1932

Abstract

Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-110320-013657
2021-10-11
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-110320-013657.html?itemId=/content/journals/10.1146/annurev-nutr-110320-013657&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abumrad NA, Davidson NO. 2012. Role of the gut in lipid homeostasis. Physiol. Rev. 92:1061–85
    [Google Scholar]
  2. 2. 
    Al-Hage J, Abbas O, Nemer G, Kurban M. 2020. Chanarin-Dorfman syndrome: a novel homozygous mutation in the ABHD5 gene. Clin. Exp. Dermatol. 45:257–59
    [Google Scholar]
  3. 3. 
    Alpers DH. 2000. Is glutamine a unique fuel for small intestinal cells?. Curr. Opin. Gastroenterol. 16:2155
    [Google Scholar]
  4. 4. 
    Araújo JR, Tazi A, Burlen-Defranoux O, Vichier-Guerre S, Nigro G et al. 2020. Fermentation products of commensal bacteria alter enterocyte lipid metabolism. Cell Host Microbe 27:358–75.e7
    [Google Scholar]
  5. 5. 
    Bachmann SB, Gsponer D, Montoya-Zegarra JA, Schneider M, Scholkmann F et al. 2019. A distinct role of the autonomic nervous system in modulating the function of lymphatic vessels under physiological and tumor-draining conditions. Cell Rep 27:3305–14.e13
    [Google Scholar]
  6. 6. 
    Béaslas O, Cueille C, Delers F, Chateau D, Chambaz J et al. 2009. Sensing of dietary lipids by enterocytes: a new role for SR-BI/CLA-1. PLOS ONE 4:e4278
    [Google Scholar]
  7. 7. 
    Beilstein F, Bouchoux J, Rousset M, Demignot S. 2013. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLOS ONE 8:1e53017
    [Google Scholar]
  8. 8. 
    Benítez-Santana T, Hugo SE, Schlegel A. 2017. Role of intestinal LXRα in regulating post-prandial lipid excursion and diet-induced hypercholesterolemia and hepatic lipid accumulation. Front. Physiol. 8:280
    [Google Scholar]
  9. 9. 
    Bernier-Latmani J, Petrova TV. 2017. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 14:510–26
    [Google Scholar]
  10. 10. 
    Bersuker K, Olzmann JA. 2017. Establishing the lipid droplet proteome: mechanisms of lipid droplet protein targeting and degradation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1166–77
    [Google Scholar]
  11. 11. 
    Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. 2018. PPAR agonists and metabolic syndrome: an established role?. Int. J. Mol. Sci. 19:41197
    [Google Scholar]
  12. 12. 
    Bouchoux J, Beilstein F, Pauquai T, Guerrera IC, Chateau D et al. 2011. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 103:499–517
    [Google Scholar]
  13. 13. 
    Bowman TA, O'Keeffe KR, D'Aquila T, Yan QW, Griffin JD et al. 2016. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol. Metab. 5:210–20
    [Google Scholar]
  14. 14. 
    Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH. 2007. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 293:H709–709
    [Google Scholar]
  15. 15. 
    Briand O, Touche V, Colin S, Brufau G, Davalos A et al. 2016. Liver X receptor regulates triglyceride absorption through intestinal down-regulation of scavenger receptor class B, type 1. Gastroenterology 150:650–58
    [Google Scholar]
  16. 16. 
    Cani PD. 2018. Human gut microbiome: hopes, threats and promises. Gut 67:1716–25
    [Google Scholar]
  17. 17. 
    Cao Z, Hao Y, Fung CW, Lee YY, Wang P et al. 2019. Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat. Commun. 10:2902
    [Google Scholar]
  18. 18. 
    Chavez-Jauregui RN, Mattes RD, Parks EJ. 2010. Dynamics of fat absorption and effect of sham feeding on postprandial lipema. Gastroenterology 139:1538–48
    [Google Scholar]
  19. 19. 
    Chen FJ, Yin Y, Chua BT, Li P. 2020. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 21:94–105
    [Google Scholar]
  20. 20. 
