1932

Abstract

The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein–protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071813-105410
2016-07-17
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-071813-105410.html?itemId=/content/journals/10.1146/annurev-nutr-071813-105410&mimeType=html&fmt=ahah

Literature Cited

  1. Abumrad NA, Davidson NO. 1.  2012. Role of the gut in lipid homeostasis. Physiol. Rev. 92:1061–85 [Google Scholar]
  2. Ahima RS. 2.  2005. Central actions of adipocyte hormones. Trends Endocrinol. Metab. 16:307–13 [Google Scholar]
  3. Albert JS, Yerges-Armstrong LM, Horenstein RB, Pollin TI, Sreenivasan UT. 3.  et al. 2014. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N. Engl. J. Med. 370:2307–15 [Google Scholar]
  4. Amati F, Dube JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P. 4.  et al. 2011. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes?. Diabetes 60:2588–97 [Google Scholar]
  5. Aon MA, Bhatt N, Cortassa SC. 5.  2014. Mitochondrial and cellular mechanisms for managing lipid excess. Front. Physiol. 5:282 [Google Scholar]
  6. Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R. 6.  2004. The peroxisome proliferator-activated receptor γ regulates expression of the perilipin gene in adipocytes. J. Biol. Chem. 279:10070–76 [Google Scholar]
  7. Arrese EL, Rivera L, Hamada M, Mirza S, Hartson SD. 7.  et al. 2008. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch. Biochem. Biophys. 473:42–47 [Google Scholar]
  8. Bartholomew SR, Bell EH, Summerfield T, Newman LC, Miller EL. 8.  et al. 2012. Distinct cellular pools of perilipin 5 point to roles in lipid trafficking. Biochim. Biophys. Acta 1821:268–78 [Google Scholar]
  9. Bell M, Wang H, Chen H, McLenithan JC, Gong DW. 9.  et al. 2008. Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57:2037–45 [Google Scholar]
  10. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP. 10.  2010. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 12:521–32 [Google Scholar]
  11. Beller M, Riedel D, Jansch L, Dieterich G, Wehland J. 11.  et al. 2006. Characterization of the Drosophila lipid droplet subproteome. Mol. Cell. Proteom. 5:1082–94 [Google Scholar]
  12. Bindesboll C, Berg O, Arntsen B, Nebb HI, Dalen KT. 12.  2013. Fatty acids regulate perilipin5 in muscle by activating PPARδ. J. Lipid. Res. 54:1949–63 [Google Scholar]
  13. Boeszoermenyi A, Nagy HM, Arthanari H, Pillip CJ, Lindermuth H. 13.  et al. 2015. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 290:26361–72 [Google Scholar]
  14. Bojic LA, Huff MW. 14.  2013. Peroxisome proliferator-activated receptor δ: a multifaceted metabolic player. Curr. Opin. Lipidol. 24:171–77 [Google Scholar]
  15. Boren J, Matikainen N, Adiels M, Taskinen MR. 15.  2014. Postprandial hypertriglyceridemia as a coronary risk factor. Clin. Chim. Acta 431:131–42 [Google Scholar]
  16. Boren J, White A, Wettesten M, Scott J, Graham L, Olofsson SO. 16.  1991. The molecular mechanism for the assembly and secretion of ApoB-100-containing lipoproteins. Prog. Lipid Res. 30:205–18 [Google Scholar]
  17. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ. 17.  et al. 2012. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 61:2679–90 [Google Scholar]
  18. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M. 18.  et al. 2012. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem. Cell Biol. 137:205–16 [Google Scholar]
  19. Bosma M, Sparks LM, Hooiveld GJ, Jorgensen JA, Houten SM. 19.  et al. 2013. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim. Biophys. Acta 1831:844–52 [Google Scholar]
  20. Bouchez I, Pouteaux M, Canonge M, Genet M, Chardot T. 20.  et al. 2015. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol. Open 4:764–75 [Google Scholar]
  21. Brahma MK, Adam RC, Pollak NM, Jaeger D, Zierler KA. 21.  et al. 2014. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J. Lipid Res. 55:2229–41 [Google Scholar]
  22. Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. 22.  1997. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J. Lipid Res. 38:2249–63 [Google Scholar]
  23. Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C. 23.  2000. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim. Biophys. Acta 1483:251–62 [Google Scholar]
  24. Brasaemle DL, Subramanian V, Garcia A, Marcinkiewicz A, Rothenberg A. 24.  2009. Perilipin A and the control of triacylglycerol metabolism. Mol. Cell. Biochem. 326:15–21 [Google Scholar]
  25. Briand N, Dugail I, Le Lay S. 25.  2011. Cavin proteins: new players in the caveolae field. Biochimie 93:71–77 [Google Scholar]
  26. Briand N, Prado C, Mabilleau G, Lasnier F, Le Liepvre X. 26.  et al. 2014. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation. Diabetes 63:4032–44 [Google Scholar]
  27. Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG. 27.  et al. 2009. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185:641–55 [Google Scholar]
  28. Bussell R Jr., Eliezer D. 28.  2003. A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 329:763–78 [Google Scholar]
  29. Carr RM, Patel RT, Rao V, Dhir R, Graham MJ. 29.  et al. 2012. Reduction of TIP47 improves hepatic steatosis and glucose homeostasis in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302:R996–1003 [Google Scholar]
  30. Carr RM, Peralta G, Yin X, Ahima RS. 30.  2014. Absence of perilipin 2 prevents hepatic steatosis, glucose intolerance and ceramide accumulation in alcohol-fed mice. PLOS ONE 9:e97118 [Google Scholar]
