Lipocalin 2 (Lcn2), an innate immune protein, has emerged as a critical iron regulatory protein during physiological and inflammatory conditions. As a bacteriostatic factor, Lcn2 obstructs the siderophore iron-acquiring strategy of bacteria and thus inhibits bacterial growth. As part of host nutritional immunity, Lcn2 facilitates systemic, cellular, and mucosal hypoferremia during inflammation, in addition to stabilizing the siderophore-bound labile iron pool. In this review, we summarize recent advances in understanding the interaction between Lcn2 and iron, and its effects in various inflammatory diseases. Lcn2 exerts mostly a protective role in infectious and inflammatory bowel diseases, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer. Further animal and clinical studies are necessary to unveil the multifaceted roles of Lcn2 in iron dysregulation during inflammation and to explore its therapeutic potential for treating inflammatory diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abella V, Scotece M, Conde J, Gomez R, Lois A. 1.  et al. 2015. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 20:565–71 [Google Scholar]
  2. Aigner E, Feldman A, Datz C. 2.  2014. Obesity as an emerging risk factor for iron deficiency. Nutrients 6:3587–600 [Google Scholar]
  3. Allred BE, Rupert PB, Gauny SS, An DD, Ralston CY. 3.  et al. 2015. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. PNAS 112:10342–47 [Google Scholar]
  4. Alpizar-Alpizar W, Laerum OD, Illemann M, Ramirez JA, Arias A. 4.  et al. 2009. Neutrophil gelatinase–associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with Helicobacter pylori. . Virchows Arch. 455:225–33 [Google Scholar]
  5. Amor S, Puentes F, Baker D, van der Valk P. 5.  2010. Inflammation in neurodegenerative diseases. Immunology 129:154–69 [Google Scholar]
  6. Ashraf MI, Schwelberger HG, Brendel KA, Feurle J, Andrassy J. 6.  et al. 2016. Exogenous lipocalin 2 ameliorates acute rejection in a mouse model of renal transplantation. Am. J. Transplant. 16:808–20 [Google Scholar]
  7. Axelsson L, Bergenfeldt M, Ohlsson K. 7.  1995. Studies of the release and turnover of a human neutrophil lipocalin. Scand. J. Clin. Lab. Investig. 55:577–88 [Google Scholar]
  8. Ayton S, Lei P, Hare DJ, Duce JA, George JL. 8.  et al. 2015. Parkinson's disease iron deposition caused by nitric oxide–induced loss of β-amyloid precursor protein. J. Neurosci. 35:3591–97 [Google Scholar]
  9. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. 9.  2012. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 3:e00224–11 [Google Scholar]
  10. Bachman MA, Miller VL, Weiser JN. 10.  2009. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLOS Pathog 5:e1000622 [Google Scholar]
  11. Bachman MA, Oyler JE, Burns SH, Caza M, Lepine F. 11.  et al. 2011. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect. Immun. 79:3309–16 [Google Scholar]
  12. Bailey RL, West KP Jr., Black RE. 12.  2015. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66:Suppl. 222–33 [Google Scholar]
  13. Bakhshandeh Z, Halabian R, Imani Fooladi AA, Jahanian-Najafabadi A, Jalili MA, Roudkenar MH. 13.  2014. Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. Hematology 19:487–92 [Google Scholar]
  14. Bao G, Clifton M, Hoette TM, Mori K, Deng SX. 14.  et al. 2010. Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex. Nat. Chem. Biol. 6:602–9 [Google Scholar]
  15. Bao GH, Xu J, Hu FL, Wan XC, Deng SX, Barasch J. 15.  2013. EGCG inhibit chemical reactivity of iron through forming an Ngal–EGCG–iron complex. BioMetals 26:1041–50 [Google Scholar]
  16. Barasch J, Hollmen M, Deng R, Hod EA, Rupert PB. 16.  et al. 2016. Disposal of iron by a mutant form of lipocalin 2. Nat. Commun. 7:12973 [Google Scholar]
  17. Barresi V, Ieni A, Bolignano D, Magno C, Buemi M, Barresi G. 17.  2010. Neutrophil gelatinase–associated lipocalin immunoexpression in renal tumors: correlation with histotype and histological grade. Oncol. Rep. 24:305–10 [Google Scholar]
  18. Beck G, Ellis TW, Habicht GS, Schluter SF, Marchalonis JJ. 18.  2002. Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev. Comp. Immunol. 26:11–26 [Google Scholar]
  19. Bellmann-Weiler R, Schroll A, Engl S, Nairz M, Talasz H. 19.  et al. 2013. Neutrophil gelatinase–associated lipocalin and interleukin-10 regulate intramacrophage Chlamydia pneumoniae replication by modulating intracellular iron homeostasis. Immunobiology 218:969–78 [Google Scholar]
  20. Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW. 20.  et al. 2012. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60:1145–59 [Google Scholar]
  21. Berger T, Cheung CC, Elia AJ, Mak TW. 21.  2010. Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. PNAS 107:2995–3000 [Google Scholar]