    Cheng D, Iqbal J, Devenny J, Chu CH, Chen L et al. 2008. Acylation of acylglycerols by acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1). Functional importance of DGAT1 in the intestinal fat absorption. J. Biol. Chem. 283:29802–11
    [Google Scholar]
  21. 21. 
    Chiang JYL, Ferrell JM. 2019. Bile acids as metabolic regulators and nutrient sensors. Annu. Rev. Nutr. 39:175–200
    [Google Scholar]
  22. 22. 
    Choe K, Jang JY, Park I, Kim Y, Ahn S et al. 2015. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin. Investig. 125:4042–52
    [Google Scholar]
  23. 23. 
    Chon SH, Douglass JD, Zhou YX, Malik N, Dixon JL et al. 2012. Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity. PLOS ONE 7:e43962
    [Google Scholar]
  24. 24. 
    Chorlay A, Monticelli L, Veríssimo Ferreira J, Ben M'barek K, Ajjaji D et al. 2019. Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. Dev. Cell 50:25–42.e7
    [Google Scholar]
  25. 25. 
    Chorlay A, Thiam AR. 2020. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J. Cell Biol. 219:4e201907099
    [Google Scholar]
  26. 26. 
    Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R et al. 2018. Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. Curr. Biol. 28:915–26.e9
    [Google Scholar]
  27. 27. 
    Cifarelli V, Abumrad NA. 2018. Intestinal CD36 and other key proteins of lipid utilization: role in absorption and gut homeostasis. Compr. Physiol. 8:493–507
    [Google Scholar]
  28. 28. 
    Cornell RB. 2016. Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:847–61
    [Google Scholar]
  29. 29. 
    Cruz-Garcia L, Schlegel A 2014. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids. J. Lipid Res. 55:1944–58
    [Google Scholar]
  30. 30. 
    D'Aquila T, Hung YH, Carreiro A, Buhman KK. 2016. Recent discoveries on absorption of dietary fat: presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:730–47
    [Google Scholar]
  31. 31. 
    D'Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN et al. 2015. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLOS ONE 10:e0126823
    [Google Scholar]
  32. 32. 
    D'Aquila T, Zembroski AS, Buhman KK. 2019. Diet induced obesity alters intestinal cytoplasmic lipid droplet morphology and proteome in the postprandial response to dietary fat. Front. Physiol. 10:180
    [Google Scholar]
  33. 33. 
    Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF. 2014. Glucagon-like peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology 147:1275–84.e4
    [Google Scholar]
  34. 34. 
    Dávalos-Salas M, Montgomery MK, Reehorst CM, Nightingale R, Ng I et al. 2019. Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nat. Commun. 10:5291
    [Google Scholar]
  35. 35. 
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  36. 36. 
    Davis CD. 2016. The gut microbiome and its role in obesity. Nutr. Today 51:167–74
    [Google Scholar]
  37. 37. 
    de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW et al. 2017. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152:1126–38.e6
    [Google Scholar]
  38. 38. 
    DeLoid GM, Sohal IS, Lorente LR, Molina RM, Pyrgiotakis G et al. 2018. Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: interference of triglyceride hydrolysis by nanocellulose. ACS Nano 12:6469–79
    [Google Scholar]
  39. 39. 
    Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N 2014. Coordinated actions of FXR and LXR in metabolism: from pathogenesis to pharmacological targets for type 2 diabetes. Int. J. Endocrinol. 2014 751859
    [Google Scholar]
  40. 40. 
    Dixon JB. 2010. Mechanisms of chylomicron uptake into lacteals. Ann. N. Y. Acad. Sci. 1207:Suppl. 1E52–52
    [Google Scholar]
  41. 41. 
    Donaldson GP, Lee SM, Mazmanian SK. 2016. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14:20–32
    [Google Scholar]
  42. 42. 
    Douglass JD, Malik N, Chon SH, Wells K, Zhou YX et al. 2012. Intestinal mucosal triacylglycerol accumulation secondary to decreased lipid secretion in obese and high fat fed mice. Front. Physiol. 3:25
    [Google Scholar]
  43. 43. 
