The discovery of fibroblast growth factor 23 (FGF23) has provided a more complete understanding of the regulation of phosphate and mineral homeostasis in health and in chronic kidney disease. It has also offered new insights into stratification of risk of cardiovascular events and death among patients with chronic kidney disease and the general population. In this review, we provide an overview of FGF23 biology and physiology, summarize clinical outcomes that have been associated with FGF23, discuss potential mechanisms for these observations and their public health implications, and explore clinical and population health interventions that aim to reduce FGF23 levels and improve public health.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agarwal I, Ide N, Ix JH, Kestenbaum B, Lanske B. 1.  et al. 2014. Fibroblast growth factor-23 and cardiac structure and function. J. Am. Heart Assoc. 3:e000584 [Google Scholar]
  2. Alonso A, Misialek JR, Eckfeldt JH, Selvin E, Coresh J. 2.  et al. 2014. Circulating fibroblast growth factor-23 and the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities study. J. Am. Heart Assoc. 3:e001082 [Google Scholar]
  3. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V. 3.  et al. 2014. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6:744–59 [Google Scholar]
  4. Antoniucci DM, Yamashita T, Portale AA. 4.  2006. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91:3144–49 [Google Scholar]
  5. Arnlov J, Carlsson AC, Sundstrom J, Ingelsson E, Larsson A. 5.  et al. 2013. Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int 83:160–66 [Google Scholar]
  6. Baia LC, Humalda JK, Vervloet MG, Navis G, Bakker SJ, de Borst MH. 6.  2013. Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin. J. Am. Soc. Nephrol. 8:1968–78 [Google Scholar]
  7. Benini O, D'Alessandro C, Gianfaldoni D, Cupisti A. 7.  2011. Extra-phosphate load from food additives in commonly eaten foods: A real and insidious danger for renal patients. J. Ren. Nutr. 21:303–8 [Google Scholar]
  8. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M. 8.  et al. 2012. Effects of phosphate binders in moderate CKD. J. Am. Soc. Nephrol. 23:1407–15 [Google Scholar]
  9. Bouma-de Krijger A, Bots ML, Vervloet MG, Blankestijn PJ, Ter Wee PW. 9.  et al. 2014. Time-averaged level of fibroblast growth factor-23 and clinical events in chronic kidney disease. Nephrol. Dial. Transplant. 29:88–97 [Google Scholar]
  10. Bower KM, Thorpe RJ Jr., Rohde C, Gaskin DJ. 10.  2014. The intersection of neighborhood racial segregation, poverty, and urbanicity and its impact on food store availability in the United States. Prev. Med. 58:33–39 [Google Scholar]
  11. Brandenburg VM, Kleber ME, Vervloet MG, Tomaschitz A, Pilz S. 11.  et al. 2014. Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen Risk and Cardiovascular Health study. Atherosclerosis 237:53–59 [Google Scholar]
  12. Brown JR, Katz R, Ix JH, de Boer IH, Siscovick DS. 12.  et al. 2014. Fibroblast growth factor-23 and the long-term risk of hospital-associated AKI among community-dwelling older individuals. Clin. J. Am. Soc. Nephrol. 9:239–46 [Google Scholar]
  13. Calvo MS. 13.  2000. Dietary considerations to prevent loss of bone and renal function. Nutrition 16:564–66 [Google Scholar]
  14. Chang AR, Anderson C. 14.  2017. Dietary phosphorus intake and the kidney. Annu. Rev. Nutr. 37:321–46 [Google Scholar]
  15. Chertow GM, Pupim LB, Block GA, Correa-Rotter R, Drueke TB. 15.  et al. 2007. Evaluation of Cinacalcet therapy to lower cardiovascular events (EVOLVE): rationale and design overview. Clin. J. Am. Soc. Nephrol. 2:898–905 [Google Scholar]
  16. Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. 16.  2016. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J. Am. Soc. Nephrol. 27:227–37 [Google Scholar]
  17. Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA. 17.  et al. 2013. Cardiovascular effects of sevelamer in stage 3 CKD. J. Am. Soc. Nephrol. 24:842–52 [Google Scholar]
