Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Achouri Y, Hegarty BD, Allanic D, Becard D, Hainault I. 1.  et al. 2005. Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding protein-1c. Biochimie 87:1149–55 [Google Scholar]
  2. Banhegyi G, Csala M, Mandl J, Burchell A, Burchell B. 2.  et al. 1996. Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochem. J. 320:Part 1343–44 [Google Scholar]
  3. Bell RM, Coleman RA. 3.  1980. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49:459–87 [Google Scholar]
  4. Black PN, DiRusso CC. 4.  2003. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol. Mol. Biol. Rev. 67:454–72 [Google Scholar]
  5. Bloksgaard M, Bek S, Marcher AB, Neess D, Brewer J. 5.  et al. 2012. The acyl-CoA binding protein is required for normal epidermal barrier function in mice. J. Lipid Res. 53:2162–74 [Google Scholar]
  6. Bousette N, Kislinger T, Fong V, Isserlin R, Hewel JA. 6.  et al. 2009. Large-scale characterization and analysis of the murine cardiac proteome. J. Proteome Res. 8:1887–901 [Google Scholar]
  7. Bovolin P, Schlichting J, Miyata M, Ferrarese C, Guidotti A, Alho H. 7.  1990. Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul. Pept. 29:267–81 [Google Scholar]
  8. Brasaemle DL, Dolios G, Shapiro L, Wang R. 8.  2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279:46835–42 [Google Scholar]
  9. Brocker C, Carpenter C, Nebert DW, Vasiliou V. 9.  2010. Evolutionary divergence and functions of the human acyl-CoA thioesterase gene (ACOT) family. Hum. Genomics 4:411–20 [Google Scholar]
  10. Bu SY, Mashek DG. 10.  2010. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 51:3270–80 [Google Scholar]
  11. Bu SY, Mashek MT, Mashek DG. 11.  2009. Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J. Biol. Chem. 284:30474–83 [Google Scholar]
  12. Cao Y, Dave KB, Doan TP, Prescott SM. 12.  2001. Fatty acid CoA ligase 4 is up-regulated in colon adenocarcinoma. Cancer Res. 61:8429–34 [Google Scholar]
  13. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM. 13.  2000. Intracellular unesterified arachidonic acid signals apoptosis. Proc. Natl. Acad. Sci. USA 97:11280–85 [Google Scholar]
  14. Capdevila JH, Falck JR, Harris RC. 14.  2000. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J. Lipid Res. 41:163–81 [Google Scholar]
  15. Caviglia JM, Li LO, Wang S, DiRusso CC, Coleman RA, Lewin TM. 15.  2004. Rat long chain acyl-CoA synthetase 5, but not 1, 2, 3, or 4, complements Escherichia coli fadD. J. Biol. Chem. 279:11163–69 [Google Scholar]
  16. Chang YS, Tsai CT, Huangfu CA, Huang WY, Lei HY. 16.  et al. 2011. ACSL3 and GSK-3β are essential for lipid upregulation induced by endoplasmic reticulum stress in liver cells. J. Cell Biochem. 112:881–93 [Google Scholar]
  17. Chekroud K, Guillou L, Gregoire S, Ducharme G, Brun E. 17.  et al. 2012. Fatp1 deficiency affects retinal light response and dark adaptation, and induces age-related alterations. PLoS ONE 7:e50231 [Google Scholar]
  18. Chen MT, Kaufman LN, Spennetta T, Shrago E. 18.  1992. Effects of high-fat feeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl-coenzyme A esters in liver and skeletal muscle. Metabolism 41:564–69 [Google Scholar]
  19. Chen S, Ogawa A, Ohneda M, Unger RH, Foster DW, McGarry JD. 19.  1994. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes 43:878–83 [Google Scholar]
  20. Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M. 20.  et al. 2005. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ. Res. 96:225–33 [Google Scholar]
  21. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R. 21.  et al. 2001. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 107:813–22 [Google Scholar]
  22. Coe NR, Bernlohr DA. 22.  1998. Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim. Biophys. Acta 1391:287–306 [Google Scholar]
  23. Coe NR, Simpson MA, Bernlohr DA. 23.  1999. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40:967–72 [Google Scholar]
  24. Coleman RA, Haynes EB. 24.  1983. Selective changes in microsomal enzymes of triacylglycerol and phosphatidylcholine synthesis in fetal and postnatal rat liver. Induction of microsomal sn-glycerol 3-phosphate and dihydroxyacetonephosphate acyltransferase activities. J. Biol. Chem. 258:450–56 [Google Scholar]
  25. Constantinides PP, Steim JM. 25.  1985. Physical properties of fatty acyl-CoA. Critical micelle concentrations and micellar size and shape. J. Biol. Chem. 260:7573–80 [Google Scholar]
  26. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. 26.  2013. Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–61 [Google Scholar]