  31. Castro-Chavez F, Yechoor VK, Saha PK, Martinez-Botas J, Wooten EC. 31.  et al. 2003. Coordinated upregulation of oxidative pathways and downregulation of lipid biosynthesis underlie obesity resistance in perilipin knockout mice: a microarray gene expression profile. Diabetes 52:2666–74 [Google Scholar]
  32. Cermelli S, Guo Y, Gross SP, Welte MA. 32.  2006. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16:1783–95 [Google Scholar]
  33. Chang BH, Li L, Paul A, Taniguchi S, Nannegari V. 33.  et al. 2006. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol. Cell. Biol. 26:1063–76 [Google Scholar]
  34. Chang BH, Li L, Saha P, Chan L. 34.  2010. Absence of adipose differentiation related protein upregulates hepatic VLDL secretion, relieves hepatosteatosis, and improves whole body insulin resistance in leptin-deficient mice. J. Lipid Res. 51:2132–42 [Google Scholar]
  35. Chaurasia B, Summers SA. 35.  2015. Ceramides—lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26:538–50 [Google Scholar]
  36. Chawla A, Lee CH, Barak Y, He W, Rosenfeld J. 36.  et al. 2003. PPARδ is a very low-density lipoprotein sensor in macrophages. PNAS 100:1268–73 [Google Scholar]
  37. Chen W, Chang B, Wu X, Li L, Sleeman M, Chan L. 37.  2013. Inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice. Am. J. Physiol. Endocrinol. Metab. 304:E770–79 [Google Scholar]
  38. Chughtai AA, Kassak F, Kostrouchova M, Novotny JP, Krause MW. 38.  et al. 2015. Perilipin-related protein regulates lipid metabolism in C. elegans. PeerJ 3:e1213 [Google Scholar]
  39. Clifford GM, McCormick DK, Londos C, Vernon RG, Yeaman SJ. 39.  1998. Dephosphorylation of perilipin by protein phosphatases present in rat adipocytes. FEBS Lett. 435:125–29 [Google Scholar]
  40. Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE. 40.  et al. 2010. Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88 [Google Scholar]
  41. Coen PM, Goodpaster BH. 41.  2012. Role of intramyocellular lipids in human health. Trends Endocrinol. Metab. 23:391–98 [Google Scholar]
  42. Cohen AW, Razani B, Schubert W, Williams TM, Wang XB. 42.  et al. 2004. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–70 [Google Scholar]
  43. Corella D, Qi L, Sorli JV, Godoy D, Portoles O. 43.  et al. 2005. Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J. Clin. Endocrinol. Metab. 90:5121–26 [Google Scholar]
  44. Cuervo AM, Wong E. 44.  2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24:92–104 [Google Scholar]
  45. D'Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN. 45.  et al. 2015. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLOS ONE 10:e0126823 [Google Scholar]
  46. Dahlhoff M, Frohlich T, Arnold GJ, Muller U, Leonhardt H. 46.  et al. 2015. Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Exp. Cell Res. 332:146–55 [Google Scholar]
  47. Dalen KT, Dahl T, Holter E, Arntsen B, Londos C. 47.  et al. 2007. LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim. Biophys. Acta 1771:210–27 [Google Scholar]
  48. Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG. 48.  et al. 2004. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ. Diabetes 53:1243–52 [Google Scholar]
  49. Dalen KT, Ulven SM, Arntsen BM, Solaas K, Nebb HI. 49.  2006. PPARα activators and fasting induce the expression of adipose differentiation-related protein in liver. J. Lipid Res. 47:931–43 [Google Scholar]
  50. Davidi L, Katz A, Pick U. 50.  2012. Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33 [Google Scholar]
  51. Deram S, Nicolau CY, Perez-Martinez P, Guazzelli I, Halpern A. 51.  et al. 2008. Effects of perilipin (PLIN) gene variation on metabolic syndrome risk and weight loss in obese children and adolescents. J. Clin. Endocrinol. Metab. 93:4933–40 [Google Scholar]
  52. Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT. 52.  1998. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47:1613–18 [Google Scholar]
  53. Du X, Barisch C, Paschke P, Herrfurth C, Bertinetti O. 53.  et al. 2013. Dictyostelium lipid droplets host novel proteins. Eukaryot. Cell 12:1517–29 [Google Scholar]
  54. Edvardsson U, Ljungberg A, Linden D, William-Olsson L, Peilot-Sjogren H. 54.  et al. 2006. PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J. Lipid Res. 47:329–40 [Google Scholar]
  55. Egan JJ, Greenberg AS, Chang MK, Wek SA, Moos MC Jr., Londos C. 55.  1992. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. PNAS 89:8537–41 [Google Scholar]
  56. Eichmann TO, Kumari M, Haas JT, Farese RV Jr., Zimmermann R. 56.  et al. 2012. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287:41446–57 [Google Scholar]
  57. Farese RV Jr., Walther TC. 57.  2009. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–60 [Google Scholar]
  58. Fauny JD, Silber J, Zider A. 58.  2005. Drosophila lipid storage droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs. Dev. Dyn. 232:725–32 [Google Scholar]
  59. Frank DN, Bales ES, Monks J, Jackman MJ, MacLean PS. 59.  et al. 2015. Perilipin-2 modulates lipid absorption and microbiome responses in the mouse intestine. PLOS ONE 10:e0131944 [Google Scholar]
  60. Fujii H, Ikura Y, Arimoto J, Sugioka K, Iezzoni JC. 60.  et al. 2009. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J. Atheroscler. Thromb. 16:893–901 [Google Scholar]
  61. Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P. 61.  et al. 2011. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 364:740–48 [Google Scholar]
  62. Gandotra S, Lim K, Girousse A, Saudek V, O'Rahilly S, Savage DB. 62.  2011. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J. Biol. Chem. 286:34998–5006 [Google Scholar]