  18. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW. 18.  et al. 2007. Prevalence of chronic kidney disease in the United States. JAMA 298:2038–47 [Google Scholar]
  19. Craver L, Marco MP, Martínez I, Rue M, Borràs M. 19.  et al. 2007. Mineral metabolism parameters throughout chronic kidney disease stages 1–5–achievement of K/DOQI target ranges. Nephrol. Dial. Transplant. 22:1171–76 [Google Scholar]
  20. Crews DC, Liu Y, Boulware LE. 20.  2014. Disparities in the burden, outcomes, and care of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 23:298–305 [Google Scholar]
  21. Dai B, David V, Martin A, Huang J, Li H. 21.  et al. 2012. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLOS ONE 7:e44161 [Google Scholar]
  22. David V, Martin A, Isakova T, Spaulding C, Qi L. 22.  et al. 2016. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89:135–46 [Google Scholar]
  23. de Borst MH, Vervloet MG, ter Wee PM, Navis G. 23.  2011. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J. Am. Soc. Nephrol. 22:1603–9 [Google Scholar]
  24. Deo R, Katz R, de Boer IH, Sotoodehnia N, Kestenbaum B. 24.  et al. 2015. Fibroblast growth factor 23 and sudden versus non-sudden cardiac death: the Cardiovascular Health Study. Am. J. Kidney Dis. 66:40–46 [Google Scholar]
  25. Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L. 25.  et al. 2012. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin. J. Am. Soc. Nephrol. 7:581–87 [Google Scholar]
  26. Drewnowski A, Darmon N. 26.  2005. Food choices and diet costs: an economic analysis. J. Nutr. 135:900–4 [Google Scholar]
  27. Eckberg K, Kramer H, Wolf M, Durazo-Arvizu R, Tayo B. 27.  et al. 2015. Impact of westernization on fibroblast growth factor 23 levels among individuals of African ancestry. Nephrol. Dial. Transplant. 30:630–35 [Google Scholar]
  28. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC. 28.  et al. 2011. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. PNAS 108:E1146–55 [Google Scholar]
  29. Faul C. 29.  2016. Cardiac actions of fibroblast growth factor 23. Bone 100:69–79 [Google Scholar]
  30. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A. 30.  et al. 2011. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 121:4393–408 [Google Scholar]
  31. Ferrari SL, Bonjour JP, Rizzoli R. 31.  2005. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90:1519–24 [Google Scholar]
  32. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K. 32.  et al. 2007. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) study. J. Am. Soc. Nephrol. 18:2600–8 [Google Scholar]
  33. Franco M, Diez-Roux AV, Nettleton JA, Lazo M, Brancati F. 33.  et al. 2009. Availability of healthy foods and dietary patterns: the Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 89:897–904 [Google Scholar]
  34. Fyfe-Johnson AL, Alonso A, Selvin E, Bower JK, Pankow JS. 34.  et al. 2016. Serum fibroblast growth factor-23 and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) study. J. Hypertens. 34:1266–72 [Google Scholar]
  35. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. 35.  2010. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 77:211–18 [Google Scholar]
  36. Garimella PS, Ix JH, Katz R, Chonchol MB, Kestenbaum BR. 36.  et al. 2014. Fibroblast growth factor 23, the ankle-brachial index, and incident peripheral artery disease in the Cardiovascular Health Study. Atherosclerosis 233:91–96 [Google Scholar]
  37. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. 37.  2004. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351:1296–305 [Google Scholar]
  38. Gonzalez-Parra E, Gonzalez-Casaus ML, Galan A, Martinez-Calero A, Navas V. 38.  et al. 2011. Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients. Nephrol. Dial. Transplant. 26:2567–71 [Google Scholar]
  39. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A. 39.  et al. 2015. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–32 [Google Scholar]
  40. Gradman AH, Alfayoumi F. 40.  2006. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog. Cardiovasc. Dis. 48:326–41 [Google Scholar]