  27. Daikoku T, Shinohara Y, Shima A, Yamazaki N, Terada H. 27.  1997. Dramatic enhancement of the specific expression of the heart-type fatty acid binding protein in rat brown adipose tissue by cold exposure. FEBS Lett. 410:383–86 [Google Scholar]
  28. de Jong H, Neal AC, Coleman RA, Lewin TM. 28.  2007. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart. Biochim. Biophys. Acta 1771:75–82 [Google Scholar]
  29. Digel M, Staffer S, Ehehalt F, Stremmel W, Ehehalt R, Füllekrug J. 29.  2011. FATP4 contributes as an enzyme to the basal and insulin-mediated fatty acid uptake of C2C12 muscle cells. Am. J. Physiol. Endocrinol. Metab. 301:E785–96 [Google Scholar]
  30. DiRusso CC, Li H, Darwis D, Watkins PA, Berger J, Black PN. 30.  2005. Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. J. Biol. Chem. 280:16829–37 [Google Scholar]
  31. Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q. 31.  et al. 2006. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245–58 [Google Scholar]
  32. Doege H, Grimm D, Falcon A, Tsang B, Storm TA. 32.  et al. 2008. Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J. Biol. Chem. 283:22186–92 [Google Scholar]
  33. Doege H, Stahl A. 33.  2006. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology 21:259–68 [Google Scholar]
  34. Dong B, Kan CF, Singh AB, Liu J. 34.  2013. High-fructose diet downregulates long-chain acyl-CoA synthetase 3 expression in liver of hamsters via impairing LXR/RXR signaling pathway. J. Lipid Res. 54:1241–54 [Google Scholar]
  35. Durgan DJ, Smith JK, Hotze MA, Egbejimi O, Cuthbert KD. 35.  et al. 2006. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin. Am. J. Physiol. Heart Circ. Physiol. 290:H2480–97 [Google Scholar]
  36. Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ. 36.  et al. 2000. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am. J. Physiol. Endocrinol. Metab. 279:E554–60 [Google Scholar]
  37. Ellis JM, Li LO, Wu PC, Koves TR, Ilkayeva O. 37.  et al. 2010. Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12:53–64 [Google Scholar]
  38. Ellis JM, Mentock SM, Depetrillo MA, Koves TR, Sen S. 38.  et al. 2011. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol. Cell. Biol. 31:1252–62 [Google Scholar]
  39. Erol E, Cline GW, Kim JK, Taegtmeyer H, Binas B. 39.  2004. Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. Am. J. Physiol. Endocrinol. Metab. 287:E977–82 [Google Scholar]
  40. Færgeman NJ, Knudsen J. 40.  1997. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323:1–12 [Google Scholar]
  41. Falcon A, Doege H, Fluitt A, Tsang B, Watson N. 41.  et al. 2010. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab. 299:E384–93 [Google Scholar]
  42. Farrell SO, Fiol CJ, Reddy JK, Bieber LL. 42.  1984. Properties of purified carnitine acyltransferases of mouse liver peroxisomes. J. Biol. Chem. 259:13089–95 [Google Scholar]
  43. Frahm JL, Li LO, Grevengoed TJ, Coleman RA. 43.  2011. Phosphorylation and acetylation of acyl-CoA synthetase-1. J. Proteomics Bioinform. 4:129–37 [Google Scholar]
  44. Fraisl P, Forss-Petter S, Zigman M, Berger J. 44.  2004. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase. Biochem. J. 377:85–93 [Google Scholar]
  45. Fujimoto Y, Itabe H, Kinoshita T, Homma KJ, Onoduka J. 45.  et al. 2007. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J. Lipid Res. 48:1280–92 [Google Scholar]
  46. Fujino T, Yamamoto T. 46.  1992. Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J. Biochem. 111:197–203 [Google Scholar]
  47. Füllekrug J, Ehehalt R, Poppelreuther M. 47.  2012. Outlook: membrane junctions enable the metabolic trapping of fatty acids by intracellular acyl-CoA synthetases. Front. Physiol. 3:401 [Google Scholar]
  48. Gaigg B, Neergaard TB, Schneiter R, Hansen JK, Faergeman NJ. 48.  et al. 2001. Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae. Mol. Biol. Cell 12:1147–60 [Google Scholar]
  49. Gajda AM, Zhou YX, Agellon LB, Fried SK, Kodukula S. 49.  et al. 2013. Direct comparison of mice null for liver- or intestinal fatty acid binding proteins reveals highly divergent phenotypic responses to high-fat feeding. J. Biol. Chem. 288:30330–44 [Google Scholar]
  50. Garcia-Martinez C, Marotta M, Moore-Carrasco R, Guitart M, Camps M. 50.  et al. 2005. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am. J. Physiol. Cell Physiol. 288:C1264–72 [Google Scholar]
  51. Gargiulo CE, Stuhlsatz-Krouper SM, Schaffer JE. 51.  1999. Localization of adipocyte long-chain fatty acyl-CA synthetase at the plasma membrane. J. Lipid Res. 40:881–92 [Google Scholar]