    Douglass JD, Zhou YX, Wu A, Zadroga JA, Gajda AM et al. 2015. Global deletion of MGL in mice delays lipid absorption and alters energy homeostasis and diet-induced obesity. J. Lipid Res. 56:1153–71
    [Google Scholar]
  44. 44. 
    Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM et al. 2005. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Investig. 115:1290–97
    [Google Scholar]
  45. 45. 
    Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C et al. 2020. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 318:G682–682
    [Google Scholar]
  46. 46. 
    Frank DN, Bales ES, Monks J, Jackman MJ, MacLean PS et al. 2015. Perilipin-2 modulates lipid absorption and microbiome responses in the mouse intestine. PLOS ONE 10:e0131944
    [Google Scholar]
  47. 47. 
    Gangl A, Ockner RK. 1975. Intestinal metabolism of plasma free fatty acids. Intracellular compartmentation and mechanisms of control. J. Clin. Investig. 55:803–13
    [Google Scholar]
  48. 48. 
    Gangl A, Renner F. 1978. In vivo metabolism of plasma free fatty acids by intestinal mucosa of man. Gastroenterology 74:847–50
    [Google Scholar]
  49. 49. 
    Gao M, Huang X, Song BL, Yang H. 2019. The biogenesis of lipid droplets: Lipids take center stage. Prog. Lipid Res. 75:100989
    [Google Scholar]
  50. 50. 
    Goh VJ, Tan JS, Tan BC, Seow C, Ong WY et al. 2015. Postnatal deletion of fat storage-inducing transmembrane protein 2 (FIT2/FITM2) causes lethal enteropathy. J. Biol. Chem. 290:25686–99
    [Google Scholar]
  51. 51. 
    Gordon SM, Neufeld EB, Yang Z, Pryor M, Freeman LA et al. 2019. DENND5B regulates intestinal triglyceride absorption and body mass. Sci. Rep. 9:3597
    [Google Scholar]
  52. 52. 
    Gribble FM, Reimann F. 2016. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78:277–99
    [Google Scholar]
  53. 53. 
    Grober J, Lucas S, Sorhede-Winzell M, Zaghini I, Mairal A et al. 2003. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa. J. Biol. Chem. 278:6510–15
    [Google Scholar]
  54. 54. 
    Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S et al. 2006. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130:150–64
    [Google Scholar]
  55. 55. 
    Haas JT, Winter HS, Lim E, Kirby A, Blumenstiel B et al. 2012. DGAT1 mutation is linked to a congenital diarrheal disorder. J. Clin. Investig. 122:4680–84
    [Google Scholar]
  56. 56. 
    Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R et al. 2002. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277:31646–55
    [Google Scholar]
  57. 57. 
    Ho SY, Delgado L, Storch J. 2002. Monoacylglycerol metabolism in human intestinal Caco-2 cells: evidence for metabolic compartmentation and hydrolysis. J. Biol. Chem. 277:1816–23
    [Google Scholar]
  58. 58. 
    Höfer D, Asan E, Drenckhahn D. 1999. Chemosensory perception in the gut. News Physiol. Sci. 14:18–23
    [Google Scholar]
  59. 59. 
    Hung YH, Buhman KK. 2019. DGAT1 deficiency disrupts lysosome function in enterocytes during dietary fat absorption. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864:587–95
    [Google Scholar]
  60. 60. 
    Hung YH, Carreiro AL, Buhman KK. 2017. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:600–14
    [Google Scholar]
  61. 61. 
    Jaschke A, Chung B, Hesse D, Kluge R, Zahn C et al. 2012. The GTPase ARFRP1 controls the lipidation of chylomicrons in the Golgi of the intestinal epithelium. Hum. Mol. Genet. 21:3128–42
    [Google Scholar]
  62. 62. 
    Karaman S, Leppänen VM, Alitalo K. 2018. Vascular endothelial growth factor signaling in development and disease. Development 145:dev151019
    [Google Scholar]
  63. 63. 