  63. Garcia A, Sekowski A, Subramanian V, Brasaemle DL. 63.  2003. The central domain is required to target and anchor perilipin A to lipid droplets. J. Biol. Chem. 278:625–35 [Google Scholar]
  64. Georgiadi A, Kersten S. 64.  2012. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 3:127–34 [Google Scholar]
  65. Goh VJ, Silver DL. 65.  2013. The lipid droplet as a potential therapeutic target in NAFLD. Semin. Liver Dis. 33:312–20 [Google Scholar]
  66. Gong J, Sun Z, Wu L, Xu W, Schieber N. 66.  et al. 2011. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195:953–63 [Google Scholar]
  67. Goodman JM. 67.  2008. The gregarious lipid droplet. J. Biol. Chem. 283:28005–9 [Google Scholar]
  68. Grahn TH, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G. 68.  et al. 2013. FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem. Biophys. Res. Commun. 432:296–301 [Google Scholar]
  69. Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z. 69.  2007. Analysis of lipolytic protein trafficking and interactions in adipocytes. J. Biol. Chem. 282:5726–35 [Google Scholar]
  70. Granneman JG, Moore HP, Krishnamoorthy R, Rathod M. 70.  2009. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 284:34538–44 [Google Scholar]
  71. Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L. 71.  2011. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 286:5126–35 [Google Scholar]
  72. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS. 72.  et al. 2011. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Investig. 121:2102–10 [Google Scholar]
  73. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. 73.  1991. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266:11341–46 [Google Scholar]
  74. Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC. 74.  et al. 2001. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J. Biol. Chem. 276:45456–61 [Google Scholar]
  75. Gregor MF, Hotamisligil GS. 75.  2011. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29:415–45 [Google Scholar]
  76. Gronke S, Beller M, Fellert S, Ramakrishnan H, Jackle H, Kuhnlein RP. 76.  2003. Control of fat storage by a Drosophila PAT domain protein. Curr. Biol. 13:603–6 [Google Scholar]
  77. Gross DA, Silver DL. 77.  2014. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit. Rev. Biochem. Mol. Biol. 49:304–26 [Google Scholar]
  78. Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A. 78.  et al. 2011. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17:1076–85 [Google Scholar]
  79. Hall AM, Brunt EM, Chen Z, Viswakarma N, Reddy JK. 79.  et al. 2010. Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice. J. Lipid Res. 51:554–63 [Google Scholar]
  80. Harris LA, Skinner JR, Shew TM, Pietka TA, Abumrad NA, Wolins NE. 80.  2015. Perilipin 5-driven lipid droplet accumulation in skeletal muscle stimulates the expression of fibroblast growth factor 21. Diabetes 64:2757–68 [Google Scholar]
  81. Heid HW, Schnolzer M, Keenan TW. 81.  1996. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem. J. 320:1025–30 [Google Scholar]
  82. Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. 82.  2004. Structure of a lipid droplet protein: the PAT family member TIP47. Structure 12:1199–207 [Google Scholar]
  83. Holm C, Osterlund T, Laurell H, Contreras JA. 83.  2000. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 20:365–93 [Google Scholar]
  84. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. 84.  1996. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271:665–68 [Google Scholar]
  85. Hsieh K, Lee YK, Londos C, Raaka BM, Dalen KT, Kimmel AR. 85.  2012. Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J. Cell Sci. 125:4067–76 [Google Scholar]
  86. Hynson RM, Jeffries CM, Trewhella J, Cocklin S. 86.  2012. Solution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation. Proteins 80:2046–55 [Google Scholar]
  87. Imai Y, Boyle S, Varela GM, Caron E, Yin X. 87.  et al. 2012. Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiol. Genomics 44:1125–31 [Google Scholar]
  88. Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS. 88.  2007. Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–54 [Google Scholar]
  89. Jacquier N, Mishra S, Choudhary V, Schneiter R. 89.  2013. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126:5198–209 [Google Scholar]
  90. Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. 90.  2011. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLOS ONE 6:e28614 [Google Scholar]
  91. Karpe F, Dickmann JR, Frayn KN. 91.  2011. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60:2441–49 [Google Scholar]
  92. Kaushik S, Cuervo AM. 92.  2015. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17:759–70 [Google Scholar]
  93. Kazantzis M, Stahl A. 93.  2012. Fatty acid transport proteins, implications in physiology and disease. Biochim. Biophys. Acta 1821:852–57 [Google Scholar]
  94. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G. 94.  2004. Perilipin expression in human adipose tissue is elevated with obesity. J. Clin. Endocrinol. Metab. 89:1352–58 [Google Scholar]
  95. Khor VK, Shen WJ, Kraemer FB. 95.  2013. Lipid droplet metabolism. Curr. Opin. Clin. Nutr. Metab. Care 16:632–37 [Google Scholar]
  96. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. 96.  2010. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid Res. 51:468–71 [Google Scholar]
  97. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. 97.  1995. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83:813–19 [Google Scholar]