  52. Gimeno RE. 52.  2007. Fatty acid transport proteins. Curr. Opin. Lipidol. 18:271–76 [Google Scholar]
  53. Gimeno RE, Ortegon AM, Patel S, Punreddy S, Ge P. 53.  et al. 2003. Characterization of a heart-specific fatty acid transport protein. J. Biol. Chem. 278:16039–44 [Google Scholar]
  54. Golej DL, Askari B, Kramer F, Barnhart S, Vivekanandan-Giri A. 54.  et al. 2011. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E(2) release from human arterial smooth muscle cells. J. Lipid Res. 52:782–93 [Google Scholar]
  55. Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB. 55.  et al. 2006. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–66 [Google Scholar]
  56. Grimsrud PA, Carson JJ, Hebert AS, Hubler SL, Niemi NM. 56.  et al. 2012. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab. 16:672–83 [Google Scholar]
  57. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U. 57.  et al. 1997. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 17:194–97 [Google Scholar]
  58. Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC. 58.  2003. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–73 [Google Scholar]
  59. Hall M, Saggerson ED. 59.  1985. Reversible inactivation by noradrenaline of long-chain fatty acyl-CoA synthetase in rat adipocytes. Biochem. J. 226:275–82 [Google Scholar]
  60. Hatch GM, Smith AJ, Xu FY, Hall AM, Bernlohr DA. 60.  2002. FATP1 channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J. Lipid Res. 43:1380–89 [Google Scholar]
  61. Haunerland NH, Spener F. 61.  2004. Fatty acid-binding proteins—insights from genetic manipulations. Prog. Lipid Res. 43:328–49 [Google Scholar]
  62. Heinzer AK, Watkins PA, Lu JF, Kemp S, Moser AB. 62.  et al. 2003. A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum. Mol. Genet. 12:1145–54 [Google Scholar]
  63. Hertz R, Magenheim J, Berman I, Bar-Tana J. 63.  1998. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4α. Nature 392:512–16 [Google Scholar]
  64. Hisanaga Y, Ago H, Nakagawa N, Hamada K, Ida K. 64.  et al. 2004. Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J. Biol. Chem. 279:31717–26 [Google Scholar]
  65. Holloway GP, Chou CJ, Lally J, Stellingwerff T, Maher AC. 65.  et al. 2011. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia 54:1457–67 [Google Scholar]
  66. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW. 66.  et al. 2003. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA 100:12027–32 [Google Scholar]
  67. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM. 67.  1996. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274:1377–79 [Google Scholar]
  68. Houmard JA, Tanner CJ, Yu C, Cunningham PG, Pories WJ. 68.  et al. 2002. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Diabetes 51:2959–63 [Google Scholar]
  69. Hsu KH, Powell GL. 69.  1975. Inhibition of citrate synthase by oleoyl-CoA: a regulatory phenomenon. Proc. Natl. Acad. Sci. USA 72:4729–33 [Google Scholar]
  70. Hubbard B, Doege H, Punreddy S, Wu H, Huang X. 70.  et al. 2006. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology 130:1259–69 [Google Scholar]
  71. Hunt MC, Siponen MI, Alexson SE. 71.  2012. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta 1822:1397–410 [Google Scholar]
  72. Hunt MC, Solaas K, Kase BF, Alexson SE. 72.  2002. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277:1128–38 [Google Scholar]
  73. Igal RA, Wang P, Coleman RA. 73.  1997. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem. J. 324:529–34 [Google Scholar]
  74. Jeppesen J, Jordy AB, Sjoberg KA, Füllekrug J, Stahl A. 74.  et al. 2012. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS ONE 7:e29391 [Google Scholar]
  75. Jepson CA, Yeaman SJ. 75.  1992. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Lett. 310:197–200 [Google Scholar]
  76. Jia Z, Moulson CL, Pei Z, Miner JH, Watkins PA. 76.  2007. FATP4 is the principal very long-chain fatty acyl-CoA synthetase in skin fibroblasts. J. Biol. Chem. 282:20573–83 [Google Scholar]
  77. Jia Z, Pei Z, Maiguel D, Toomer CJ, Watkins PA. 77.  2007. The fatty acid transport protein (FATP) family: very long chain acyl-CoA synthetases or solute carriers?. J. Mol. Neurosci. 33:25–31 [Google Scholar]
  78. Jogl G, Hsiao YS, Tong L. 78.  2005. Crystal structure of mouse carnitine octanoyltransferase and molecular determinants of substrate selectivity. J. Biol. Chem. 280:738–44 [Google Scholar]
  79. Johnson DR, Knoll JJ, Rowley N, Gordon JL. 79.  1994. Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation. J. Biol. Chem. 269:18037–46 [Google Scholar]