  22. Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A. 22.  et al. 2006. Lipocalin 2–deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. PNAS 103:1834–39 [Google Scholar]
  23. Bernardi RM, Constantino L, Machado RA, Vuolo F, Budni P. 23.  et al. 2012. N-acetylcysteine and deferrioxamine protects against acute renal failure induced by ischemia/reperfusion in rats. Rev. Bras. Ter. Intensiva 24:219–23 [Google Scholar]
  24. Bi F, Huang C, Tong J, Qiu G, Huang B. 24.  et al. 2013. Reactive astrocytes secrete lcn2 to promote neuron death. PNAS 110:4069–74 [Google Scholar]
  25. Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES. 25.  2012. The molecular mechanisms that promote edema after intracerebral hemorrhage. Transl. Stroke Res. 3:52–61 [Google Scholar]
  26. Borregaard N, Theilgaard-Monch K, Cowland JB, Stahle M, Sorensen OE. 26.  2005. Neutrophils and keratinocytes in innate immunity—cooperative actions to provide antimicrobial defense at the right time and place. J. Leukoc. Biol. 77:439–43 [Google Scholar]
  27. Bozzini C, Girelli D, Olivieri O, Martinelli N, Bassi A. 27.  et al. 2005. Prevalence of body iron excess in the metabolic syndrome. Diabetes Care 28:2061–63 [Google Scholar]
  28. Bratt T, Ohlson S, Borregaard N. 28.  1999. Interactions between neutrophil gelatinase–associated lipocalin and natural lipophilic ligands. Biochim. Biophys. Acta 1472:262–69 [Google Scholar]
  29. Cabedo Martinez AI, Weinhaupl K, Lee WK, Wolff NA, Storch B. 29.  et al. 2016. Biochemical and structural characterization of the interaction between the siderocalin NGAL/LCN2 (neutrophil gelatinase–associated lipocalin/lipocalin 2) and the N-terminal domain of its endocytic receptor SLC22A17. J. Biol. Chem. 291:2917–30 [Google Scholar]
  30. Cai L, Rubin J, Han W, Venge P, Xu S. 30.  2010. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 5:2229–35 [Google Scholar]
  31. Captain I, Deblonde GJ, Rupert PB, An DD, Illy MC. 31.  et al. 2016. Engineered recognition of tetravalent zirconium and thorium by chelator-protein systems: toward flexible radiotherapy and imaging platforms. Inorg. Chem. 55:11930–36 [Google Scholar]
  32. Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Rotellar F. 32.  et al. 2013. Six-transmembrane epithelial antigen of prostate 4 and neutrophil gelatinase–associated lipocalin expression in visceral adipose tissue is related to iron status and inflammation in human obesity. Eur. J. Nutr. 52:1587–95 [Google Scholar]
  33. Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Silva C. 33.  et al. 2009. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J. Mol. Med. 87:803–13 [Google Scholar]
  34. Chakraborty S, Kaur S, Guha S, Batra SK. 34.  2012. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 1826:129–69 [Google Scholar]
  35. Chan YK, Sung HK, Jahng JW, Kim GH, Han M, Sweeney G. 35.  2016. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells. Mol. Cell. Endocrinol. 430:68–76 [Google Scholar]
  36. Chassaing B, Srinivasan G, Delgado MA, Young AN, Gewirtz AT, Vijay-Kumar M. 36.  2012. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLOS ONE 7:e44328 [Google Scholar]
  37. Chia WJ, Dawe GS, Ong WY. 37.  2011. Expression and localization of the iron–siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem. Int. 59:591–99 [Google Scholar]
  38. Chien MH, Ying TH, Yang SF, Yu JK, Hsu CW. 38.  et al. 2012. Lipocalin-2 induces apoptosis in human hepatocellular carcinoma cells through activation of mitochondria pathways. Cell Biochem. Biophys. 64:177–86 [Google Scholar]
  39. Choi EK, Jung H, Kwak KH, Yi SJ, Lim JA. 39.  et al. 2017. Inhibition of oxidative stress in renal ischemia–reperfusion injury. Anesth. Analg. 124:204–13 [Google Scholar]
  40. Correnti C, Clifton MC, Abergel RJ, Allred B, Hoette TM. 40.  et al. 2011. Galline Ex-FABP is an antibacterial siderocalin and a lysophosphatidic acid sensor functioning through dual ligand specificities. Structure 19:1796–806 [Google Scholar]
  41. Correnti C, Richardson V, Sia AK, Bandaranayake AD, Ruiz M. 41.  et al. 2012. Siderocalin/Lcn2/NGAL/24p3 does not drive apoptosis through gentisic acid mediated iron withdrawal in hematopoietic cell lines. PLOS ONE 7:e43696 [Google Scholar]
  42. Correnti C, Strong RK. 42.  2012. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J. Biol. Chem. 287:13524–31 [Google Scholar]
  43. Cowland JB, Sorensen OE, Sehested M, Borregaard N. 43.  2003. Neutrophil gelatinase–associated lipocalin is up-regulated in human epithelial cells by IL-1β, but not by TNF-α. J. Immunol. 171:6630–39 [Google Scholar]