    Kaufman S, Arnold M, Diaz AA, Neubauer H, Wolfrum S et al. 2019. Roux-en-Y gastric bypass surgery reprograms enterocyte triglyceride metabolism and postprandial secretion in rats. Mol. Metab. 23:51–59
    [Google Scholar]
  64. 64. 
    Khaldoun SA, Emond-Boisjoly MA, Chateau D, Carrière V, Lacasa M et al. 2014. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell 25:118–32
    [Google Scholar]
  65. 65. 
    Khatun I, Clark RW, Vera NB, Kou K, Erion DM et al. 2016. Characterization of a novel intestinal glycerol-3-phosphate acyltransferase pathway and its role in lipid homeostasis. J. Biol. Chem. 291:2602–15
    [Google Scholar]
  66. 66. 
    Kim YC, Byun S, Seok S, Guo G, Xu HE et al. 2019. Small heterodimer partner and fibroblast growth factor 19 inhibit expression of NPC1L1 in mouse intestine and cholesterol absorption. Gastroenterology 156:1052–65
    [Google Scholar]
  67. 67. 
    Korbelius M, Vujic N, Sachdev V, Obrowsky S, Rainer S et al. 2019. ATGL/CGI-58-dependent hydrolysis of a lipid storage pool in murine enterocytes. Cell Rep 28:1923–34.e4
    [Google Scholar]
  68. 68. 
    Kory N, Thiam AR, Farese RV Jr, Walther TC. 2015. Protein crowding is a determinant of lipid droplet protein composition. Dev. Cell 34:351–63
    [Google Scholar]
  69. 69. 
    Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14:504–15
    [Google Scholar]
  70. 70. 
    Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M et al. 2020. Omega-3 phospholipids from krill oil enhance intestinal fatty acid oxidation more effectively than omega-3 triacylglycerols in high-fat diet-fed obese mice. Nutrients 12:72037
    [Google Scholar]
  71. 71. 
    Laferrère B, Pattou F. 2018. Weight-independent mechanisms of glucose control after Roux-en-Y gastric bypass. Front. Endocrinol. 9:530
    [Google Scholar]
  72. 72. 
    Lee B, Zhu J, Wolins NE, Cheng JX, Buhman KK. 2009. Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1791:1173–80
    [Google Scholar]
  73. 73. 
    Lee J, Ridgway ND. 2018. Phosphatidylcholine synthesis regulates triglyceride storage and chylomicron secretion by Caco2 cells. J. Lipid Res. 59:101940–50
    [Google Scholar]
  74. 74. 
    Lehner R, Lian J, Quiroga AD. 2012. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler. Thromb. Vasc. Biol. 32:1087–93
    [Google Scholar]
  75. 75. 
    Levy E. 2015. Insights from human congenital disorders of intestinal lipid metabolism. J. Lipid Res. 56:945–62
    [Google Scholar]
  76. 76. 
    Li D, Rodia CN, Johnson ZK, Bae M, Muter A et al. 2019. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III. J. Lipid Res. 60:1503–15
    [Google Scholar]
  77. 77. 
    Lundasen T, Pedrelli M, Bjorndal B, Rozell B, Kuiper RV et al. 2020. The PPAR pan-agonist tetradecylthioacetic acid promotes redistribution of plasma cholesterol towards large HDL. PLOS ONE 15:e0229322
    [Google Scholar]
  78. 78. 
    Mansbach CM, Dowell R. 2000. Effect of increasing lipid loads on the ability of the endoplasmic reticulum to transport lipid to the Golgi. J. Lipid Res. 41:605–12
    [Google Scholar]
  79. 79. 
    Mansbach CM 2nd, Dowell RF 1992. Uptake and metabolism of circulating fatty acids by rat intestine. Am. J. Physiol. 263:G927–927
    [Google Scholar]
  80. 80. 
    Mansbach CM 2nd, Parthasarathy S 1982. A re-examination of the fate of glyceride-glycerol in neutral lipid absorption and transport. J. Lipid Res. 23:1009–19
    [Google Scholar]
  81. 81. 