  80. Kang HW, Niepel MW, Han S, Kawano Y, Cohen DE. 80.  2012. Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J. 26:2209–21 [Google Scholar]
  81. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N. 81.  et al. 1997. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc. Natl. Acad. Sci. USA 94:2880–84 [Google Scholar]
  82. Kansara MS, Mehra AK, Von Hagen J, Kabotyansky E, Smith PJ. 82.  1996. Physiological concentrations of insulin and T3 stimulate 3T3-L1 adipocyte acyl-CoA synthetase gene transcription. Am. J. Physiol. 270:E873–81 [Google Scholar]
  83. Kanter JE, Bornfeldt KE. 83.  2013. Inflammation and diabetes-accelerated atherosclerosis: myeloid cell mediators. Trends Endocrinol. Metab. 24:137–44 [Google Scholar]
  84. Kanter JE, Kramer F, Barnhart S, Averill MM, Vivekanandan-Giri A. 84.  et al. 2012. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis via acyl-CoA synthetase 1. Proc. Natl. Acad. Sci. USA 109:E715–24 [Google Scholar]
  85. Kanter JE, Tang C, Oram JF, Bornfeldt KE. 85.  2012. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochim. Biophys. Acta 1821:358–64 [Google Scholar]
  86. Kim HC, Lee SW, Cho YY, Lim JM, Ryoo ZY, Lee EJ. 86.  2009. RNA interference of long-chain acyl-CoA synthetase 6 suppresses the neurite outgrowth of mouse neuroblastoma NB41A3 cells. Mol. Med. Rep. 2:669–74 [Google Scholar]
  87. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T. 87.  et al. 2004. PKC-theta knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest. 114:823–27 [Google Scholar]
  88. Kim JK, Gimeno RE, Higashimor T, Kim HJ, Choi H. 88.  et al. 2004. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J. Clin. Invest. 113:756–63 [Google Scholar]
  89. Kirkby B, Roman N, Kobe B, Kellie S, Forwood JK. 89.  2010. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog. Lipid Res. 49:366–77 [Google Scholar]
  90. Kislinger T, Gramolini AO. 90.  2010. Proteome analysis of mouse model systems: a tool to model human disease and for the investigation of tissue-specific biology. J. Proteomics 73:2205–18 [Google Scholar]
  91. Klett EL, Chen S, Edin ML, Li LO, Ilkayeva O. 91.  et al. 2013. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion. J. Biol. Chem. 288:21618–29 [Google Scholar]
  92. Krammer J, Digel M, Ehehalt F, Stremmel W, Füllekrug J, Ehehalt R. 92.  2011. Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int. J. Med. Sci. 8:599–614 [Google Scholar]
  93. Kuwata H, Yoshimura M, Sasaki Y, Yoda E, Nakatani Y. 93.  et al. 2013. Role of long-chain acyl-coenzyme A synthetases in the regulation of arachidonic acid metabolism in interleukin 1β-stimulated rat fibroblasts. Biochim. Biophys. Acta 1841:44–53 [Google Scholar]
  94. Landrock D, Atshaves BP, McIntosh AL, Landrock KK, Schroeder F, Kier AB. 94.  2010. Acyl-CoA binding protein gene ablation induces pre-implantation embryonic lethality in mice. Lipids 45:567–80 [Google Scholar]
  95. Lee K, Kerner J, Hoppel CL. 95.  2011. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 286:25655–62 [Google Scholar]
  96. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. 96.  2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89:147–91 [Google Scholar]
  97. Lehrer G, Panini SR, Rogers DH, Rudney H. 97.  1981. Modulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase by lipid inhibitors, substrates, and cytosolic factors. J. Biol. Chem. 256:5612–19 [Google Scholar]
  98. Lenz LS, Marx J, Chamulitrat W, Kaiser I, Grone HJ. 98.  et al. 2011. Adipocyte-specific inactivation of Acyl-CoA synthetase fatty acid transport protein 4 (Fatp4) in mice causes adipose hypertrophy and alterations in metabolism of complex lipids under high fat diet. J. Biol. Chem. 286:35578–87 [Google Scholar]
  99. Lerner E, Shug AL, Elson C, Shrago E. 99.  1972. Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals. J. Biol. Chem. 247:1513–19 [Google Scholar]
  100. Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA. 100.  2001. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J. Biol. Chem. 276:24674–79 [Google Scholar]
  101. Lewin TM, Van Horn CG, Krisans SK, Coleman RA. 101.  2002. Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch. Biochem. Biophys. 404:263–70 [Google Scholar]
  102. Lewin TM, Wang S, Nagle CA, Van Horn CG, Coleman RA. 102.  2005. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am. J. Physiol. Endocrinol. Metab. 288:E835–44 [Google Scholar]
  103. Li LO, Ellis JM, Paich HA, Wang S, Gong N. 103.  et al. 2009. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J. Biol. Chem. 284:27816–26 [Google Scholar]