  44. Cramer EP, Glenthoj A, Hager M, Juncker-Jensen A, Engelholm LH. 44.  et al. 2012. No effect of NGAL/lipocalin-2 on aggressiveness of cancer in the MMTV-PyMT/FVB/N mouse model for breast cancer. PLOS ONE 7:e39646 [Google Scholar]
  45. Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M. 45.  et al. 2012. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta 1820:291–317 [Google Scholar]
  46. Davuluri G, Song P, Liu Z, Wald D, Sakaguchi TF. 46.  et al. 2016. Inactivation of 3-hydroxybutyrate dehydrogenase 2 delays zebrafish erythroid maturation by conferring premature mitophagy. PNAS 113:E1460–69 [Google Scholar]
  47. de Vries B, Walter SJ, von Bonsdorff L, Wolfs TG, van Heurn LW. 47.  et al. 2004. Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia–reperfusion injury. Transplantation 77:669–75 [Google Scholar]
  48. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ. 48.  et al. 2013. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37 [Google Scholar]
  49. Deryugina EI, Quigley JP. 49.  2006. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34 [Google Scholar]
  50. Deschemin JC, Vaulont S. 50.  2013. Role of hepcidin in the setting of hypoferremia during acute inflammation. PLOS ONE 8:e61050 [Google Scholar]
  51. Devireddy LR, Gazin C, Zhu X, Green MR. 51.  2005. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–305 [Google Scholar]
  52. Devireddy LR, Teodoro JG, Richard FA, Green MR. 52.  2001. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–34 [Google Scholar]
  53. Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ. 53.  et al. 1987. Increased nigral iron content in postmortem parkinsonian brain. Lancet 2:1219–20 [Google Scholar]
  54. Dong M, Xi G, Keep RF, Hua Y. 54.  2013. Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Res 1505:86–92 [Google Scholar]
  55. El-Hadidi H, Samir N, Shaker OG, Otb S. 55.  2014. Estimation of tissue and serum lipocalin-2 in psoriasis vulgaris and its relation to metabolic syndrome. Arch. Dermatol. Res. 306:239–45 [Google Scholar]
  56. El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C. 56.  et al. 2016. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat. Commun. 7:10330 [Google Scholar]
  57. Eyer F, Steimer W, Nitzsche T, Jung N, Neuberger H. 57.  et al. 2012. Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats. Toxicol. Appl. Pharmacol. 263:352–59 [Google Scholar]
  58. Fang WK, Xu LY, Lu XF, Liao LD, Cai WJ. 58.  et al. 2007. A novel alternative spliced variant of neutrophil gelatinas-e-associated lipocalin receptor in oesophageal carcinoma cells. Biochem. J. 403:297–303 [Google Scholar]
  59. Ferenbach DA, Kluth DC, Hughes J. 59.  2010. Hemeoxygenase-1 and renal ischaemia–reperfusion injury. Nephron Exp. Nephrol. 115:e33–37 [Google Scholar]
  60. Fischbach MA, Lin H, Liu DR, Walsh CT. 60.  2006. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2:132–38 [Google Scholar]
  61. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ. 61.  et al. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. PNAS 103:16502–7 [Google Scholar]
  62. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA. 62.  et al. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–21 [Google Scholar]
  63. Flower DR, North AC, Attwood TK. 63.  1991. Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochem. Biophys. Res. Commun. 180:69–74 [Google Scholar]
  64. Flower DR, North AC, Sansom CE. 64.  2000. The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482:9–24 [Google Scholar]
  65. Fonseca-Nunes A, Jakszyn P, Agudo A. 65.  2014. Iron and cancer risk—a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol. Biomark. Prev. 23:12–31 [Google Scholar]
  66. Friedlander NJ, Burhans MS, Ade L, O'Neill LM, Chen X, Ntambi JM. 66.  2014. Global deletion of lipocalin 2 does not reverse high-fat diet–induced obesity resistance in stearoyl-CoA desaturase-1 skin-specific knockout mice. Biochem. Biophys. Res. Commun. 445:578–83 [Google Scholar]
  67. Ganz T, Nemeth E. 67.  2012. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823:1434–43 [Google Scholar]
  68. Gebauer M, Schiefner A, Matschiner G, Skerra A. 68.  2013. Combinatorial design of an Anticalin directed against the extra-domain b for the specific targeting of oncofetal fibronectin. J. Mol. Biol. 425:780–802 [Google Scholar]
  69. Gebauer M, Skerra A. 69.  2012. Anticalins: small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol 503:157–88 [Google Scholar]
  70. Gerlach M, Ben-Shachar D, Riederer P, Youdim MB. 70.  1994. Altered brain metabolism of iron as a cause of neurodegenerative diseases?. J. Neurochem. 63:793–807 [Google Scholar]
  71. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. 71.  2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10:1033–43 [Google Scholar]
