. 2011. CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J. Biol. Chem. 286:17785–95 [Google Scholar]
  44. Kuda O, Pietka TA, Demianova Z, Kudova E, Cvacka J. 44.  et al. 2013. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxLDL uptake by macrophages. J. Biol. Chem. 288:15547–55 [Google Scholar]
  45. Kuwasako T, Hirano K, Sakai N, Ishigami M, Hiraoka H. 45.  et al. 2003. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care 26:1647–48 [Google Scholar]
  46. Lambert JE, Parks EJ. 46.  2012. Postprandial metabolism of meal triglyceride in humans. Biochim. Biophys. Acta 1821:721–26 [Google Scholar]
  47. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M. 47.  et al. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115:3177–84 [Google Scholar]
  48. Lawler PR, Lawler J. 48.  2012. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2:a006627 [Google Scholar]
  49. Leslie CC. 49.  2004. Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell Biol. 82:1–17 [Google Scholar]
  50. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S. 50.  et al. 2011. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140:903–12 [Google Scholar]
  51. Liu P, Shah BP, Croasdell S, Gilbertson TA. 51.  2011. Transient receptor potential channel type M5 is essential for fat taste. J. Neurosci. 31:8634–42 [Google Scholar]
  52. Lobo MV, Huerta L, Ruiz-Velasco N, Teixeiro E, de la Cueva P. 52.  et al. 2001. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. J. Histochem. Cytochem. 49:1253–60 [Google Scholar]
  53. Love-Gregory L, Abumrad NA. 53.  2011. CD36 genetics and the metabolic complications of obesity. Curr. Opin. Clin. Nutr. Metab. Care 14:527–34 [Google Scholar]
  54. Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J. 54.  et al. 2011. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 20:193–201 [Google Scholar]
  55. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A. 55.  et al. 2012. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2:419–31 [Google Scholar]
  56. Lynes M, Narisawa S, Millan JL, Widmaier EP. 56.  2011. Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R1738–47 [Google Scholar]
  57. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB. 57.  2010. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121:1356–64 [Google Scholar]
  58. Martin C, Passilly-Degrace P, Gaillard D, Merlin JF, Chevrot M, Besnard P. 58.  2011. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS ONE 6:25 [Google Scholar]
  59. Mashek DG, Coleman RA. 59.  2006. Cellular fatty acid uptake: the contribution of metabolism. Curr. Opin. Lipidol. 17:274–78 [Google Scholar]
  60. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R. 60.  et al. 2009. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J. Lipid Res. 50:999–1011 [Google Scholar]
  61. Mattes RD. 61.  2011. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol. Behav. 104:624–31 [Google Scholar]
  62. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R. 62.  et al. 2011. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108:235–48 [Google Scholar]
  63. Mundy DI, Li WP, Luby-Phelps K, Anderson RG. 63.  2012. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Mol. Biol. Cell 23:864–80 [Google Scholar]
  64. Murakami M, Kudo I. 64.  2004. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog. Lipid Res. 43:3–35 [Google Scholar]
  65. Nahle Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA. 65.  et al. 2008. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARδ/β-mediated adaptation to metabolic stress. J. Biol. Chem. 283:14317–26 [Google Scholar]
  66. Nassir F, Adewole OL, Brunt EM, Abumrad NA. 66.  2013. CD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice. J. Lipid Res. 54:2988–97 [Google Scholar]
  67. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. 67.  2007. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J. Biol. Chem. 282:19493–501 [Google Scholar]
  68. Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF. 68.  et al. 2013. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 504:172–76 [Google Scholar]
  69. Ozdener MH, Subramanian S, Sundaresan S, Sery O, Hashimoto T. 69.  et al. 2014. CD36 and GPR120 mediated Ca2+ signaling in human taste bud cells: differential responses to fatty acids and obesity. Gastrenterology 146:995–1005 [Google Scholar]
  70. Passilly-Degrace P, Chevrot M, Bernard A, Ancel D, Martin C, Besnard P. 70.  2014. Is the taste of fat regulated?. Biochimie 96:3–7 [Google Scholar]
  71. Pepino MY, Finkbeiner S, Beauchamp GK, Mennella JA. 71.  2010. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity (Silver Spring) 18:959–65 [Google Scholar]