  104. Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA. 104.  2006. Overexpression of rat long chain acyl-CoA synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J. Biol. Chem. 281:37246–55 [Google Scholar]
  105. Li S, Lee J, Zhou Y, Gordon WC, Hill JM. 105.  et al. 2013. Fatty acid transport protein 4 (FATP4) prevents light-induced degeneration of cone and rod photoreceptors by inhibiting RPE65 isomerase. J. Neurosci. 33:3178–89 [Google Scholar]
  106. Li X, Gonzalez O, Shen X, Barnhart S, Kramer F. 106.  et al. 2013. Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. Arterioscler. Thromb. Vasc. Biol. 33:232–40 [Google Scholar]
  107. Liang Y, Matschinsky FM. 107.  1991. Content of CoA-esters in perifused rat islets stimulated by glucose and other fuels. Diabetes 40:327–33 [Google Scholar]
  108. Lin MH, Hsu FF, Miner JH. 108.  2013. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J. Biol. Chem. 288:3964–76 [Google Scholar]
  109. Lin MH, Khnykin D. 109.  2014. Fatty acid transporters in skin development, function and disease. Biochim. Biophys. Acta. 1841362–68
  110. Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H. 110.  et al. 2009. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 284:36312–23 [Google Scholar]
  111. Liu Z, Huang Y, Zhang Y, Chen D, Zhang YQ. 111.  2011. Drosophila acyl-CoA synthetase long-chain family member 4 regulates axonal transport of synaptic vesicles and is required for synaptic development and transmission. J. Neurosci. 31:2052–63 [Google Scholar]
  112. Lobo S, Wiczer BM, Bernlohr DA. 112.  2009. Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes. J. Biol. Chem. 284:18347–56 [Google Scholar]
  113. Makowski L, Hotamisligil GS. 113.  2005. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol. 16:543–48 [Google Scholar]
  114. Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano AR. 114.  et al. 2010. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS ONE 5:e15540 [Google Scholar]
  115. Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P. 115.  et al. 1997. Mutations in RPE65 cause Leber's congenital amaurosis. Nat. Genet. 17:139–41 [Google Scholar]
  116. Marszalek JR, Kitidis C, Dararutana A, Lodish HF. 116.  2004. Acyl CoA synthetase 2 (ACS2) over-expression enhances fatty acid internalization and neurite outgrowth. J. Biol. Chem. 279:23882–91 [Google Scholar]
  117. Marszalek JR, Kitidis C, Dirusso CC, Lodish HF. 117.  2005. Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280:10817–26 [Google Scholar]
  118. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. 118.  1997. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J. Biol. Chem. 272:28210–17 [Google Scholar]
  119. Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E. 119.  et al. 2003. Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene. J. Biol. Chem. 278:21429–38 [Google Scholar]
  120. Martin GG, Huang H, Atshaves BP, Binas B, Schroeder F. 120.  2003. Ablation of the liver fatty acid binding protein gene decreases fatty acyl CoA binding capacity and alters fatty acyl CoA pool distribution in mouse liver. Biochemistry 42:11520–32 [Google Scholar]
  121. Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA. 121.  et al. 2004. Revised nomenclature for the mammalian long chain acyl-CoA synthetase gene family. J. Lipid Res. 45:1958–61 [Google Scholar]
  122. Mashek DG, Coleman RA. 122.  2006. Cellular fatty acid uptake: the contribution of metabolism. Curr. Opin. Lipidol. 17:274–78 [Google Scholar]
  123. Mashek DG, Li LO, Coleman RA. 123.  2006. Rat long chain acyl-CoA synthetase mRNA, protein and activity vary in tissue distribution and in response to diet. J. Lipid Res. 47:2004–10 [Google Scholar]
  124. Mashek DG, Li LO, Coleman RA. 124.  2007. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2:465–76 [Google Scholar]
  125. Mashima T, Oh-Hara T, Sato S, Mochizuki M, Sugimoto Y. 125.  et al. 2005. p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J. Natl. Cancer Inst. 97:765–77 [Google Scholar]
  126. McGarry JD, Brown NF. 126.  1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244:1–14 [Google Scholar]
  127. McGarry JD, Foster DW. 127.  1979. In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Biol. Chem. 254:8163–68 [Google Scholar]
  128. McGarry JD, Foster DW. 128.  1980. Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49:395–420 [Google Scholar]
  129. Meller N, Morgan ME, Wong WP, Altemus JB, Sehayek E. 129.  2013. Targeting of acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption. Lipids Health Dis. 12:88 [Google Scholar]
  130. Meloni I, Muscettola M, Raynaud M, Longo I, Bruttini M. 130.  et al. 2002. FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat. Genet. 30:436–40 [Google Scholar]