  72. Gregory A, Hayflick S. 72.  2014. Neurodegeneration with brain iron accumulation disorders overview. GeneReviews RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya et al. Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK121988/ [Google Scholar]
  73. Guglani L, Gopal R, Rangel-Moreno J, Junecko BF, Lin Y. 73.  et al. 2012. Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLOS ONE 7:e50052 [Google Scholar]
  74. Guida C, Altamura S, Klein FA, Galy B, Boutros M. 74.  et al. 2015. A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood 125:2265–75 [Google Scholar]
  75. Guo H, Jin D, Zhang Y, Wright W, Bazuine M. 75.  et al. 2010. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59:1376–85 [Google Scholar]
  76. Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X. 76.  et al. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–39 [Google Scholar]
  77. Hau CS, Kanda N, Tada Y, Shibata S, Uozaki H. 77.  et al. 2016. Lipocalin-2 exacerbates psoriasiform skin inflammation by augmenting T-helper 17 response. J. Dermatol. 43:785–94 [Google Scholar]
  78. Hider RC, Kong X. 78.  2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637–57 [Google Scholar]
  79. Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK. 79.  2005. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13:29–41 [Google Scholar]
  80. Horniblow RD, Latunde-Dada GO, Harding SE, Schneider M, Almutairi FM. 80.  et al. 2016. The chelation of colonic luminal iron by a unique sodium alginate for the improvement of gastrointestinal health. Mol. Nutr. Food Res. 60:2098–108 [Google Scholar]
  81. Horwitz LD, Sherman NA, Kong Y, Pike AW, Gobin J. 81.  et al. 1998. Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. PNAS 95:5263–68 [Google Scholar]
  82. Hraba-Renevey S, Turler H, Kress M, Salomon C, Weil R. 82.  1989. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene 4:601–8 [Google Scholar]
  83. Hsieh H, Morin J, Filliettaz C, Varada R, LaBarre S, Radi Z. 83.  2016. Fecal lipocalin-2 as a sensitive and noninvasive biomarker in the TNBS Crohn's inflammatory bowel disease model. Toxicol. Pathol. 44:1084–94 [Google Scholar]
  84. Hsing AW, McLaughlin JK, Olsen JH, Mellemkjar L, Wacholder S, Fraumeni JF Jr.. 84.  1995. Cancer risk following primary hemochromatosis: a population-based cohort study in Denmark. Int. J. Cancer 60:160–62 [Google Scholar]
  85. Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R. 85.  et al. 2009. NGAL decreases E-cadherin-mediated cell–cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab. Investig. 89:531–48 [Google Scholar]
  86. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. 86.  2005. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–77 [Google Scholar]
  87. Ikuse T, Ohtsuka Y, Kudo T, Hosoi K, Obayashi N. 87.  et al. 2012. Microarray analysis of gastric mucosa among children with Helicobacter pylori infection. Pediatr. Int. 54:319–24 [Google Scholar]
  88. Ip JP, Nocon AL, Hofer MJ, Lim SL, Muller M, Campbell IL. 88.  2011. Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J. Neuroinflammation 8:124 [Google Scholar]
  89. Johnson EE, Srikanth CV, Sandgren A, Harrington L, Trebicka E. 89.  et al. 2010. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages. FEMS Immunol. Med. Microbiol 58:138–45 [Google Scholar]
  90. Jun LS, Siddall CP, Rosen ED. 90.  2011. A minor role for lipocalin 2 in high-fat diet–induced glucose intolerance. Am. J. Physiol. Endocrinol. Metab. 301:E825–35 [Google Scholar]
  91. Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E. 91.  et al. 2012. Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int 81:969–82 [Google Scholar]
  92. Juurlink BH, Paterson PG. 92.  1998. Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J. Spinal Cord Med. 21:309–34 [Google Scholar]
  93. Kamata M, Tada Y, Tatsuta A, Kawashima T, Shibata S. 93.  et al. 2012. Serum lipocalin-2 levels are increased in patients with psoriasis. Clin. Exp. Dermatol. 37:296–99 [Google Scholar]
  94. Kamble PG, Pereira MJ, Sidibeh CO, Amini S, Sundbom M. 94.  et al. 2016. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue. Mol. Cell. Endocrinol. 427:124–32 [Google Scholar]
  95. Kang SS, Ren Y, Liu CC, Kurti A, Baker KE. 95.  et al. 2017. Lipocalin-2 protects the brain during inflammatory conditions. Mol. Psychiatry. In press. http://dx.doi.org/10.1038/mp.2016.243 [Crossref]
  96. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ. 96.  et al. 2003. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37:899–909 [Google Scholar]
  97. Khalil M, Renner A, Langkammer C, Enzinger C, Ropele S. 97.  et al. 2016. Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis. Mult. Scler. 22:1560–68 [Google Scholar]
