Understanding the molecular mechanisms that inform how diet and dietary supplements influence health and disease is an active research area. One such mechanism concerns the role of diet in modulating the activity and function of microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that are involved in posttranscriptional gene silencing and have been shown to control gene expression in diverse biological processes including development, differentiation, cell proliferation, metabolism, and inflammation as well as in human diseases. Recent evidence described in this review highlights how dietary factors may influence cancer, cardiovascular disease, type 2 diabetes mellitus, obesity, and nonalcoholic fatty liver disease through modulation of miRNA expression. Additionally, circulating miRNAs are emerging as putative biomarkers of disease, susceptibility, and perhaps dietary exposure. Research needs to move beyond associations in cells and animals to understanding the direct effects of diet and dietary supplements on miRNA expression and function in human health and disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahn J, Lee H, Chung CH, Ha T. 1.  2011. High fat diet induced downregulation of microRNA-467b increased lipoprotein lipase in hepatic steatosis. Biochem. Biophys. Res. Comm. 414:664–69 [Google Scholar]
  2. Ahn J, Lee H, Jung CH, Ha T. 2.  2012. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high fat diet. Mol. Nutr. Food Res. 56:1665–74 [Google Scholar]
  3. Ajit SK. 3.  2012. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors(Basel) 12:3359–69 [Google Scholar]
  4. Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R. 4.  et al. 2013. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA 110:7154–59 [Google Scholar]
  5. Alachkar H, Santhanam R, Harb JG, Lucas DM, Oaks JJ. 5.  et al. 2013. Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expression in acute myeloid leukemia. J. Hematol. Oncol. 621–33 [Google Scholar]
  6. Ali S, Ahman A, Abouukameel A, Bao B, Padhye S. 6.  et al. 2012. Increased RAS GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 319:173–81 [Google Scholar]
  7. Allisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N. 7.  et al. 2011. miRNome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab. Invest. 91:283–93 [Google Scholar]
  8. Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, Lombardía L, Herrera M. 8.  et al. 2012. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum. Mol. Genet. 10:2157–65 [Google Scholar]
  9. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. 9.  2003. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol 13:807–18 [Google Scholar]
  10. Arola-Arnal A, Blade C. 10.  2011. Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS ONE 6:e25982 [Google Scholar]
  11. Baer C, Claus R, Plass C. 11.  2013. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73:473–77 [Google Scholar]
  12. Banerjee N, Talcott S, Safe S, Mertens-Talcott SU. 12.  2012. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res. Treat. 136:21–34 [Google Scholar]
  13. Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Salvado MJ. 13.  et al. 2012. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol. Nutr. Food Res. 56:1636–46 [Google Scholar]
  14. Beveridge NJ, Tooney PA, Carroll AP, Tran N, Cairns MJ. 14.  2009. Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell. Signal. 21:1837–45 [Google Scholar]
  15. Boesch-Saadatmandi C, Wagner AE, Wolffram S, Rimbach G. 15.  2012. Effect of quercetin on inflammatory gene expression in mice liver in vivo—role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol. Res. 65:523–30 [Google Scholar]
  16. Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A. 15a.  et al. 2011. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J. Nutr. Biochem. 22:293–99 [Google Scholar]
  17. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E. 16.  et al. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101:2999–3004 [Google Scholar]