  98. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB. 98.  et al. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. PNAS 94:4318–23 [Google Scholar]
  99. Konige M, Wang H, Sztalryd C. 99.  2014. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim. Biophys. Acta 1842:393–401 [Google Scholar]
  100. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J. 100.  et al. 2010. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Investig. 120:3466–79 [Google Scholar]
  101. Koves TR, Sparks LM, Kovalik JP, Mosedale M, Arumugam R. 101.  et al. 2013. PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J. Lipid Res. 54:522–34 [Google Scholar]
  102. Kovsan J, Ben-Romano R, Souza SC, Greenberg AS, Rudich A. 102.  2007. Regulation of adipocyte lipolysis by degradation of the perilipin protein: Nelfinavir enhances lysosome-mediated perilipin proteolysis. J. Biol. Chem. 282:21704–11 [Google Scholar]
  103. Kozusko K, Tsang VH, Bottomley W, Cho YH, Gandotra S. 103.  et al. 2015. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes 64:299–310 [Google Scholar]
  104. Krahmer N, Farese RV Jr., Walther TC. 104.  2013. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5:905–15 [Google Scholar]
  105. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S. 105.  et al. 2012. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J. Biol. Chem. 287:23852–63 [Google Scholar]
  106. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S. 106.  et al. 2014. Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol. Cell. Biol. 34:2721–31 [Google Scholar]
  107. Langhi C, Marquart TJ, Allen RM, Baldan A. 107.  2014. Perilipin-5 is regulated by statins and controls triglyceride contents in the hepatocyte. J. Hepatol. 61:358–65 [Google Scholar]
  108. Lee B, Zhu J, Wolins NE, Cheng JX, Buhman KK. 108.  2009. Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim. Biophys. Acta 1791:1173–80 [Google Scholar]
  109. Lee MJ, Wu Y, Fried SK. 109.  2010. Adipose tissue remodeling in pathophysiology of obesity. Curr. Opin. Clin. Nutr. Metab. Care 13:371–76 [Google Scholar]
  110. Li X, Ye J, Zhou L, Gu W, Fisher EA, Li P. 110.  2012. Opposing roles of cell death-inducing DFF45-like effector B and perilipin 2 in controlling hepatic VLDL lipidation. J. Lipid Res. 53:1877–89 [Google Scholar]
  111. Lin P, Chen X, Moktan H, Arrese EL, Duan L. 111.  et al. 2014. Membrane attachment and structure models of lipid storage droplet protein 1. Biochim. Biophys. Acta 1838:874–81 [Google Scholar]
  112. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr.. 112.  2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. PNAS 100:3077–82 [Google Scholar]
  113. Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA. 113.  2007. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 48:2751–61 [Google Scholar]
  114. Liu K, Czaja MJ. 114.  2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20:3–11 [Google Scholar]
  115. Liu P, Bartz R, Zehmer JK, Ying YS, Zhu M. 115.  et al. 2007. Rab-regulated interaction of early endosomes with lipid droplets. Biochim. Biophys. Acta 1773:784–93 [Google Scholar]
  116. Liu S, Geng B, Zou L, Wei S, Wang W. 116.  et al. 2015. Development of hypertrophic cardiomyopathy in perilipin-1 null mice with adipose tissue dysfunction. Cardiovasc. Res. 105:20–30 [Google Scholar]
  117. Liu Y, Zhang C, Shen X, Zhang X, Cichello S. 117.  et al. 2013. Microorganism lipid droplets and biofuel development. BMB Rep. 46:575–81 [Google Scholar]
  118. Lockridge JB, Sailors ML, Durgan DJ, Egbejimi O, Jeong WJ. 118.  et al. 2008. Bioinformatic profiling of the transcriptional response of adult rat cardiomyocytes to distinct fatty acids. J. Lipid Res. 49:1395–408 [Google Scholar]
  119. Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ. 119.  et al. 1995. Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem. Soc. Trans. 23:611–15 [Google Scholar]
  120. Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. 120.  1999. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell Dev. Biol. 10:51–58 [Google Scholar]
  121. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V. 121.  et al. 2013. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J. Clin. Endocrinol. Metab. 98:4863–71 [Google Scholar]
  122. Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA. 122.  et al. 2001. The murine perilipin gene: The lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm. Genome 12:741–49 [Google Scholar]
  123. MacPherson RE, Ramos SV, Vandenboom R, Roy BD, Peters SJ. 123.  2013. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304:R644–50 [Google Scholar]
  124. Macpherson RE, Vandenboom R, Roy BD, Peters SJ. 124.  2013. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol. Rep. 1:e00084 [Google Scholar]
  125. Magnusson B, Asp L, Bostrom P, Ruiz M, Stillemark-Billton P. 125.  et al. 2006. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 26:1566–71 [Google Scholar]
  126. Mak KM, Ren C, Ponomarenko A, Cao Q, Lieber CS. 126.  2008. Adipose differentiation-related protein is a reliable lipid droplet marker in alcoholic fatty liver of rats. Alcohol. Clin. Exp. Res. 32:683–89 [Google Scholar]
  127. Malchow D, Luderitz O, Westphal O, Gerisch G, Riedel V. 127.  1967. Polysaccharide in vegetativen und aggregationsreifen Amöben von Dictyostelium discoideum. 1. In vivo Degradierung von Bakterien-Lipopolysaccharid. [Polysaccharides of vegetative and aggregationally competent amoebae of the strain Dictyostelium discoideum. 1. In vivo degradation of bacterial lipopolysaccharides]. Eur. J. Biochem. 2:469–79 [Google Scholar]