  72. Pepino MY, Love-Gregory L, Klein S, Abumrad NA. 72.  2012. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J. Lipid Res. 53:561–66 [Google Scholar]
  73. Pietka TA, Sulkin MS, Kuda O, Wang W, Zhou D. 73.  et al. 2012. CD36 protein influences myocardial Ca2+ homeostasis and phospholipid metabolism: conduction anomalies in CD36-deficient mice during fasting. J. Biol. Chem. 287:38901–12 [Google Scholar]
  74. Piomelli D. 74.  2013. A fatty gut feeling. Trends Endocrinol. Metab. 24:332–41 [Google Scholar]
  75. Razani B, Park DS, Miyanaga Y, Ghatpande A, Cohen J. 75.  et al. 2002. Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry 41:7914–24 [Google Scholar]
  76. Rolls ET. 76.  2013. Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc. Nutr. Soc. 71:488–501 [Google Scholar]
  77. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD. 77.  2012. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J. Lipid Res. 53:709–17 [Google Scholar]
  78. Samuel VT, Shulman GI. 78.  2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–71 [Google Scholar]
  79. Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A. 79.  et al. 2010. Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–19 [Google Scholar]
  80. Sclafani A, Zukerman S, Glendinning JI, Margolskee RF. 80.  2007. Fat and carbohydrate preferences in mice: the contribution of α-gustducin and Trpm5 taste-signaling proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1504–13 [Google Scholar]
  81. Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J. 81.  et al. 2010. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J. Lipid Res. 51:1918–28 [Google Scholar]
  82. Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM. 82.  2013. Intestinal caveolin-1 is important for dietary fatty acid uptake. Biochim. Biophys. Acta 1831:1311–21 [Google Scholar]
  83. Silverstein RL, Li W, Park YM, Rahaman SO. 83.  2010. Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans. Am. Clin. Climatol. Assoc. 121:206–20 [Google Scholar]
  84. Silvestri C, Di Marzo V. 84.  2013. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17:475–90 [Google Scholar]
  85. Simons PJ, Kummer JA, Luiken JJ, Boon L. 85.  2011. Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem. 113:839–43 [Google Scholar]
  86. Stewart JE, Keast RS. 86.  2012. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int. J. Obes. (Lond.) 36:834–42 [Google Scholar]
  87. Stewart JE, Newman LP, Keast RS. 87.  2011. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin. Nutr. 30:838–44 [Google Scholar]
  88. Storch J, McDermott L. 88.  2009. Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res. 50:Suppl.S126–31 [Google Scholar]
  89. Su X, Abumrad NA. 89.  2009. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol. Metab. 20:72–77 [Google Scholar]
  90. Sundaresan S, Shahid R, Riehl TE, Chandra R, Nassir F. 90.  et al. 2013. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 27:1191–202 [Google Scholar]
  91. Tanaka T, Nakata T, Oka T, Ogawa T, Okamoto F. 91.  et al. 2001. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J. Lipid Res. 42:751–59 [Google Scholar]
  92. Tepper BJ, Williams TZ, Burgess JR, Antalis CJ, Mattes RD. 92.  2009. Genetic variation in bitter taste and plasma markers of anti-oxidant status in college women. Int. J. Food Sci. Nutr. 60:Suppl. 235–45 [Google Scholar]
  93. Tran TT, Poirier H, Clement L, Nassir F, Pelsers MM. 93.  et al. 2011. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J. Biol. Chem. 286:25201–10 [Google Scholar]
  94. Watanabe K, Ohta Y, Toba K, Ogawa Y, Hanawa H. 94.  et al. 1998. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann. Nucl. Med. 12:261–66 [Google Scholar]
  95. Watkins SM, Hotamisligil GS. 95.  2012. Promoting atherosclerosis in type 1 diabetes through the selective activation of arachidonic acid and PGE2 production. Circ. Res. 111:394–96 [Google Scholar]
  96. Welsh JA, Sharma A, Cunningham SA, Vos MB. 96.  2011. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 123:249–57 [Google Scholar]
  97. Willett WC, Stampfer MJ. 97.  2013. Current evidence on healthy eating. Annu. Rev. Public Health 34:77–95 [Google Scholar]
  98. Wooding S, Bufe B, Grassi C, Howard MT, Stone AC. 98.  et al. 2006. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–34 [Google Scholar]
  99. Xu S, Jay A, Brunaldi K, Huang N, Hamilton JA. 99.  2013. CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane. Biochemistry 52:7254–61 [Google Scholar]
  100. Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y. 100.  et al. 2007. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol. Cell Biochem. 299:19–22 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error