  18. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI. 17.  et al. 2012. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc. Natl. Acad. Sci. USA 109:15330–35 [Google Scholar]
  19. Chakrabarti M, Ai W, Banik NL, Ray SK. 18.  2013. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res. 38:420–32 [Google Scholar]
  20. Chen QH, Wang QB, Zhang B. 19.  2014. Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis. Tumour Biol. 39:529–43 [Google Scholar]
  21. Chen Y, Liu W, Sun T, Huang Y, Wang Y. 20.  et al. 2013. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J. Immunol. 190:3687–95 [Google Scholar]
  22. Chen Y, Zaman MS, Deng G, Majid S, Saini S. 21.  et al. 2010. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev. Res. 4:76–86 [Google Scholar]
  23. Chiyomaru T, Yamamura S, Fukhara S, Hidaka H, Majid S. 22.  et al. 2013. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS ONE 8:e58929 [Google Scholar]
  24. Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G. 23.  et al. 2012. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS ONE 7:e43812 [Google Scholar]
  25. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. 24.  2011. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8:467–77 [Google Scholar]
  26. Creemers EE, Tijsen AJ, Pinto YM. 25.  2012. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?. Circ. Res. 110:483–95 [Google Scholar]
  27. Davidson LA, Wang N, Sahah MS, Lupton JR, Ivanov I, Chapkin RS. 26.  2009. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30:2077–84 [Google Scholar]
  28. Derry MM, Raina K, Balaiya V, Jain AK, Shrotriya S. 27.  et al. 2013. Grape seed extract efficacy against azoxymethane-induced colon tumorigenesis in A/J mice: interlinking miRNA with cytokine signaling and inflammation. Cancer Prev. Res. 6:625–33 [Google Scholar]
  29. Di Leva G, Croce CM. 28.  2013. miRNA profiling of cancer. Curr. Opin. Genet. Dev. 23:3–11 [Google Scholar]
  30. Elman J, Lindow M, Schutz S, Lawrence M, Petri A. 29.  et al. 2008. LNA-mediated microRNA silencing in non-human primates. Nature 452:896–99 [Google Scholar]
  31. Enquobahrie DA, Williams MA, Qiu C, Siscovick DS, Sorensen TK. 30.  2011. Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. J. Matern. Fetal Neonatal Med. 24:1002–12 [Google Scholar]
  32. Esau C, Davis S, Murray SF, Yu XX, Pandey SK. 31.  et al. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98 [Google Scholar]
  33. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG. 32.  et al. 2004. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279:52361–65 [Google Scholar]
  34. Fabbri M, Paone A, Calore F, Galli R, Gaudio E. 33.  et al. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 109:E2110–16 [Google Scholar]
  35. Filipowicz W, Bhattacharyya SN, Sonenberg N. 34.  2008. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?. Nat. Rev. Genet. 9:102–14 [Google Scholar]
  36. Frost RJA, Oson EN. 35.  2011. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA 108:21075–80 [Google Scholar]
  37. Fullston T, Ohlsson Teague EM, Palmer NO, Deblasio MJ, Mitchell M. 36.  et al. 2013. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27:4226–43 [Google Scholar]
  38. Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F. 37.  et al. 2008. Vitamin E dependent microRNA regulation in rat liver. FEBS Lett. 582:3542–46 [Google Scholar]
  39. Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP. 38.  et al. 2012. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J. Exp. Clin. Cancer Res. 31:27–36 [Google Scholar]
  40. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R. 39.  et al. 2007. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26:4148–57 [Google Scholar]
  41. Giangreco AA, Vaishnav A, Wagner D, Finelli A, Fleshner N. 40.  et al. 2013. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev. Res. 6:483–94 [Google Scholar]
  42. Gocek E, Wang X, Liu X, Liu CG, Studzinski GP. 41.  2011. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 71:6230–39 [Google Scholar]
  43. Gommans WM, Berezikov E. 42.  2012. Controlling miRNA regulation in disease. Methods Mol. Biol. 822:1–18 [Google Scholar]