  41. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J. 41.  et al. 2005. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16:2205–15 [Google Scholar]
  42. Gutiérrez OM. 42.  2015. Contextual poverty, nutrition, and chronic kidney disease. Adv. Chronic Kidney Dis. 22:31–38 [Google Scholar]
  43. Gutiérrez OM. 43.  2016. Fibroblast growth factor 23 and heart failure: the plot thickens. Nephrol. Dial. Transplant. 31:688–90 [Google Scholar]
  44. Gutiérrez OM, Anderson C, Isakova T, Scialla J, Negrea L. 44.  et al. 2010. Low socioeconomic status associates with higher serum phosphate irrespective of race. J. Am. Soc. Nephrol. 21:1953–60 [Google Scholar]
  45. Gutiérrez OM, Isakova T, Enfield G, Wolf M. 45.  2011. Impact of poverty on serum phosphate concentrations in the Third National Health and Nutrition Examination Survey. J. Ren. Nutr. 21:140–48 [Google Scholar]
  46. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K. 46.  et al. 2009. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–52 [Google Scholar]
  47. Gutiérrez OM, Luzuriaga-McPherson A, Lin Y, Gilbert LC, Ha SW, Beck GR Jr. 47.  2015. Impact of phosphorus-based food additives on bone and mineral metabolism. J. Clin. Endocrinol. Metab. 100:4264–71 [Google Scholar]
  48. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H. 48.  et al. 2008. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359:584–92 [Google Scholar]
  49. Gutiérrez OM, Parsa A, Isakova T, Scialla JJ, Chen J. 49.  et al. 2016. Genetic African ancestry and markers of mineral metabolism in CKD. Clin. J. Am. Soc. Nephrol. 11:653–62 [Google Scholar]
  50. Gutiérrez OM, Wolf M, Taylor EN. 50.  2011. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin. J. Am. Soc. Nephrol. 6:2871–78 [Google Scholar]
  51. Haring R, Enserro D, Xanthakis V, Mitchell GF, Benjamin EJ. 51.  et al. 2016. Plasma fibroblast growth factor 23: clinical correlates and association with cardiovascular disease and mortality in the Framingham Heart Study. J. Am. Heart Assoc. pii:e003486 [Google Scholar]
  52. Himmelfarb J, Ikizler TA. 52.  2010. Hemodialysis. N. Engl. J. Med. 363:1833–45 [Google Scholar]
  53. Houston J, Isakova T, Wolf M. 53.  2013. Phosphate metabolism and fibroblast growth factor 23 in chronic kidney disease. Nutritional Management of Renal Disease JD Kopple, SG Massry, K Kalantar-Zadeh 285–308 London: Academic [Google Scholar]
  54. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. 54.  2008. Hyperphosphatemia of chronic kidney disease. Kidney Int 74:148–57 [Google Scholar]
  55. Hsu JJ, Katz R, Ix JH, de Boer IH, Kestenbaum B, Shlipak MG. 55.  2014. Association of fibroblast growth factor-23 with arterial stiffness in the Multi-Ethnic Study of Atherosclerosis. Nephrol. Dial. Transplant. 29:2099–105 [Google Scholar]
  56. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G. 56.  et al. 2013. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin. J. Am. Soc. Nephrol. 8:1009–18 [Google Scholar]
  57. Isakova T, Craven TE, Lee J, Scialla JJ, Xie H. 57.  et al. 2015. Fibroblast growth factor 23 and incident CKD in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 10:29–38 [Google Scholar]
  58. Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK. 58.  et al. 2011. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26:584–91 [Google Scholar]
  59. Isakova T, Gutiérrez OM, Wolf M. 59.  2009. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int 76:705–16 [Google Scholar]
  60. Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L. 60.  et al. 2015. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J. Am. Soc. Nephrol. 26:2328–39 [Google Scholar]
  61. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J. 61.  et al. 2011. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–78 [Google Scholar]
  62. Isakova T, Wolf MS. 62.  2010. FGF23 or PTH: Which comes first in CKD?. Kidney Int 78:947–49 [Google Scholar]
  63. Isakova T, Xie H, Yang W, Xie D, Anderson AH. 63.  et al. 2011. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–39 [Google Scholar]