  128. Mandard S, Muller M, Kersten S. 128.  2004. Peroxisome proliferator-activated receptor α target genes. Cell. Mol. Life Sci. 61:393–416 [Google Scholar]
  129. Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL. 129.  2006. The phosphorylation of serine 492 of perilipin A directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281:11901–9 [Google Scholar]
  130. Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH. 130.  et al. 2000. Absence of perilipin results in leanness and reverses obesity in Leprdb/db mice. Nat. Genet. 26:474–79 [Google Scholar]
  131. Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM. 131.  et al. 2014. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol. Metab. 3:652–63 [Google Scholar]
  132. Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y. 132.  et al. 2006. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J. Lipid Res. 47:87–98 [Google Scholar]
  133. McIntosh AL, Senthivinayagam S, Moon KC, Gupta S, Lwande JS. 133.  et al. 2012. Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis. Am. J. Physiol. Cell Physiol. 303:C728–42 [Google Scholar]
  134. McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS. 134.  et al. 2013. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J. Lipid Res. 54:1346–59 [Google Scholar]
  135. McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. 135.  2003. Lipid droplet targeting domains of adipophilin. J. Lipid Res. 44:668–73 [Google Scholar]
  136. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ. 136.  et al. 2002. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277:32253–57 [Google Scholar]
  137. Miyoshi H, Perfield JW 2nd, Souza SC, Shen WJ, Zhang HH. 137.  et al. 2007. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J. Biol. Chem. 282:996–1002 [Google Scholar]
  138. Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA. 138.  et al. 2006. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J. Biol. Chem. 281:15837–44 [Google Scholar]
  139. Moellering ER, Benning C. 139.  2010. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9:97–106 [Google Scholar]
  140. Mottagui-Tabar S, Ryden M, Lofgren P, Faulds G, Hoffstedt J. 140.  et al. 2003. Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis. Diabetologia 46:789–97 [Google Scholar]
  141. Muoio DM. 141.  2010. Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused?. Biochim. Biophys. Acta 1801:281–88 [Google Scholar]
  142. Murphy S, Martin S, Parton RG. 142.  2009. Lipid droplet–organelle interactions: sharing the fats. Biochim. Biophys. Acta 1791:441–47 [Google Scholar]
  143. Nagai S, Shimizu C, Umetsu M, Taniguchi S, Endo M. 143.  et al. 2004. Identification of a functional peroxisome proliferator-activated receptor responsive element within the murine perilipin gene. Endocrinology 145:2346–56 [Google Scholar]
  144. Najt CP, Lwande JS, McIntosh AL, Senthivinayagam S, Gupta S. 144.  et al. 2014. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 53:7051–66 [Google Scholar]
  145. Nakamura MT, Yudell BE, Loor JJ. 145.  2014. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53:124–44 [Google Scholar]
  146. Nakamura N, Fujimoto T. 146.  2003. Adipose differentiation-related protein has two independent domains for targeting to lipid droplets. Biochem. Biophys. Res. Commun. 306:333–38 [Google Scholar]
  147. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH. 147.  et al. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137–43 [Google Scholar]
  148. Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T. 148.  et al. 2012. Oligonol-induced degradation of perilipin 1 is regulated through lysosomal degradation machinery. Natural Prod. Commun. 7:1193–96 [Google Scholar]
  149. Osborn O, Sears DD, Olefsky JM. 149.  2010. Fat-induced inflammation unchecked. Cell Metab. 12:553–54 [Google Scholar]
  150. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA. 150.  2001. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152:1071–78 [Google Scholar]
  151. Papackova Z, Cahova M. 151.  2015. Fatty acid signaling: the new function of intracellular lipases. Int. J. Mol. Sci. 16:3831–55 [Google Scholar]
  152. Patel S, Yang W, Kozusko K, Saudek V, Savage DB. 152.  2014. Perilipins 2 and 3 lack a carboxy-terminal domain present in perilipin 1 involved in sequestering ABHD5 and suppressing basal lipolysis. PNAS 111:9163–68 [Google Scholar]
  153. Pegorier JP, Le May C, Girard J. 153.  2004. Control of gene expression by fatty acids. J. Nutr. 134:2444–49S [Google Scholar]
  154. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. 154.  1996. Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 271:13018–22 [Google Scholar]
  155. Phillips SA, Choe CC, Ciaraldi TP, Greenberg AS, Kong AP. 155.  et al. 2005. Adipocyte differentiation-related protein in human skeletal muscle: relationship to insulin sensitivity. Obes. Res. 13:1321–29 [Google Scholar]
  156. Pidoux G, Witczak O, Jarnaess E, Myrvold L, Urlaub H. 156.  et al. 2011. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 30:4371–86 [Google Scholar]
  157. Pilch PF, Liu L. 157.  2011. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol. Metab. 22:318–24 [Google Scholar]
  158. Pol A, Gross SP, Parton RG. 158.  2014. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204:635–46 [Google Scholar]
  159. Pollak NM, Jaeger D, Kolleritsch S, Zimmermann R, Zechner R. 159.  et al. 2015. The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J. Biol. Chem. 290:1295–306 [Google Scholar]