  44. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 43.  2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140–44 [Google Scholar]
  45. Gu S, Chan WY. 44.  2012. Flexible and versatile as a chameleon—sophisticated functions of microRNA-199a. Int. J. Mol. Sci. 13:8449–66 [Google Scholar]
  46. Guan H, Liu C, Chen Z, Wang L, Li C. 45.  et al. 2013. 1,25-Dihydroxyvitamin D3 up-regulates expression of hsa-let-7a-2 through the interaction of VDR/VDRE in human lung cancer A549 cells. Gene 522:142–46 [Google Scholar]
  47. Hagiwara K, Kosaka N, Yoshioka Y, Takahashi R-u, Takeshita F, Ochiya T. 46.  2012. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep. 2:314 [Google Scholar]
  48. Han Z, Yang Q, Liu B, Wu J, Li Y. 47.  et al. 2012. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 33:131–39 [Google Scholar]
  49. Hassan ZK, Al-Olayan EM. 48.  2012. Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac. J. Cancer Prev. 13:5405–8 [Google Scholar]
  50. Hirata H, Ueno K, Nakajima K, Tabatabai ZL, Hinoda Y. 49.  et al. 2013. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br. J. Cancer 108:2070–78 [Google Scholar]
  51. Hoekstra M, Van der Sluis RJ, Kuiper J, Van Berkel TJ. 50.  2012. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. J. Nutr. Biochem. 23:622–28 [Google Scholar]
  52. Iorio MV, Croce CM. 51.  2012. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4:143–59 [Google Scholar]
  53. Izzotti A, Larghero P, Cartiglia C, Longobardi M, Pfeffer U. 52.  et al. 2010. Modulation of microRNA expression by budesonide, phenyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinogenesis 31:894–901 [Google Scholar]
  54. Jeon T, Park JW, Ahn J, Jung CH, Ha TY. 53.  2013. Fisetin protects against hepatosteatosis in mice by inhibiting miR-378. Mol. Nutr. Food Res. 57:1931–37 [Google Scholar]
  55. Ji X, Wang Z, Geamanu A, Goja A, Sarkar FH, Gupta SV. 54.  2012. Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. Int. J. Cancer 131:2668–77 [Google Scholar]
  56. Jian P, Li ZW, Fang TY, Jian W, Zhuan Z. 55.  et al. 2011. Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663. J. Hemat. Oncol. 4:20–28 [Google Scholar]
  57. Jin Y. 56.  2011. 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25a degradation. Mol. Cell. Biochem. 358:345–54 [Google Scholar]
  58. Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT. 57.  et al. 2011. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 13:434–46 [Google Scholar]
  59. Jorde R, Svartberg J, Joakimsen RM, Coucheron DH. 58.  2012. Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Res. Notes 5:245 [Google Scholar]
  60. Joven J, Espinel E, Rull A, Aragones G, Rodriguez-Gallego E. 59.  et al. 2012. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim. Biophys. Acta 1820:894–99 [Google Scholar]
  61. Kasiappan R, Shen Z, Tse AKW, Jinwal U, Tang J. 60.  et al. 2012. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J. Biol. Chem. 287:41297–309 [Google Scholar]
  62. Kosaka N, Izumi H, Sekine K, Ochiya T. 61.  2010. microRNA as a new immune-regulatory agent in breast milk. Silence 1:7 [Google Scholar]
  63. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I. 62.  et al. 2006. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J. Cell. Biochem. 99:671–78 [Google Scholar]
  64. Lam TK, Shao S, Zhao Y, Marincola F, Pesatori A. 63.  et al. 2012. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol. Biomarkers Prev. 21:2176–84 [Google Scholar]
  65. Li H, Xia N, Forstermann U. 64.  2012. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 26:102–10 [Google Scholar]
  66. Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. 65.  2012. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7:940–49 [Google Scholar]
  67. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S. 66.  et al. 2009. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69:6704–12 [Google Scholar]
  68. Li Y, VandenBoom TG, Wang Z, Kong D, Ali S. 67.  et al. 2010. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70:1486–95 [Google Scholar]