  64. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H. 64.  et al. 2007. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25:419–22 [Google Scholar]
  65. Itoh N, Ornitz DM. 65.  2004. Evolution of the Fgf and Fgfr gene families. Trends Genet. 20:563–69 [Google Scholar]
  66. Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M. 66.  et al. 2012. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 60:200–7 [Google Scholar]
  67. Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C. 67.  et al. 2009. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol. Dial. Transplant. 24:2792–96 [Google Scholar]
  68. Jovanovich A, Ix JH, Gottdiener J, McFann K, Katz R. 68.  et al. 2013. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community-dwelling older adults. Atherosclerosis 231:114–19 [Google Scholar]
  69. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R. 69.  et al. 2010. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5:519–30 [Google Scholar]
  70. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL. 70.  et al. 2011. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 22:1913–22 [Google Scholar]
  71. Kestenbaum B, Sachs MC, Hoofnagle AN, Siscovick DS, Ix JH. 71.  et al. 2014. Fibroblast growth factor-23 and cardiovascular disease in the general population: the Multi-Ethnic Study of Atherosclerosis. Circ. Heart Fail 7:409–17 [Google Scholar]
  72. Khan AM, Chirinos JA, Litt H, Yang W, Rosas SE. 72.  2012. FGF-23 and the progression of coronary arterial calcification in patients new to dialysis. Clin. J. Am. Soc. Nephrol. 7:2017–22 [Google Scholar]
  73. Kim HJ, Kim H, Shin N, Na KY, Kim YL. 73.  et al. 2013. Cinacalcet lowering of serum fibroblast growth factor-23 concentration may be independent from serum Ca, P, PTH and dose of active vitamin D in peritoneal dialysis patients: a randomized controlled study. BMC Nephrol 14:112 [Google Scholar]
  74. Komaba H, Goto S, Fujii H, Hamada Y, Kobayashi A. 74.  et al. 2010. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 77:232–38 [Google Scholar]
  75. Labonte ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J. 75.  et al. 2015. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J. Am. Soc. Nephrol. 26:1138–49 [Google Scholar]
  76. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. 76.  2010. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal. Physiol. 299:F882–89 [Google Scholar]
  77. Layman DK. 77.  2009. Dietary guidelines should reflect new understandings about adult protein needs. Nutr. Metab. (Lond.) 6:12 [Google Scholar]
  78. Leaf DE, Christov M, Jüppner H, Siew E, Ikizler TA. 78.  et al. 2016. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int 89:939–48 [Google Scholar]
  79. Leaf DE, Wolf M, Waikar SS, Chase H, Christov M. 79.  et al. 2012. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin. J. Am. Soc. Nephrol. 7:1217–23 [Google Scholar]
  80. Leifheit-Nestler M, Grosse Siemer R, Flasbart K, Richter B, Kirchhoff F. 80.  et al. 2016. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant. 31:1088–99 [Google Scholar]
  81. Leon JB, Sullivan CM, Sehgal AR. 81.  2013. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores. J. Ren. Nutr. 23:265–70.e2 [Google Scholar]
  82. Leung CW, Epel ES, Ritchie LD, Crawford PB, Laraia BA. 82.  2014. Food insecurity is inversely associated with diet quality of lower-income adults. J. Acad. Nutr. Diet. 114:1943–53.e2 [Google Scholar]
  83. Liu S, Quarles LD. 83.  2007. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 18:1637–47 [Google Scholar]
  84. López I, Rodríguez-Ortiz ME, Almadén Y, Guerrero F, de Oca AM. 84.  et al. 2011. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 80:475–82 [Google Scholar]
  85. Lundberg S, Qureshi AR, Olivecrona S, Gunnarsson I, Jacobson SH, Larsson TE. 85.  2012. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin. J. Am. Soc. Nephrol. 7:727–34 [Google Scholar]