  160. Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M. 160.  et al. 2013. Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J. Lipid Res. 54:1092–102 [Google Scholar]
  161. Poulsen L, Siersbaek M, Mandrup S. 161.  2012. PPARs: fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol. 23:631–39 [Google Scholar]
  162. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J. 162.  et al. 2008. Cidea is associated with lipid droplets and insulin sensitivity in humans. PNAS 105:7833–38 [Google Scholar]
  163. Qi L, Corella D, Sorli JV, Portoles O, Shen H. 163.  et al. 2004. Genetic variation at the perilipin (PLIN) locus is associated with obesity-related phenotypes in White women. Clin. Genet. 66:299–310 [Google Scholar]
  164. Qi L, Shen H, Larson I, Schaefer EJ, Greenberg AS. 164.  et al. 2004. Gender-specific association of a perilipin gene haplotype with obesity risk in a white population. Obes. Res. 12:1758–65 [Google Scholar]
  165. Qi L, Tai ES, Tan CE, Shen H, Chew SK. 165.  et al. 2005. Intragenic linkage disequilibrium structure of the human perilipin gene (PLIN) and haplotype association with increased obesity risk in a multiethnic Asian population. J. Mol. Med. 83:448–56 [Google Scholar]
  166. Ramos SV, MacPherson RE, Turnbull PC, Bott KN, LeBlanc P. 166.  et al. 2014. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol. Rep. 2:e12154 [Google Scholar]
  167. Robbins AL, Savage DB. 167.  2015. The genetics of lipid storage and human lipodystrophies. Trends Mol. Med. 21:433–38 [Google Scholar]
  168. Russell TD, Palmer CA, Orlicky DJ, Bales ES, Chang BH. 168.  et al. 2008. Mammary glands of adipophilin-null mice produce an amino-terminally truncated form of adipophilin that mediates milk lipid droplet formation and secretion. J. Lipid Res. 49:206–16 [Google Scholar]
  169. Russell TD, Schaack J, Orlicky DJ, Palmer C, Chang BH. 169.  et al. 2011. Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J. Cell Sci. 124:3247–53 [Google Scholar]
  170. Ryden M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. 170.  2004. Targets for TNF-α-induced lipolysis in human adipocytes. Biochem. Biophys. Res. Commun. 318:168–75 [Google Scholar]
  171. Saha PK, Kojima H, Martinez-Botas J, Sunehag AL, Chan L. 171.  2004. Metabolic adaptations in the absence of perilipin: increased β-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice. J. Biol. Chem. 279:35150–58 [Google Scholar]
  172. Sahu-Osen A, Montero-Moran G, Schittmayer M, Fritz K, Dinh A. 172.  et al. 2015. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. J. Lipid Res. 56:109–21 [Google Scholar]
  173. Samuel VT, Shulman GI. 173.  2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–71 [Google Scholar]
  174. Sapiro JM, Mashek MT, Greenberg AS, Mashek DG. 174.  2009. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor α activity. J. Lipid Res. 50:1621–29 [Google Scholar]
  175. Savage DB. 175.  2009. Mouse models of inherited lipodystrophy. Dis. Model Mech. 2:554–62 [Google Scholar]
  176. Sawada T, Miyoshi H, Shimada K, Suzuki A, Okamatsu-Ogura Y. 176.  et al. 2010. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLOS ONE 5:e14006 [Google Scholar]
  177. Scarpulla RC, Vega RB, Kelly DP. 177.  2012. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23:459–66 [Google Scholar]
  178. Schmuth M, Haqq CM, Cairns WJ, Holder JC, Dorsam S. 178.  et al. 2004. Peroxisome proliferator-activated receptor (PPAR)-β/δ stimulates differentiation and lipid accumulation in keratinocytes. J. Investig. Dermatol. 122:971–83 [Google Scholar]
  179. Schneider MR, Zhang S, Li P. 179.  2015. Lipid droplets and associated proteins in the skin: basic research and clinical perspectives. Arch. Dermatol. Res. 308:1–6 [Google Scholar]
  180. Schrader M, Godinho LF, Costello JL, Islinger M. 180.  2015. The different facets of organelle interplay—an overview of organelle interactions. Front. Cell Dev. Biol. 3:56 [Google Scholar]
  181. Schreiber R, Hofer P, Taschler U, Voshol PJ, Rechberger GN. 181.  et al. 2015. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. PNAS 112:13850–55 [Google Scholar]
  182. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. 182.  2009. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297:E289–96 [Google Scholar]
  183. Schweiger M, Zechner R. 183.  2015. Breaking the barrier—chaperone-mediated autophagy of perilipins regulates the lipolytic degradation of fat. Cell Metab. 22:60–61 [Google Scholar]
  184. Shen WJ, Patel S, Miyoshi H, Greenberg AS, Kraemer FB. 184.  2009. Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. J. Lipid Res. 50:2306–13 [Google Scholar]
  185. Shen WJ, Yu Z, Patel S, Jue D, Liu LF, Kraemer FB. 185.  2011. Hormone-sensitive lipase modulates adipose metabolism through PPARγ. Biochim. Biophys. Acta 1811:9–16 [Google Scholar]
  186. Shimizu M, Takeshita A, Tsukamoto T, Gonzalez FJ, Osumi T. 186.  2004. Tissue-selective, bidirectional regulation of PEX11α and perilipin genes through a common peroxisome proliferator response element. Mol. Cell. Biol. 24:1313–23 [Google Scholar]
  187. Shulman GI. 187.  2014. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371:2237–38 [Google Scholar]
  188. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM. 188.  et al. 2009. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Investig. 119:3329–39 [Google Scholar]
  189. Skinner JR, Shew TM, Schwartz DM, Tzekov A, Lepus CM. 189.  et al. 2009. Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J. Biol. Chem. 284:30941–48 [Google Scholar]