  69. Liang Y, Li Y, Li Z, Liu Z, Zhang Z. 68.  et al. 2012. Mechanism of folate deficiency-induced apoptosis in mouse embryonic stem cells: cell cycle arrest/apoptosis in G1/G0 mediated by microRNA-302a and tumor suppressor gene Lats2. Int. J. Biochem. Cell Biol. 44:1750–60 [Google Scholar]
  70. Lisse TS, Chun RF, Rieger S, Adams JS, Hewlson M. 69.  2013. Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts. J. Bone Miner. Res. 28:1478–88 [Google Scholar]
  71. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J. 70.  et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834–38 [Google Scholar]
  72. Ma X, Ma C, Zheng X. 71.  2013. MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role?. Heart Lung Circ. 22:811–18 [Google Scholar]
  73. Madrigal-Matute J, Rotlan N, Aranda JF, Fernandez-Hernando C. 72.  2013. MicroRNAs and atherosclerosis. Curr. Atheroscler. Rep. 15:322–30 [Google Scholar]
  74. Majid S, Dar AA, Saini S, Chen Y, Shahryari V. 73.  et al. 2010. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 70:2809–18 [Google Scholar]
  75. Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. 74.  2012. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 33:1897–908 [Google Scholar]
  76. Marsit CJ, Eddy K, Kelsey KT. 75.  2006. MicroRNA responses to cellular stress. Cancer Res. 22:10843–48 [Google Scholar]
  77. Mathieu J, Ruohola-Baker H. 76.  2013. Regulation of stem cell populations by microRNAs. Adv. Exp. Med. Biol. 786:329–51 [Google Scholar]
  78. McCann SE, Liu S, Wang D, Shen J, Hu Q. 77.  et al. 2013. Reduction of dietary glycaemic load modifies the expression of microRNA potentially associated with energy balance and cancer pathways in pre-menopausal women. Br. J. Nutr. 109:5850592 [Google Scholar]
  79. Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F. 78.  2010. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31:252–58 [Google Scholar]
  80. Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. 79.  2011. MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J. Biol. Chem. 286:4150–64 [Google Scholar]
  81. Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campion J, Martinez JA. 80.  2013. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS ONE 8:e54319 [Google Scholar]
  82. 81. miRBase: the microRNA database 2013. Release 20. http://www.mirbase.org
  83. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R. 82.  et al. 2011. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep. 31:185–97 [Google Scholar]
  84. Mukhopadhyay P, Das S, Ahsan MK, Otani H, Das DK. 83.  2012. Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent and anti-angiogenic action in the ischaemic myocardium and synergistic effects of resveratrol and γ-tocotrienol. J. Cell Mol. Med. 16:2504–17 [Google Scholar]
  85. Mukhopadhyay P, Mukherjee S, Ahsan K, Bagchi A, Pascher P, Das DK. 84.  2010. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS ONE 5:e15705 [Google Scholar]
  86. Mukhopadhayay P, Pacher P, Das DK. 85.  2011. MicroRNA signatures of resveratrol in the ischemic heart. Ann. N. Y. Acad. Sci. 1215:109–16 [Google Scholar]
  87. Murase T, Misawa K, Minegisi Y, Aoki M, Ominami H. 86.  et al. 2010. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. 300:E122–33 [Google Scholar]
  88. Nair VS, Maeda LS, Ioannidis JP. 87.  2012. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J. Natl. Cancer Inst. 104:528–40 [Google Scholar]
  89. Nana-Sinkam SP, Croce CM. 88.  2013. Clinical applications for microRNAs in cancer. Clin. Pharmacol. Ther. 93:98–104 [Google Scholar]
  90. Noratto GD, Angel-Morales G, Talcott ST, Mertens-Talcott SU. 89.  2011. Polyphenolics from acai (Euterpe Oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J. Agric. Food Chem. 59:7999–8012 [Google Scholar]
  91. Noratto GD, Jutooru I, Safe S, Ngel-Morales G, Mertens-Talcott SU. 90.  2013. The drug resistance suppression induced by curcuminoids in colon cancer SW-480 cells is mediated by reactive oxygen species-induced disruption of the microRNA-27a-ZBTB10-Sp axis. Mol. Nutr. Food Res. 57:1638–48 [Google Scholar]
  92. Noratto GD, Kim Y, Talcott ST, Mertens-Talcott SU. 91.  2011. Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofibroblast CCD-18Co cells. Fitoterapia 82:557–69 [Google Scholar]