  86. Lutsey PL, Alonso A, Selvin E, Pankow JS, Michos ED. 86.  et al. 2014. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the Atherosclerosis Risk in Communities study. J. Am. Heart Assoc. 3:e000936 [Google Scholar]
  87. Mace ML, Gravesen E, Hofman-Bang J, Olgaard K, Lewin E. 87.  2015. Key role of the kidney in the regulation of fibroblast growth factor 23. Kidney Int 88:1304–13 [Google Scholar]
  88. Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR. 88.  et al. 2014. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 130:298–307 [Google Scholar]
  89. Mehta R, Cai X, Lee J, Scialla JJ, Bansal N. 89.  et al. 2016. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol 1:548–56 [Google Scholar]
  90. Mensah GA, Mokdad AH, Ford ES, Greenlund KJ, Croft JB. 90.  2005. State of disparities in cardiovascular health in the United States. Circulation 111:1233–41 [Google Scholar]
  91. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. 91.  2009. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207:546–51 [Google Scholar]
  92. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA. 92.  et al. 2015. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation 132:27–39 [Google Scholar]
  93. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS. 93.  et al. 2011. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6:257–64 [Google Scholar]
  94. Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR Jr. 94.  2008. Associations of the local food environment with diet quality–a comparison of assessments based on surveys and geographic information systems: the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 167:917–24 [Google Scholar]
  95. Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR, Franco M. 95.  2009. Fast-food consumption, diet quality, and neighborhood exposure to fast food: the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 170:29–36 [Google Scholar]
  96. Moorthi RN, Armstrong CL, Janda K, Ponsler-Sipes K, Asplin JR, Moe SM. 96.  2014. The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease. Am. J. Nephrol. 40:582–91 [Google Scholar]
  97. Moser M, White K, Henry B, Oh S, Miller ER. 97.  et al. 2015. Phosphorus content of popular beverages. Am. J. Kidney Dis. 65:969–71 [Google Scholar]
  98. Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD. 98.  et al. 2012. Fibroblast growth factor 23 and inflammation in CKD. Clin. J. Am. Soc. Nephrol. 7:1155–62 [Google Scholar]
  99. Nakano C, Hamano T, Fujii N, Obi Y, Matsui I. 99.  et al. 2012. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone 50:1266–74 [Google Scholar]
  100. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A. 100.  et al. 2006. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70:2141–47 [Google Scholar]
  101. Nomura K, Tatsumi S, Miyagawa A, Shiozaki Y, Sasaki S. 101.  et al. 2014. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis. J. Am. Soc. Nephrol. 25:761–72 [Google Scholar]
  102. Ornitz DM, Itoh N. 102.  2015. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4:215–66 [Google Scholar]
  103. Ozkok A, Kekik C, Karahan GE, Sakaci T, Ozel A. 103.  et al. 2013. FGF-23 associated with the progression of coronary artery calcification in hemodialysis patients. BMC Nephrol 14:241 [Google Scholar]
  104. Panwar B, Jenny NS, Howard VJ, Wadley VG, Muntner P. 104.  et al. 2015. Fibroblast growth factor 23 and risk of incident stroke in community-living adults. Stroke 46:322–28 [Google Scholar]
  105. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C. 105.  et al. 2010. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann. Intern. Med. 152:640–48 [Google Scholar]
  106. Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H. 106.  et al. 2016. Fibroblast growth factor 23 and risk of CKD progression in children. Clin. J. Am. Soc. Nephrol. 11:1989–98 [Google Scholar]
  107. Powell LM, Slater S, Mirtcheva D, Bao Y, Chaloupka FJ. 107.  2007. Food store availability and neighborhood characteristics in the United States. Prev. Med. 44:189–95 [Google Scholar]