  98. Kim BW, Jeong KH, Kim JH, Jin M, Kim JH. 98.  et al. 2016. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J. Neurosci. 36:5608–22 [Google Scholar]
  99. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. 99.  1993. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 268:10425–32 [Google Scholar]
  100. Kortman GA, Mulder ML, Richters TJ, Shanmugam NK, Trebicka E. 100.  et al. 2015. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens. Eur. J. Immunol. 45:2553–67 [Google Scholar]
  101. Law IK, Xu A, Lam KS, Berger T, Mak TW. 101.  et al. 2010. Lipocalin-2 deficiency attenuates insulin resistance with aging and obesity. Diabetes 59:872–82 [Google Scholar]
  102. Lee EK, Kim HJ, Lee KJ, Lee HJ, Lee JS. 102.  et al. 2011. Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int. J. Oncol. 38:325–33 [Google Scholar]
  103. Lee S, Lee WH, Lee MS, Mori K, Suk K. 103.  2012. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J. Neurosci. Res. 90:540–50 [Google Scholar]
  104. Lee S, Park JY, Lee WH, Kim H, Park HC. 104.  et al. 2009. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J. Neurosci. 29:234–49 [Google Scholar]
  105. Liu Q, Nilsen-Hamilton M. 105.  1995. Identification of a new acute phase protein. J. Biol. Chem. 270:22565–70 [Google Scholar]
  106. Liu Q, Ryon J, Nilsen-Hamilton M. 106.  1997. Uterocalin: a mouse acute phase protein expressed in the uterus around birth. Mol. Reprod. Dev. 46:507–14 [Google Scholar]
  107. Liu Z, Petersen R, Devireddy L. 107.  2013. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections. J. Immunol. 190:4692–706 [Google Scholar]
  108. Liu Z, Reba S, Chen WD, Porwal SK, Boom WH. 108.  et al. 2014. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J. Exp. Med. 211:1197–213 [Google Scholar]
  109. Logdberg L, Wester L. 109.  2000. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. Biochim. Biophys. Acta 1482:284–97 [Google Scholar]
  110. Loomis LD, Raymond KN. 110.  1991. Solution equilibria of enterobactin and metal–enterobactin complexes. Inorg. Chem. 30:906–11 [Google Scholar]
  111. Mao S, Xi G, Keep RF, Hua Y. 111.  2016. Role of lipocalin-2 in thrombin-induced brain injury. Stroke 47:1078–84 [Google Scholar]
  112. Marques F, Mesquita SD, Sousa JC, Coppola G, Gao F. 112.  et al. 2012. Lipocalin 2 is present in the EAE brain and is modulated by natalizumab. Front. Cell. Neurosci. 6:33 [Google Scholar]
  113. Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH. 113.  et al. 2008. Lipocalin 2 is a choroid plexus acute-phase protein. J. Cereb. Blood Flow Metab. 28:450–55 [Google Scholar]
  114. Martensson J, Xu S, Bell M, Martling CR, Venge P. 114.  2012. Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils. Clin. Chim. Acta 413:1661–67 [Google Scholar]
  115. Martines AM, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JF, Swinkels DW. 115.  2013. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 9:385–98 [Google Scholar]
  116. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT. 116.  2015. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105 [Google Scholar]
  117. Miao Q, Ku AT, Nishino Y, Howard JM, Rao AS. 117.  et al. 2014. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat. Commun. 5:4088 [Google Scholar]
  118. Miethke M, Skerra A. 118.  2010. Neutrophil gelatinase–associated lipocalin expresses antimicrobial activity by interfering with l-norepinephrine-mediated bacterial iron acquisition. Antimicrob. Agents Chemother. 54:1580–89 [Google Scholar]
  119. Mishra J, Mori K, Ma Q, Kelly C, Yang J. 119.  et al. 2004. Amelioration of ischemic acute renal injury by neutrophil gelatinase–associated lipocalin. J. Am. Soc. Nephrol. 15:3073–82 [Google Scholar]
  120. Miyamoto T, Kashima H, Yamada Y, Kobara H, Asaka R. 120.  et al. 2016. Lipocalin 2 enhances migration and resistance against cisplatin in endometrial carcinoma cells. PLOS ONE 11:e0155220 [Google Scholar]
  121. Moore C Jr., Ormseth M, Fuchs H. 121.  2013. Causes and significance of markedly elevated serum ferritin levels in an academic medical center. J. Clin. Rheumatol. 19:324–28 [Google Scholar]
  122. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K. 122.  et al. 2005. Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia–reperfusion injury. J. Clin. Investig. 115:610–21 [Google Scholar]
  123. Mori K, Suzuki T, Minamishima S, Igarashi T, Inoue K. 123.  et al. 2016. Neutrophil gelatinase–associated lipocalin regulates gut microbiota of mice. J. Gastroenterol. Hepatol. 31:145–54 [Google Scholar]
  124. Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE. 124.  et al. 2016. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19:455–69 [Google Scholar]
  125. Nairz M, Schroll A, Haschka D, Dichtl S, Sonnweber T. 125.  et al. 2015. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response. Eur. J. Immunol. 45:3073–86 [Google Scholar]