  93. Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N. 92.  et al. 2013. Targeting the circulating microRNA signature of obesity. Clin. Chem. 59:781–92 [Google Scholar]
  94. Padi SKR, Zhang Q, Rustum YM, Morrison C, Guo B. 93.  2013. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 145:437–46 [Google Scholar]
  95. Parasramka MA, Dashwood WM, Wang R, Abdelli A, Bailey GS. 94.  et al. 2012. MicroRNA profiling of carcinogen-induced rat colon tumors and the influence of dietary spinach. Mol. Nutr. Food Res. 56:1259–69 [Google Scholar]
  96. Park JH, Ahn J, Kim S, Kwon DY, Ha TY. 95.  2011. Murine hepatic miRNAs expression and regulation of gene expression in diet-induced obese mice. Mol. Cells 31:33–38 [Google Scholar]
  97. Parra P, Serra F, Palou A. 96.  2010. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE 5:e13005 [Google Scholar]
  98. Peng X, Vaishnav A, Murillo G, Alimirah F, Torres KEO, Mehta RG. 97.  2010. Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J. Cell Biochem. 110:1324–33 [Google Scholar]
  99. Perron MP, Provost P. 98.  2009. Protein components of the microRNA pathway and human diseases. Methods Mol. Biol. 487:369–85 [Google Scholar]
  100. Poy MN, Hausser J, Trajovski M, Braun M, Collins S. 99.  et al. 2009. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106:5813–18 [Google Scholar]
  101. Prats-Puig A, Ortega FJ, Mercader JM, Moreno-Navarrete JM, Moreno M. 100.  et al. 2013. Changes in circulating microRNAs are associated with childhood obesity. J. Clin. Endocrinol. Metab. 98:E1655–60 [Google Scholar]
  102. Roy S, Levi E, Majumdar APN, Sarkar FH. 101.  2012. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J. Hematol. Oncol. 5:58–64 [Google Scholar]
  103. Ryan BM, Robles AI, Harris CC. 102.  2010. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10:389–402 [Google Scholar]
  104. Ryu MS, Langkamp-Henken B, Chang SM, Shankar MN, Cousins RJ. 103.  2011. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis. Proc. Natl. Acad. Sci. USA 108:20970–75 [Google Scholar]
  105. Saini S, Arora S, Majid S, Shahryari V, Chen Y. 104.  et al. 2011. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. 4:1698–709 [Google Scholar]
  106. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. 105.  2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 146:353–58 [Google Scholar]
  107. Sarveswaran S, Liroff J, Zhou Z, Nikitin AY, Ghosh J. 106.  2010. Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: implication for the treatment of early-stage prostate cancer. Int. J. Oncol. 36:1419–28 [Google Scholar]
  108. Sayed D, Abdellatif M. 107.  2011. MicroRNAs in development and disease. Physiol. Rev. 91:827–87 [Google Scholar]
  109. Shah MS, Davidson LA, Chapkin RS. 108.  2012. Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front. Genet. 3:305 [Google Scholar]
  110. Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K. 109.  et al. 2012. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/microRNA-21 pathway. PLoS ONE 7:e51655 [Google Scholar]
  111. Siaj R, Sauer V, Stöppeler S, Gerβ J, Spiegel HU. 110.  et al. 2012. Longitudinal analysis of serum miR-122 in a rat model of Wilson's disease. Hepatol. Int. 6:770–77 [Google Scholar]
  112. Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H. 111.  2011. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 25:1198–207 [Google Scholar]
  113. Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. 112.  2013. microRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 34:1165–72 [Google Scholar]
  114. Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. 113.  2013. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 10:1107–16 [Google Scholar]
  115. Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH. 114.  2012. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 8:1563–71 [Google Scholar]
  116. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ. 115.  2011. The role of the precursor structure in the biogenesis of microRNA. Cell Mol. Life Sci. 68:2859–71 [Google Scholar]