  108. Prats M, Font R, Garcia C, Cabre C, Jariod M, Vea AM. 108.  2013. Effect of ferric carboxymaltose on serum phosphate and C-terminal FGF23 levels in non-dialysis chronic kidney disease patients: post-hoc analysis of a prospective study. BMC Nephrol 14:167 [Google Scholar]
  109. Rao M, Steffes M, Bostom A, Ix JH. 109.  2014. Effect of niacin on FGF23 concentration in chronic kidney disease. Am. J. Nephrol. 39:484–90 [Google Scholar]
  110. Rebholz CM, Grams ME, Coresh J, Selvin E, Inker LA. 110.  et al. 2015. Serum fibroblast growth factor-23 is associated with incident kidney disease. J. Am. Soc. Nephrol. 26:192–200 [Google Scholar]
  111. Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI. 111.  et al. 2011. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49:636–43 [Google Scholar]
  112. Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Ramirez AP. 112.  et al. 2012. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23:1190–97 [Google Scholar]
  113. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M. 113.  et al. 2003. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1α,25-dihydroxyvitamin D3 production. J. Biol. Chem. 278:2206–11 [Google Scholar]
  114. Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R. 114.  2014. The human response to acute enteral and parenteral phosphate loads. J. Am. Soc. Nephrol. 25:2730–39 [Google Scholar]
  115. Scialla JJ, Astor BC, Isakova T, Xie H, Appel LJ, Wolf M. 115.  2013. Mineral metabolites and CKD progression in African Americans. J. Am. Soc. Nephrol. 24:125–35 [Google Scholar]
  116. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY. 116.  et al. 2013. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83:1159–68 [Google Scholar]
  117. Scialla JJ, Parekh RS, Eustace JA, Astor BC, Plantinga L. 117.  et al. 2015. Race, mineral homeostasis and mortality in patients with end-stage renal disease on dialysis. Am. J. Nephrol. 42:25–34 [Google Scholar]
  118. Scialla JJ, Xie H, Rahman M, Anderson AH, Isakova T. 118.  et al. 2014. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25:349–60 [Google Scholar]
  119. Seifert ME, de las Fuentes L, Rothstein M, Dietzen DJ, Bierhals AJ. 119.  et al. 2013. Effects of phosphate binder therapy on vascular stiffness in early-stage chronic kidney disease. Am. J. Nephrol. 38:158–67 [Google Scholar]
  120. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH. 120.  2010. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol. Dial. Transplant. 25:3983–89 [Google Scholar]
  121. Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I. 121.  et al. 2014. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin. J. Am. Soc. Nephrol. 9:1049–58 [Google Scholar]
  122. Shah NH, Dong C, Elkind MS, Sacco RL, Mendez AJ. 122.  et al. 2015. Fibroblast growth factor 23 is associated with carotid plaque presence and area: the Northern Manhattan Study. Arterioscler. Thromb. Vasc. Biol. 35:2048–53 [Google Scholar]
  123. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J. 123.  et al. 2012. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Investig. 122:2543–53 [Google Scholar]
  124. Sharma S, Joseph J, Chonchol M, Kaufman JS, Cheung AK. 124.  et al. 2013. Higher fibroblast growth factor-23 concentrations associate with left ventricular systolic dysfunction in dialysis patients. Clin. Nephrol. 80:313–21 [Google Scholar]
  125. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R. 125.  et al. 2004. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19:429–35 [Google Scholar]
  126. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y. 126.  et al. 2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Investig. 113:561–68 [Google Scholar]
  127. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B. 127.  et al. 2016. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90:985–96 [Google Scholar]
  128. Slatopolsky E, Robson AM, Elkan I, Bricker NS. 128.  1968. Control of phosphate excretion in uremic man. J. Clin. Investig. 47:1865–74 [Google Scholar]