  131. Menendez JA, Lupu R. 131.  2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7:763–77 [Google Scholar]
  132. Mihalik SJ, Steinberg SJ, Pei Z, Park JH, Kim DG. 132.  et al. 2002. Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J. Biol. Chem. 277:24771–79 [Google Scholar]
  133. Milger K, Herrmann T, Becker C, Gotthardt D, Zickwolf J. 133.  et al. 2006. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J. Cell Sci. 119:4678–88 [Google Scholar]
  134. Min KT, Benzer S. 134.  1999. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science 284:1985–88 [Google Scholar]
  135. Mishima T, Miner JH, Morizane M, Stahl A, Sadovsky Y. 135.  2011. The expression and function of fatty acid transport protein-2 and -4 in the murine placenta. PLoS ONE 6:e25865 [Google Scholar]
  136. Monaco ME, Creighton CJ, Lee P, Zou X, Topham MK, Stafforini DM. 136.  2010. Expression of long-chain fatty acyl-CoA synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl. Oncol. 3:91–98 [Google Scholar]
  137. Moulson CL, Lin MH, White JM, Newberry EP, Davidson NO, Miner JH. 137.  2007. Keratinocyte-specific expression of fatty acid transport protein 4 rescues the wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J. Biol. Chem. 282:15912–20 [Google Scholar]
  138. Muoio DM, Lewin TM, Wiedmer P, Coleman RA. 138.  2000. Acyl-CoAs are functionally channeled in liver: potential role of acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab. 279:E1366–73 [Google Scholar]
  139. Muoio DM, Seefeld K, Witters LA, Coleman RA. 139.  1999. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338:Part 3783–91 [Google Scholar]
  140. Nagle CA, An J, Shiota M, Torres TP, Cline GW. 140.  et al. 2007. Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J. Biol. Chem. 282:14807–15 [Google Scholar]
  141. Nakamura Y, Sato T, Shiimura Y, Miura Y, Kojima M. 141.  2013. FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1. Biochem. Biophys. Res. Commun. 441:42–46 [Google Scholar]
  142. Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z. 142.  et al. 2013. Increased long chain acyl-CoA synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog. 9:e1003401 [Google Scholar]
  143. Neess D, Bloksgaard M, Bek S, Marcher AB, Elle IC. 143.  et al. 2011. Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning. J. Biol. Chem. 286:3460–72 [Google Scholar]
  144. Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX. 144.  et al. 2005. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab. 2:55–65 [Google Scholar]
  145. Newberry EP, Xie Y, Kennedy S, Han X, Buhman KK. 145.  et al. 2003. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J. Biol. Chem. 278:51664–72 [Google Scholar]
  146. Newman CM, Magee AI. 146.  1993. Posttranslational processing of the Ras superfamily of small GTP-binding proteins. Biochim. Biophys. Acta 1155:79–96 [Google Scholar]
  147. Nikawa J, Tanabe T, Ogiwara H, Shiba T, Numa S. 147.  1979. Inhibitory effects of long-chain acyl coenzyme A analogues on rat liver acetyl coenzyme A carboxylase. FEBS Lett. 102:223–26 [Google Scholar]
  148. Ning BF, Ding J, Yin C, Zhong W, Wu K. 148.  et al. 2010. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 70:7640–51 [Google Scholar]
  149. Obata Y, Fukumoto Y, Nakayama Y, Kuga T, Dohmae N, Yamaguchi N. 149.  2010. The Lyn kinase C-lobe mediates Golgi export of Lyn through conformation-dependent ACSL3 association. J. Cell Sci. 123:2649–62 [Google Scholar]
  150. Ogiwara H, Tanabe T, Nikawa J, Numa S. 150.  1978. Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex. Eur. J. Biochem. 89:33–41 [Google Scholar]
  151. Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H. 151.  et al. 1998. A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J. Biochem. 124:679–85 [Google Scholar]
  152. Okita RT, Okita JR. 152.  2001. Cytochrome P450 4A fatty acid omega hydroxylases. Curr. Drug Metab. 2:265–81 [Google Scholar]
  153. Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA. 153.  2004. Mouse very long-chain acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J. Biol. Chem. 279:54454–62 [Google Scholar]
  154. Pei Z, Fraisl P, Shi X, Gabrielson E, Forss-Petter S. 154.  et al. 2013. Very long-chain acyl-CoA synthetase 3: overexpression and growth dependence in lung cancer. PLoS ONE 8:e69392 [Google Scholar]
  155. Pei Z, Jia Z, Watkins PA. 155.  2006. The second member of the human and murine “bubblegum” family is a testis- and brainstem-specific acyl-CoA synthetase. J. Biol. Chem. 281:6632–41 [Google Scholar]