  190. Sletten A, Seline A, Rudd A, Logsdon M, Listenberger LL. 190.  2014. Surface features of the lipid droplet mediate perilipin 2 localization. Biochem. Biophys. Res. Commun. 452:422–27 [Google Scholar]
  191. Small DM, Wang L, Mitsche MA. 191.  2009. The adsorption of biological peptides and proteins at the oil/water interface: a potentially important but largely unexplored field. J. Lipid Res. 50:Suppl.S329–34 [Google Scholar]
  192. Smith CE, Ordovas JM. 192.  2012. Update on perilipin polymorphisms and obesity. Nutr. Rev. 70:611–21 [Google Scholar]
  193. Smith KR, Thiboutot DM. 193.  2008. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe?. J. Lipid Res. 49:271–81 [Google Scholar]
  194. Sone Y, Yamaguchi K, Fujiwara A, Kido T, Kawahara K. 194.  et al. 2010. Association of lifestyle factors, polymorphisms in adiponectin, perilipin and hormone sensitive lipase, and clinical markers in Japanese males. J. Nutr. Sci. Vitaminol. 56:123–31 [Google Scholar]
  195. Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. 195.  1998. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-α: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 47:691–95 [Google Scholar]
  196. Spiegelman BM, Flier JS. 196.  2001. Obesity and the regulation of energy balance. Cell 104:531–43 [Google Scholar]
  197. Stenson BM, Ryden M, Venteclef N, Dahlman I, Pettersson AM. 197.  et al. 2011. Liver X receptor (LXR) regulates human adipocyte lipolysis. J. Biol. Chem. 286:370–79 [Google Scholar]
  198. Storey SM, McIntosh AL, Senthivinayagam S, Moon KC, Atshaves BP. 198.  2011. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. Am. J. Physiol. Endocrinol. Metab. 301:E991–1003 [Google Scholar]
  199. Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM. 199.  et al. 2013. Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology 62:617–31 [Google Scholar]
  200. Strom K, Gundersen TE, Hansson O, Lucas S, Fernandez C. 200.  et al. 2009. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J. 23:2307–16 [Google Scholar]
  201. Sturley SL, Hussain MM. 201.  2012. Lipid droplet formation on opposing sides of the endoplasmic reticulum. J. Lipid Res. 53:1800–10 [Google Scholar]
  202. Su CL, Sztalryd C, Contreras JA, Holm C, Kimmel AR, Londos C. 202.  2003. Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J. Biol. Chem. 278:43615–19 [Google Scholar]
  203. Subramani PA, Reddy MC, Narala VR. 203.  2013. The need for physiologically relevant peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands. Endocr. Metab. Immune Disord. Drug Targets 13:175–83 [Google Scholar]
  204. Subramanian V, Garcia A, Sekowski A, Brasaemle DL. 204.  2004. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J. Lipid Res. 45:1983–91 [Google Scholar]
  205. Sun K, Kusminski CM, Scherer PE. 205.  2011. Adipose tissue remodeling and obesity. J. Clin. Investig. 121:2094–101 [Google Scholar]
  206. Sun Z, Gong J, Wu H, Xu W, Wu L. 206.  et al. 2013. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun. 4:1594 [Google Scholar]
  207. Sun Z, Miller RA, Patel RT, Chen J, Dhir R. 207.  et al. 2012. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18:934–42 [Google Scholar]
  208. Sun ZB, Li SD, Zhong ZM, Sun MH. 208.  2015. A perilipin gene from Clonostachys rosea f. Catenulata HL-1–1 is related to sclerotial parasitism. Int. J. Mol. Sci. 16:5347–62 [Google Scholar]
  209. Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA. 209.  et al. 2003. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161:1093–103 [Google Scholar]
  210. Tansey JT, Huml AM, Vogt R, Davis KE, Jones JM. 210.  et al. 2003. Functional studies on native and mutated forms of perilipins: a role in protein kinase A-mediated lipolysis of triacylglycerols. J. Biol. Chem. 278:8401–6 [Google Scholar]
  211. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV. 211.  et al. 2001. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. PNAS 98:6494–99 [Google Scholar]
  212. Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF. 212.  et al. 2003. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J. Biol. Chem. 278:15998–6007 [Google Scholar]
  213. Targett-Adams P, McElwee MJ, Ehrenborg E, Gustafsson MC, Palmer CN, McLauchlan J. 213.  2005. A PPAR response element regulates transcription of the gene for human adipose differentiation-related protein. Biochim. Biophys. Acta 1728:95–104 [Google Scholar]
  214. Teixeira L, Rabouille C, Rorth P, Ephrussi A, Vanzo NF. 214.  2003. Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech. Dev. 120:1071–81 [Google Scholar]
  215. Thiam AR, Farese RV Jr., Walther TC. 215.  2013. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14:775–86 [Google Scholar]
  216. Tiwari S, Siddiqi S, Siddiqi SA. 216.  2013. CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J. Biol. Chem. 288:5157–65 [Google Scholar]
  217. Tobin KA, Harsem NK, Dalen KT, Staff AC, Nebb HI, Duttaroy AK. 217.  2006. Regulation of ADRP expression by long-chain polyunsaturated fatty acids in BeWo cells, a human placental choriocarcinoma cell line. J. Lipid Res. 47:815–23 [Google Scholar]
  218. Trevino MB, Machida Y, Hallinger DR, Garcia E, Christensen A. 218.  et al. 2015. Perilipin 5 regulates islet lipid metabolism and insulin secretion in a cAMP-dependent manner: implication of its role in the postprandial insulin secretion. Diabetes 64:1299–310 [Google Scholar]
  219. Unger RH. 219.  1995. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–70 [Google Scholar]