  129. Souma N, Isakova T, Lipiszko D, Sacco RL, Elkind MS. 129.  et al. 2016. Fibroblast growth factor 23 and cause-specific mortality in the general population: the Northern Manhattan Study. J. Clin. Endocrinol. Metab. 101:3779–86 [Google Scholar]
  130. St. Peter WL. 130.  2007. Introduction: chronic kidney disease: a burgeoning health epidemic. J. Manag. Care Pharm. 13:S2–5 [Google Scholar]
  131. Sullivan CM, Leon JB, Sehgal AR. 131.  2007. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J. Ren. Nutr. 17:350–54 [Google Scholar]
  132. Takeda E, Taketani Y, Sawada N, Sato T, Yamamoto H. 132.  2004. The regulation and function of phosphate in the human body. Biofactors 21:345–55 [Google Scholar]
  133. Tsai MH, Leu JG, Fang YW, Liou HH. 133.  2016. High fibroblast growth factor 23 levels associated with low hemoglobin levels in patients with chronic kidney disease stages 3 and 4. Medicine (Baltimore) 95:e3049 [Google Scholar]
  134. Udell JA, Morrow DA, Jarolim P, Sloan S, Hoffman EB. 134.  et al. 2014. Fibroblast growth factor-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in stable ischemic heart disease. J. Am. Coll. Cardiol. 63:2421–28 [Google Scholar]
  135. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H. 135.  et al. 2006. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–74 [Google Scholar]
  136. Uribarri J, Calvo MS. 136.  2003. Hidden sources of phosphorus in the typical American diet: Does it matter in nephrology?. Semin. Dial. 16:186–88 [Google Scholar]
  137. 137. US Dep. Health Hum. Serv., US Dep. Agric. 2015. 2015–2020 Dietary Guidelines for Americans, 8th Edition Washington, DC: USDHHS, USDA http://health.gov/dietaryguidelines/2015/guidelines [Google Scholar]
  138. Wesseling-Perry K, Harkins GC, Wang HJ, Elashoff R, Gales B. 138.  et al. 2010. The calcemic response to continuous parathyroid hormone (PTH)(1–34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH(7–84). J. Clin. Endocrinol. Metab. 95:2772–80 [Google Scholar]
  139. Westerberg PA, Tivesten A, Karlsson MK, Mellstrom D, Orwoll E. 139.  et al. 2013. Fibroblast growth factor 23, mineral metabolism and mortality among elderly men (Swedish MrOs). BMC Nephrol 14:85 [Google Scholar]
  140. Wolf M. 140.  2010. Forging forward with 10 burning questions on FGF23 in kidney disease. J. Am. Soc. Nephrol. 21:1427–35 [Google Scholar]
  141. Wolf M. 141.  2012. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 82:737–47 [Google Scholar]
  142. Wolf M. 142.  2015. Mineral (Mal)adaptation to kidney disease–Young Investigator Award address: American Society of Nephrology Kidney Week 2014. Clin. J. Am. Soc. Nephrol. 10:1875–85 [Google Scholar]
  143. Wolf M. 143.  2015. The biomarker niche for fibroblast growth factor 23 testing in CKD. J. Am. Soc. Nephrol. 26:7–9 [Google Scholar]
  144. Wolf M, Koch TA, Bregman DB. 144.  2013. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28:1793–803 [Google Scholar]
  145. Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A. 145.  et al. 2011. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J. Am. Soc. Nephrol. 22:956–66 [Google Scholar]
  146. Wright CB, Dong C, Stark M, Silverberg S, Rundek T. 146.  et al. 2014. Plasma FGF23 and the risk of stroke: the Northern Manhattan Study (NOMAS). Neurology 82:1700–6 [Google Scholar]
  147. Wright CB, Shah NH, Mendez AJ, DeRosa JT, Yoshita M. 147.  et al. 2016. Fibroblast growth factor 23 is associated with subclinical cerebrovascular damage: the Northern Manhattan Study. Stroke 47:923–28 [Google Scholar]
  148. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S. 148.  et al. 2012. Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am. J. Kidney Dis. 59:177–85 [Google Scholar]
  149. Yuen SN, Kramer H, Luke A, Bovet P, Plange-Rhule J. 149.  et al. 2016. Fibroblast growth factor-23 (FGF-23) levels differ across populations by degree of industrialization. J. Clin. Endocrinol. Metab. 101:2246–53 [Google Scholar]
  150. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. 150.  2006. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281:15694–700 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error