  126. Nairz M, Theurl I, Schroll A, Theurl M, Fritsche G. 126.  et al. 2009. Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114:3642–51 [Google Scholar]
  127. Nam Y, Kim JH, Seo M, Kim JH, Jin M. 127.  et al. 2014. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J. Biol. Chem. 289:16773–89 [Google Scholar]
  128. Nelson AL, Ratner AJ, Barasch J, Weiser JN. 128.  2007. Interleukin-8 secretion in response to aferric enterobactin is potentiated by siderocalin. Infect. Immun. 75:3160–68 [Google Scholar]
  129. Ni W, Zheng M, Xi G, Keep RF, Hua Y. 129.  2015. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 35:1454–61 [Google Scholar]
  130. Nickolas TL, Forster CS, Sise ME, Barasch N, Sola-Del Valle D. 130.  et al. 2012. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease. Kidney Int 82:718–22 [Google Scholar]
  131. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L. 131.  1996. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38:414–20 [Google Scholar]
  132. Nielsen OH, Ainsworth M, Coskun M, Weiss G. 132.  2015. Management of iron-deficiency anemia in inflammatory bowel disease: a systematic review. Medicine 94:e963 [Google Scholar]
  133. Oppenheimer SJ. 133.  2001. Iron and its relation to immunity and infectious disease. J. Nutr. 131:616S–33S; discussion 33S–35S [Google Scholar]
  134. Papanikolaou G, Pantopoulos K. 134.  2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202:199–211 [Google Scholar]
  135. Pawar RD, Pitashny M, Gindea S, Tieng AT, Levine B. 135.  et al. 2012. Neutrophil gelatinase–associated lipocalin is instrumental in the pathogenesis of antibody-mediated nephritis in mice. Arthritis Rheum 64:1620–31 [Google Scholar]
  136. Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr., Kute T. 136.  et al. 2010. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2:43ra56 [Google Scholar]
  137. Playford RJ, Belo A, Poulsom R, Fitzgerald AJ, Harris K. 137.  et al. 2006. Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase–associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology 131:809–17 [Google Scholar]
  138. Porwal SK, Furia E, Harris ME, Viswanathan R, Devireddy L. 138.  2015. Synthetic, potentiometric and spectroscopic studies of chelation between FeIII and 2,5-DHBA supports salicylate-mode of siderophore binding interactions. J. Inorg. Biochem. 145:1–10 [Google Scholar]
  139. Posey JE, Gherardini FC. 139.  2000. Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–53 [Google Scholar]
  140. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP. 140.  et al. 2009. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–86 [Google Scholar]
  141. Rametta R, Dongiovanni P, Pelusi S, Francione P, Iuculano F. 141.  et al. 2016. Hepcidin resistance in dysmetabolic iron overload. Liver Int 36:1540–48 [Google Scholar]
  142. Rathore KI, Berard JL, Redensek A, Chierzi S, Lopez-Vales R. 142.  et al. 2011. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J. Neurosci. 31:13412–19 [Google Scholar]
  143. Reilly PT, Teo WL, Low MJ, Amoyo-Brion AA, Dominguez-Brauer C. 143.  et al. 2013. Lipocalin 2 performs contrasting, location-dependent roles in APCmin tumor initiation and progression. Oncogene 32:1233–39 [Google Scholar]
  144. Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. 144.  2009. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim. Biophys. Acta 1790:702–17 [Google Scholar]
  145. Richter A, Skerra A. 145.  2017. Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol. Chem. 398:39–55 [Google Scholar]
  146. Robinson KM, McHugh KJ, Mandalapu S, Clay ME, Lee B. 146.  et al. 2014. Influenza A virus exacerbates Staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J. Infect. Dis. 209:865–75 [Google Scholar]
  147. Rodvold JJ, Mahadevan NR, Zanetti M. 147.  2012. Lipocalin 2 in cancer: when good immunity goes bad. Cancer Lett 316:132–38 [Google Scholar]
  148. Romani J, Caixas A, Ceperuelo-Mallafre V, Carrascosa JM, Ribera M. 148.  et al. 2013. Circulating levels of lipocalin-2 and retinol-binding protein-4 are increased in psoriatic patients and correlated with baseline PASI. Arch. Dermatol. Res. 305:105–12 [Google Scholar]
  149. Rouault TA. 149.  2013. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat. Rev. Neurosci. 14:551–64 [Google Scholar]
  150. Saha P, Singh V, Xiao X, Yeoh BS, Vijay-Kumar M. 150.  2016. Data on importance of hematopoietic cell derived Lipocalin 2 against gut inflammation. Data Brief 8:812–16 [Google Scholar]
  151. Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S. 151.  et al. 2008. Lipocalin 2–dependent inhibition of mycobacterial growth in alveolar epithelium. J. Immunol. 181:8521–27 [Google Scholar]