  156. Pei Z, Oey NA, Zuidervaart MM, Jia Z, Li Y. 156.  et al. 2003. The acyl-CoA synthetase “bubblegum” (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation. J. Biol. Chem. 278:47070–78 [Google Scholar]
  157. Pei Z, Sun P, Huang P, Lal B, Laterra J, Watkins PA. 157.  2009. Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Res. 69:9175–82 [Google Scholar]
  158. Pfanner N, Glick BS, Arden SR, Rothman JE. 158.  1990. Fatty acylation promotes fusion of transport vesicles with Golgi cisternae. J. Cell Biol. 110:955–61 [Google Scholar]
  159. Poppelreuther M, Rudolph B, Du C, Grossmann R, Becker M. 159.  et al. 2012. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 53:888–900 [Google Scholar]
  160. Prentki M, Corkey BE. 160.  1996. Are the β-cell signaling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM?. Diabetes 45:273–83 [Google Scholar]
  161. Prentki M, Joly E, El-Assaad W, Roduit R. 161.  2002. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51:Suppl. 3S405–13 [Google Scholar]
  162. Rasmussen JT, Borchers T, Knudsen J. 162.  1990. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem. J. 265:849–55 [Google Scholar]
  163. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D. 163.  et al. 1998. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20:344–51 [Google Scholar]
  164. Rolf B, Oudenampsen-Kruger E, Borchers T, Faergeman NJ, Knudsen J. 164.  et al. 1995. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim. Biophys. Acta 1259:245–53 [Google Scholar]
  165. Rosendal J, Ertbjerg P, Knudsen J. 165.  1993. Characterization of ligand binding to acyl-CoA-binding protein. Biochem. J. 290:Part 2321–26 [Google Scholar]
  166. Rubinow KB, Wall VZ, Nelson J, Mar D, Bomsztyk K. 166.  et al. 2013. Acyl-CoA synthetase 1 is induced by Gram-negative bacteria and lipopolysaccharide and is required for phospholipid turnover in stimulated macrophages. J. Biol. Chem. 288:9957–70 [Google Scholar]
  167. Schaffer JE, Lodish HF. 167.  1994. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–36 [Google Scholar]
  168. Sebastian D, Guitart M, Garcia-Martinez C, Mauvezin C, Orellana-Gavalda JM. 168.  et al. 2009. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. J. Lipid Res. 50:1789–99 [Google Scholar]
  169. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. 169.  2008. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse?. Diabetes Care 31:Suppl. 2S262–68 [Google Scholar]
  170. Shearer J, Fueger PT, Bracy DP, Wasserman DH, Rottman JN. 170.  2005. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Diabetes 54:3133–39 [Google Scholar]
  171. Sheng Y, Tsai-Morris CH, Li J, Dufau ML. 171.  2009. Lessons from the gonadotropin-regulated long chain acyl-CoA synthetase (GR-LACS) null mouse model: a role in steroidogenesis, but not result in X-ALD phenotype. J. Steroid Biochem. Mol. Biol. 114:44–56 [Google Scholar]
  172. Shim J, Moulson CL, Newberry EP, Lin MH, Xie Y. 172.  et al. 2009. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J. Lipid Res. 50:491–500 [Google Scholar]
  173. Shimomura I, Tokunaga K, Kotani K, Keno Y, Yansase-Fujiwara M. 173.  et al. 1993. Marked reduction of acyl-CoA synthetase activity and mRNA in intra-abdominal visceral fat by physical exercise. Am. J. Physiol. 265:E44–50 [Google Scholar]
  174. Shug A, Lerner E, Elson C, Shrago E. 174.  1971. The inhibition of adenine nucleotide translocase activity by oleoyl CoA and its reversal in rat liver mitochondria. Biochem. Biophys. Res. Commun. 43:557–63 [Google Scholar]
  175. Simpson AE. 175.  1997. The cytochrome P450 4 (CYP4) family. Gen. Pharmacol. 28:351–59 [Google Scholar]
  176. Sleeman MW, Donegan NP, Heller-Harrison R, Lane WS, Czech MP. 176.  1998. Association of acyl-CoA synthetase-1 with GLUT4-containing vesicles. J. Biol. Chem. 273:3132–35 [Google Scholar]
  177. Smathers RL, Petersen DR. 177.  2011. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum. Genomics 5:170–91 [Google Scholar]
  178. Smith RH, Powell GL. 178.  1986. The critical micelle concentration of some physiologically important fatty acyl-coenzyme A's as a function of chain length. Arch. Biochem. Biophys. 244:357–60 [Google Scholar]
  179. Soupene E, Kuypers FA. 179.  2008. Mammalian long-chain acyl-CoA synthetases. Exp. Biol. Med.(Maywood) 233:507–21 [Google Scholar]
  180. Srere PA. 180.  1987. Complexes of sequential metabolic enzymes. Methods Enzymol. 56:89–124 [Google Scholar]
  181. Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P. 181.  et al. 1999. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4:299–308 [Google Scholar]