  117. Stefani G, Slack F. 116.  2006. MicroRNAs in search of a target. Cold Spring Harb. Symp. Quant. Biol. 71:129–34 [Google Scholar]
  118. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ. 117.  et al. 2012. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS ONE 7:e30590 [Google Scholar]
  119. Sun Q, Cong R, Yan H, Gu H, Zeng Y. 118.  et al. 2009. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol. Rep. 22:563–67 [Google Scholar]
  120. Takanabe R, Ono K, Abe Y, Takaya T, Horie T. 119.  et al. 2008. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high fat diet. Biochem. Biophys. Res. Commun. 376:728–32 [Google Scholar]
  121. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM. 120.  et al. 2013. miRNAs: small genes with big potential in metazoan phylogenetics. Mol. Biol. Evol. 30:2369–82 [Google Scholar]
  122. Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V. 121.  et al. 2011. Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells. J. Biol. Chem. 286:4027–42 [Google Scholar]
  123. Thornton JE, Gregory RI. 122.  2012. How does Lin28 let-7 control development and disease?. Trends Cell Biol. 22:474–82 [Google Scholar]
  124. Tili EI, Michaille JJ, Adair B, Alder H, Limagne E. 123.  et al. 2010. Resveratrol decreases the levels of miR155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carginogenesis 31:1561–66 [Google Scholar]
  125. Ting HJ, Messing J, Yasmin-Karim S, Lee YF. 124.  2013. Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J. Biol. Chem. 288:1–9 [Google Scholar]
  126. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J. 125.  et al. 2013. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 72:69–82 [Google Scholar]
  127. Trajovski M, Hausser J, Soutschek J, Bhat B, Akin A. 126.  et al. 2012. microRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–54 [Google Scholar]
  128. Tryndyak VP, Latendresse JR, Montgomery B, Ross SA, Beland FA. 127.  et al. 2012. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicol. Appl. Pharmacol. 262:52–59 [Google Scholar]
  129. Tryndyak VP, Ross SA, Beland FA, Pogribny IP. 128.  2009. Down-regulation of the microRNAs miR-34a, miR-127 and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol. Carcinog. 48:479–87 [Google Scholar]
  130. Tsang WP, Kwok TT. 129.  2010. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem. 21:140–46 [Google Scholar]
  131. Turchinovich A, Weiz L, Burwinkel B. 130.  2012. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci. 37:460–65 [Google Scholar]
  132. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. 131.  2011. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39:7223–33 [Google Scholar]
  133. Tzur G, Israel A, Levy A, Benjamin H, Meiri E. 132.  et al. 2009. Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS ONE 4:e7511 [Google Scholar]
  134. Vella MC, Slack FJ. 133.  2005. C. elegans microRNAs. WormBook C. elegans Res. Community, pp. 1–9. doi/10.1895/wormbook.1.26.1. http://www.wormbook.org [Google Scholar]
  135. Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. 134.  2009. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49:1176–84 [Google Scholar]
  136. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A. 135.  et al. 2006. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103:2257–61 [Google Scholar]
  137. Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. 136.  2012. Anti-inflammatory potential of allyl-isothiocyanate—role of Nrf2, NF-κB and microRNA-155. J. Cell Mol. Med. 16:836–43 [Google Scholar]
  138. Wang D, Xia M, Yan X, Li D, Wang L. 137.  et al. 2012. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 111:967–81 [Google Scholar]
  139. Wang H, Bian S, Yang CS. 138.  2011. Green tea polyphenol EGCG suppresses lung cancer growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 32:1881–89 [Google Scholar]
  140. Wang K, Li H, Yuan Y, Etheridge A, Zhou Y. 139.  et al. 2012. The complex exogenous RNA spectra in human plasma: an interface with human gut biota?. PLoS ONE 7:e51009 [Google Scholar]