  152. Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT. 152.  et al. 2016. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–83 [Google Scholar]
  153. Schlehuber S, Skerra A. 153.  2002. Tuning ligand affinity, specificity, and folding stability of an engineered lipocalin variant—a so-called ‘anticalin’—using a molecular random approach. Biophys. Chem. 96:213–28 [Google Scholar]
  154. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ. 154.  et al. 2007. Dual action of neutrophil gelatinase–associated lipocalin. J. Am. Soc. Nephrol. 18:407–13 [Google Scholar]
  155. Schroll A, Eller K, Feistritzer C, Nairz M, Sonnweber T. 155.  et al. 2012. Lipocalin-2 ameliorates granulocyte functionality. Eur. J. Immunol. 42:3346–57 [Google Scholar]
  156. Schultz M. 156.  2008. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm. . Bowel Dis. 14:1012–18 [Google Scholar]
  157. Searle LJ, Meric G, Porcelli I, Sheppard SK, Lucchini S. 157.  2015. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli. PLOS ONE 10:e0117906 [Google Scholar]
  158. Shao S, Cao T, Jin L, Li B, Fang H. 158.  et al. 2016. Increased lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J. Investig. Dermatol. 136:1418–28 [Google Scholar]
  159. Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP. 159.  2016. Human metabolome–derived cofactors are required for the antibacterial activity of siderocalin in urine. J. Biol. Chem. 291:25901–10 [Google Scholar]
  160. Shiratori-Hayashi M, Koga K, Tozaki-Saitoh H, Kohro Y, Toyonaga H. 160.  et al. 2015. STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat. Med. 21:927–31 [Google Scholar]
  161. Singh V, Yeoh BS, Chassaing B, Zhang B, Saha P. 161.  et al. 2016. Microbiota-inducible innate immune, siderophore binding protein lipocalin 2 is critical for intestinal homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2:482–98.e6 [Google Scholar]
  162. Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M. 162.  et al. 2015. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E.coli survival in the inflamed gut. Nat. Commun. 6:7113 [Google Scholar]
  163. Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. 163.  2003. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170:5583–89 [Google Scholar]
  164. Sponsel HT, Alfrey AC, Hammond WS, Durr JA, Ray C, Anderson RJ. 164.  1996. Effect of iron on renal tubular epithelial cells. Kidney Int 50:436–44 [Google Scholar]
  165. Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B. 165.  et al. 2012. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J. Immunol. 189:1911–19 [Google Scholar]
  166. Stecher B, Maier L, Hardt WD. 166.  2013. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11:277–84 [Google Scholar]
  167. Steigedal M, Marstad A, Haug M, Damas JK, Strong RK. 167.  et al. 2014. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J. Immunol. 193:6081–89 [Google Scholar]
  168. Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS. 168.  1994. Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int. J. Cancer 56:364–69 [Google Scholar]
  169. Stevens RG, Jones DY, Micozzi MS, Taylor PR. 169.  1988. Body iron stores and the risk of cancer. N. Engl. J. Med. 319:1047–52 [Google Scholar]
  170. Su Q, Guan T, He Y, Lv H. 170.  2016. Siderophore biosynthesis governs the virulence of uropathogenic Escherichia coli by coordinately modulating the differential metabolism. J. Proteome Res. 15:1323–32 [Google Scholar]
  171. Thiery JP. 171.  2002. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2:442–54 [Google Scholar]
  172. Thorsvik S, Damas JK, van Beelen Granlund A, Flo TH, Bergh K. 172.  et al. 2017. Fecal neutrophil gelatinase associated lipocalin as a biomarker for inflammatory bowel disease. J. Gastroenterol. Hepatol. 32:128–35 [Google Scholar]
  173. Tong Z, Wu X, Kehrer JP. 173.  2003. Increased expression of the lipocalin 24p3 as an apoptotic mechanism for MK886. Biochem. J. 372:203–10 [Google Scholar]
  174. Tong Z, Wu X, Ovcharenko D, Zhu J, Chen CS, Kehrer JP. 174.  2005. Neutrophil gelatinase–associated lipocalin as a survival factor. Biochem. J. 391:441–48 [Google Scholar]
  175. Torti SV, Torti FM. 175.  2013. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13:342–55 [Google Scholar]
  176. Toyonaga T, Matsuura M, Mori K, Honzawa Y, Minami N. 176.  et al. 2016. Lipocalin 2 prevents intestinal inflammation by enhancing phagocytic bacterial clearance in macrophages. Sci. Rep. 6:35014 [Google Scholar]
  177. Triebel S, Blaser J, Reinke H, Tschesche H. 177.  1992. A 25 kDa α2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–88 [Google Scholar]
  178. Tung MC, Hsieh SC, Yang SF, Cheng CW, Tsai RT. 178.  et al. 2013. Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells. Prostate 73:1281–90 [Google Scholar]