  182. Stanimirov B, Stankov K, Mikov M. 182.  2012. Pleiotropic functions of bile acids mediated by the farnesoid X receptor. Acta Gastroenterol. Belg. 75:389–98 [Google Scholar]
  183. Steinberg SJ, Mihalik SJ, Kim DG, Cuebas DA, Watkins PA. 183.  2000. The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate:CoA ligase. J. Biol. Chem. 275:15605–8 [Google Scholar]
  184. Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA. 184.  2000. Very long-chain acyl-CoA synthetases: Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J. Biol. Chem. 275:35162–69 [Google Scholar]
  185. Stinnett L, Lewin TM, Coleman RA. 185.  2007. Mutagenesis of rat acyl-CoA synthetase 4 indicates amino acids that contribute to fatty acid binding. Biochim. Biophys. Acta 1771:119–25 [Google Scholar]
  186. Storch J, Thumser AE. 186.  2010. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285:32679–83 [Google Scholar]
  187. Sung YK, Hwang SY, Park MK, Bae HI, Kim WH. 187.  et al. 2003. Fatty acid-CoA ligase 4 is overexpressed in human hepatocellular carcinoma. Cancer Sci. 94:421–24 [Google Scholar]
  188. Sung YK, Park MK, Hong SH, Hwang SY, Kwack MH. 188.  et al. 2007. Regulation of cell growth by fatty acid-CoA ligase 4 in human hepatocellular carcinoma cells. Exp. Mol. Med. 39:477–82 [Google Scholar]
  189. Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Nishikawa K. 189.  et al. 1990. Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem. 265:8681–85 [Google Scholar]
  190. Tang P-Z, Tsai-Morris C-H, Dufau ML. 190.  2001. Cloning and characterization of a hormonally regulated rat long chain acyl-CoA synthetase. Proc. Natl. Acad. Sci. USA 98:6581–86 [Google Scholar]
  191. Tippett PS, Neet KE. 191.  1982. Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J. Biol. Chem. 257:12839–45 [Google Scholar]
  192. Tomoda H, Igarashi K, Omura S. 192.  1987. Inhibition of acyl-CoA synthetase by triacsins. Biochim. Biophys. Acta 921:595–98 [Google Scholar]
  193. Tong F, Black PN, Coleman RA, DiRusso CC. 193.  2006. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases. Arch. Biochem. Biophys. 447:46–52 [Google Scholar]
  194. Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA. 194.  2005. Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–42 [Google Scholar]
  195. Vergnes L, Chin R, Young SG, Reue K. 195.  2011. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance. J. Biol. Chem. 286:380–90 [Google Scholar]
  196. Wang HW, Fang JS, Kuang X, Miao LY, Wang C. 196.  et al. 2012. Activity of long-chain acyl-CoA synthetase is required for maintaining meiotic arrest in Xenopus laevis. Biol. Reprod. 87:74 [Google Scholar]
  197. Watkins PA. 197.  2008. Very-long-chain acyl-CoA synthetases. J. Biol. Chem. 283:1773–77 [Google Scholar]
  198. Watkins PA, Maiguel D, Jia Z, Pevsner J. 198.  2007. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J. Lipid Res. 48:2736–50 [Google Scholar]
  199. Wendel AA, Cooper DE, Ilkayeva OR, Muoio DM, Coleman RA. 199.  2013. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J. Biol. Chem. 288:27299–306 [Google Scholar]
  200. Wendel AA, Lewin TM, Coleman RA. 200.  2009. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim. Biophys. Acta 1791:501–6 [Google Scholar]
  201. Westin MA, Alexson SE, Hunt MC. 201.  2004. Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARα)-regulated peroxisomal acyl-CoA thioesterases. J. Biol. Chem. 279:21841–48 [Google Scholar]
  202. Wu M, Liu H, Chen W, Fujimoto Y, Liu J. 202.  2009. Hepatic expression of long-chain acyl-CoA synthetase 3 is upregulated in hyperlipidemic hamsters. Lipids 44:989–98 [Google Scholar]
  203. Wu Q, Kazantzis M, Doege H, Ortegon AM, Tsang B. 203.  et al. 2006. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes 55:3229–37 [Google Scholar]
  204. Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A. 204.  2006. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol. Cell. Biol. 26:3455–67 [Google Scholar]
  205. Yamashita H, Wang Z, Wang Y, Segawa M, Kusudo T, Kontani Y. 205.  2008. Induction of fatty acid-binding protein 3 in brown adipose tissue correlates with increased demand for adaptive thermogenesis in rodents. Biochem. Biophys. Res. Commun. 377:632–35 [Google Scholar]
  206. Zhan T, Poppelreuther M, Ehehalt R, Füllekrug J. 206.  2012. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS ONE 7:e45087 [Google Scholar]
  207. Zhang Y, Chen D, Wang Z. 207.  2009. Analyses of mental dysfunction-related ACSl4 in Drosophila reveal its requirement for Dpp/BMP production and visual wiring in the brain. Hum. Mol. Genet. 18:3894–905 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error