  220. Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS. 220.  et al. 2008. Inhibition of ADRP prevents diet-induced insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G621–28 [Google Scholar]
  221. Vaughan M, Berger JE, Steinberg D. 221.  1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239:401–9 [Google Scholar]
  222. Viswanadha S, Londos C. 222.  2008. Determination of lipolysis in isolated primary adipocytes. Methods Mol. Biol. 456:299–306 [Google Scholar]
  223. Wakil SJ, Abu-Elheiga LA. 223.  2009. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. 50:Suppl.S138–43 [Google Scholar]
  224. Wang C, St. Leger RJ. 224.  2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J. Biol. Chem. 282:21110–15 [Google Scholar]
  225. Wang C, Zhao Y, Gao X, Li L, Yuan Y. 225.  et al. 2015. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61:870–82 [Google Scholar]
  226. Wang H, Bell M, Sreenivasan U, Hu H, Liu J. 226.  et al. 2011. Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J. Biol. Chem. 286:15707–15 [Google Scholar]
  227. Wang H, Hu L, Dalen K, Dorward H, Marcinkiewicz A. 227.  et al. 2009. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J. Biol. Chem. 284:32116–25 [Google Scholar]
  228. Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER. 228.  et al. 2013. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J. Lipid Res. 54:953–65 [Google Scholar]
  229. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM. 229.  et al. 2011. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52:2159–68 [Google Scholar]
  230. Wang H, Sztalryd C. 230.  2011. Oxidative tissue: Perilipin 5 links storage with the furnace. Trends Endocrinol. Metab. 22:197–203 [Google Scholar]
  231. Wang Y, Singh R, Xiang Y, Czaja MJ. 231.  2010. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52:266–77 [Google Scholar]
  232. Wang Y, Sullivan S, Trujillo M, Lee MJ, Schneider SH. 232.  et al. 2003. Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot. Obes. Res. 11:930–36 [Google Scholar]
  233. Warnotte C, Gilon P, Nenquin M, Henquin JC. 233.  1994. Mechanisms of the stimulation of insulin release by saturated fatty acids: a study of palmitate effects in mouse β-cells. Diabetes 43:703–11 [Google Scholar]
  234. Welte MA. 234.  2015. As the fat flies: the dynamic lipid droplets of Drosophila embryos. Biochim. Biophys. Acta 1851:1156–85 [Google Scholar]
  235. Welte MA. 235.  2015. Expanding roles for lipid droplets. Curr. Biol. 25:R470–81 [Google Scholar]
  236. Welte MA, Cermelli S, Griner J, Viera A, Guo Y. 236.  et al. 2005. Regulation of lipid-droplet transport by the perilipin homolog LSD2. Curr. Biol. 15:1266–75 [Google Scholar]
  237. Wolins NE, Brasaemle DL, Bickel PE. 237.  2006. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580:5484–91 [Google Scholar]
  238. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA. 238.  et al. 2006. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–28 [Google Scholar]
  239. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Park C. 239.  et al. 2006. OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis. J. Lipid Res. 47:450–60 [Google Scholar]
  240. Xu G, Sztalryd C, Londos C. 240.  2006. Degradation of perilipin is mediated through ubiquitination–proteasome pathway. Biochim. Biophys. Acta 1761:83–90 [Google Scholar]
  241. Xu G, Sztalryd C, Lu X, Tansey JT, Gan J. 241.  et al. 2005. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 280:42841–47 [Google Scholar]
  242. Xu L, Zhou L, Li P. 242.  2012. CIDE proteins and lipid metabolism. Arterioscler. Thromb. Vasc. Biol. 32:1094–98 [Google Scholar]
  243. Yamaguchi T, Matsushita S, Motojima K, Hirose F, Osumi T. 243.  et al. 2006. MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor α. J. Biol. Chem. 281:14232–40 [Google Scholar]
  244. Yamaguchi T, Omatsu N, Omukae A, Osumi T. 244.  2006. Analysis of interaction partners for perilipin and ADRP on lipid droplets. Mol. Cell. Biochem. 284:167–73 [Google Scholar]
  245. Yang L, Ding Y, Chen Y, Zhang S, Huo C. 245.  et al. 2012. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53:1245–53 [Google Scholar]
  246. Ye J, Li JZ, Liu Y, Li X, Yang T. 246.  et al. 2009. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9:177–90 [Google Scholar]
  247. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. 247.  2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50:3–21 [Google Scholar]
  248. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G. 248.  et al. 2012. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279–91 [Google Scholar]
  249. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. 249.  2009. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. PNAS 106:19860–65 [Google Scholar]
  250. Zhou L, Park SY, Xu L, Xia X, Ye J. 250.  et al. 2015. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat. Commun. 6:5949 [Google Scholar]
  251. Zierler KA, Jaeger D, Pollak NM, Eder S, Rechberger GN. 251.  et al. 2013. Functional cardiac lipolysis in mice critically depends on comparative gene identification-58. J. Biol. Chem. 288:9892–904 [Google Scholar]
  252. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R. 252.  et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–86 [Google Scholar]
  253. Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ. 253.  2002. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21:6162–73 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071813-105410
Loading
/content/journals/10.1146/annurev-nutr-071813-105410
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error