  179. Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C. 179.  et al. 2010. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Investig. 120:4065–76 [Google Scholar]
  180. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S. 180.  et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–31 [Google Scholar]
  181. Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD. 181.  et al. 2007. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Investig. 117:3909–21 [Google Scholar]
  182. Vijay-Kumar M, Wu H, Aitken J, Kolachala VL, Neish AS. 182.  et al. 2007. Activation of Toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm. Bowel Dis. 13:856–64 [Google Scholar]
  183. Vijay-Kumar M, Wu H, Jones R, Grant G, Babbin B. 183.  et al. 2006. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am. J. Pathol. 169:1686–700 [Google Scholar]
  184. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J. 184.  et al. 2007. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 53:34–41 [Google Scholar]
  185. Ward RJ, Dexter DT, Crichton RR. 185.  2015. Ageing, neuroinflammation and neurodegeneration. Front. Biosci. 7:189–204 [Google Scholar]
  186. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. 186.  2014. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–60 [Google Scholar]
  187. Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B. 187.  et al. 2013. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J. Clin. Investig. 123:3363–72 [Google Scholar]
  188. Weinberg ED. 188.  1997. The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med. 40:578–83 [Google Scholar]
  189. Wu H, Santoni-Rugiu E, Ralfkiaer E, Porse BT, Moser C. 189.  et al. 2010. Lipocalin 2 is protective against E.coli pneumonia. Respir. Res. 11:96 [Google Scholar]
  190. Wu L, Du Y, Lok J, Lo EH, Xing C. 190.  2015. Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms. J. Neurochem. 132:622–28 [Google Scholar]
  191. Xiao X, Yeoh BS, Saha P, Olvera RA, Singh V, Vijay-Kumar M. 191.  2016. Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation. BioMetals 29:451–65 [Google Scholar]
  192. Xiao X, Yeoh BS, Saha P, Tian Y, Singh V. 192.  et al. 2016. Modulation of urinary siderophores by the diet, gut microbiota and inflammation in mice. J. Nutr. Biochem. 41:25–33 [Google Scholar]
  193. Xing C, Wang X, Cheng C, Montaner J, Mandeville E. 193.  et al. 2014. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45:2085–92 [Google Scholar]
  194. Xu M, Zhang Y, Cheng H, Liu Y, Zou X. 194.  et al. 2016. Transcription factor 7–like 1 dysregulates keratinocyte differentiation through upregulating lipocalin 2. Cell Death Discov 2:16028 [Google Scholar]
  195. Xu SY, Carlson M, Engstrom A, Garcia R, Peterson CG, Venge P. 195.  1994. Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand. J. Clin. Lab. Investig. 54:365–76 [Google Scholar]
  196. Yan L, Borregaard N, Kjeldsen L, Moses MA. 196.  2001. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase–associated lipocalin (NGAL): modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276:37258–65 [Google Scholar]
  197. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH. 197.  et al. 2007. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–40 [Google Scholar]
  198. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC. 198.  et al. 2009. Lipocalin 2 promotes breast cancer progression. PNAS 106:3913–18 [Google Scholar]
  199. Yang J, Goetz D, Li JY, Wang W, Mori K. 199.  et al. 2002. An iron delivery pathway mediated by a lipocalin. Mol. Cell 10:1045–56 [Google Scholar]
  200. Yeoh BS, Aguilera Olvera R, Singh V, Xiao X, Kennett MJ. 200.  et al. 2016. Epigallocatechin-3-gallate Inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation. Am. J. Pathol. 186:912–26 [Google Scholar]
  201. Zager RA, Burkhart K. 201.  1997. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport. Kidney Int 51:728–38 [Google Scholar]
  202. Zawadzka AM, Kim Y, Maltseva N, Nichiporuk R, Fan Y. 202.  et al. 2009. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. PNAS 106:21854–59 [Google Scholar]
  203. Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X. 203.  2008. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22:1416–26 [Google Scholar]
  204. Zhao H, Konishi A, Fujita Y, Yagi M, Ohata K. 204.  et al. 2012. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism. Cell Host Microbe 12:705–16 [Google Scholar]
  205. Zhao J, Chen H, Zhang M, Zhang Y, Qian C. 205.  et al. 2016. Early expression of serum neutrophil gelatinase–associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J. Neurol. Sci. 368:392–98 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error