  141. Wang WL, Welsh J, Tenniswood M. 140.  2013. 1,25-Dihydroxyvitamin D3 modulates lipid metabolism in prostate cancer cells through miRNA mediated regulation of PPARA. J. Steroid Biochem. Mol. Biol. 136:247–51 [Google Scholar]
  142. Wang X, Gocek E, Liu CG, Studzinski GP. 141.  2009. microRNAs181 regulate the expression of p27 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 8:736–41 [Google Scholar]
  143. Wang Y, Hu X, Greshock J, Shen L, Yang X. 142.  et al. 2012. Genomic DNA copy-number alterations of the let-7 family in human cancers. PLoS ONE 7:e44399 [Google Scholar]
  144. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. 143.  2013. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?. Arterioscler. Thromb. Vasc. Biol. 33:449–54 [Google Scholar]
  145. Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ. 144.  et al. 2009. Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of miRNAs in HepG2 cancer cells. Phytother. Res. 23:778–84 [Google Scholar]
  146. Witwer KW, McAlexander MA, Queen SE, Adams RJ. 145.  2013. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol. 10:1080–86 [Google Scholar]
  147. Wu N, Wu C, Hu R, Li M, Feng H. 146.  2011. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol. Sin. 32:345–53 [Google Scholar]
  148. Xia J, Duan Q, Ahmad A, Bao B, Banerjee S. 147.  et al. 2012. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr. Drug Targets 13:1750–56 [Google Scholar]
  149. Xie H, Lim B, Lodish HF. 148.  2009. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58:1050–57 [Google Scholar]
  150. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A. 149.  et al. 2013. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin. Chim. Acta 424:99–103 [Google Scholar]
  151. Yang J, Cao Y, Sun J, Zhang Y. 150.  2010. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol. 27:1114–18 [Google Scholar]
  152. Yang YM, Seo SY, Kim TH, Kim SG. 151.  2012. Decrease of miR-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology 56:2209–20 [Google Scholar]
  153. Zaman MS, Shahyrar V, Deng G, Thamminana S, Saini S. 152.  et al. 2012. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS ONE 7:e31060 [Google Scholar]
  154. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U. 153.  et al. 2010. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107:810–17 [Google Scholar]
  155. Zhang J, Du Y, Wu C, Ren X, Ti X. 154.  et al. 2010. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep. 24:1217–23 [Google Scholar]
  156. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR. 155.  et al. 2009. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478 [Google Scholar]
  157. Zhang L, Hou D, Chen X, Li D, Zhu L. 156.  et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22:107–26 [Google Scholar]
  158. Zhang MW, Jin MJ, Yu YX, Zhang SC, Liu B. 157.  et al. 2012. Associations of lifestyle-related factors, hsa-miR-149 and hsa-miR-605 gene polymorphisms with gastrointestinal cancer risk. Mol. Carcinog. 51:Suppl. 1E21–31 [Google Scholar]
  159. Zhao H, Guan J, Lee HM, Sui Y, He L. 158.  et al. 2010. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 39:843–46 [Google Scholar]
  160. Zhao JJ, Sun DG, Wang J, Liu SR, Zhang CY. 159.  et al. 2008. Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Child Nerv. Syst. 24:485–92 [Google Scholar]
  161. Zhong H, Wang H, Yang S, Zhong J, Wang T. 160.  et al. 2010. Targeting Smad4 links microRNA-146a to the TGF-β pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int. J. Hematol. 92:129–35 [Google Scholar]
  162. Zhong Z, Dong Z, Yang L, Chen X, Gong Z. 161.  2012. Inhibition of proliferation of human lung cancer cells by green tea catechins is mediated by upregulation of let-7. Exp. Ther. Med. 4:267–72 [Google Scholar]
  163. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J. 162.  et al. 2011. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol. Cancer Res. 9:960–75 [Google Scholar]
  164. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP. 163.  et al. 2011. The Lin28/let-7 axis regulates glucose metabolism. Cell 147:81–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error