    Mansbach CM 2nd, Siddiqi S 2016. Control of chylomicron export from the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 310:G659–659
    [Google Scholar]
  82. 82. 
    Maresch LK, Benedikt P, Feiler U, Eder S, Zierler KA et al. 2019. Intestine-specific overexpression of carboxylesterase 2c protects mice from diet-induced liver steatosis and obesity. Hepatol. Commun. 3:227–45
    [Google Scholar]
  83. 83. 
    Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW et al. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23:458–69.e5
    [Google Scholar]
  84. 84. 
    McCauley HA. 2020. Enteroendocrine regulation of nutrient absorption. J. Nutr. 150:10–21
    [Google Scholar]
  85. 85. 
    McCauley HA, Matthis AL, Enriquez JR, Nichol JT, Sanchez JG et al. 2020. Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nat. Commun. 11:4791
    [Google Scholar]
  86. 86. 
    McFie PJ, Banman SL, Stone SJ. 2018. Diacylglycerol acyltransferase-2 contains a c-terminal sequence that interacts with lipid droplets. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:1068–81
    [Google Scholar]
  87. 87. 
    McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS et al. 2013. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J. Lipid Res. 54:1346–59
    [Google Scholar]
  88. 88. 
    Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T et al. 2015. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J. Gastroenterol. 50:541–54
    [Google Scholar]
  89. 89. 
    Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM et al. 2006. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 131:1197–207
    [Google Scholar]
  90. 90. 
    Nettebrock NT, Bohnert M. 2020. Born this way—biogenesis of lipid droplets from specialized ER subdomains. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:158448
    [Google Scholar]
  91. 91. 
    Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. 2007. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308
    [Google Scholar]
  92. 92. 
    Obrowsky S, Chandak PG, Patankar JV, Pfeifer T, Povoden S et al. 2012. Cholesteryl ester accumulation and accelerated cholesterol absorption in intestine-specific hormone sensitive lipase-null mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821:1406–14
    [Google Scholar]
  93. 93. 
    Obrowsky S, Chandak PG, Patankar JV, Povoden S, Schlager S et al. 2013. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J. Lipid Res. 54:425–35
    [Google Scholar]
  94. 94. 
    Olzmann JA, Richter CM, Kopito RR 2013. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. PNAS 110:1345–50
    [Google Scholar]
  95. 95. 
    Ørskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst JJ. 2005. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul. Pept. 124:105–12
    [Google Scholar]
  96. 96. 
    Pan X, Schwartz GJ, Hussain MM. 2018. Oleoylethanolamide differentially regulates glycerolipid synthesis and lipoprotein secretion in intestine and liver. J. Lipid Res. 59:2349–59
    [Google Scholar]
  97. 97. 
    Pedersen J, Pedersen NB, Brix SW, Grunddal KV, Rosenkilde MM et al. 2015. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides 67:20–28
    [Google Scholar]
  98. 98. 
    Qu J, Ko CW, Tso P, Bhargava A. 2019. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8:4319
    [Google Scholar]
  99. 99. 
    Ramachandran D, Clara R, Fedele S, Michel L, Burkard J et al. 2018. Enhancing enterocyte fatty acid oxidation in mice affects glycemic control depending on dietary fat. Sci. Rep. 8:10818
    [Google Scholar]
  100. 100. 
    Reeskamp LF, Meessen ECE, Groen AK. 2018. Transintestinal cholesterol excretion in humans. Curr. Opin. Lipidol. 29:10–17
    [Google Scholar]
  101. 101. 
    Renne MF, Klug YA, Carvalho P. 2020. Lipid droplet biogenesis: a mystery “unmixing”?. Semin. Cell Dev. Biol. 108:14–23
    [Google Scholar]
  102. 102. 
    Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD et al. 2019. What is the healthy gut microbiota composition?. A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:114
    [Google Scholar]
  103. 103. 
    Robertson MD, Parkes M, Warren BF, Ferguson DJ, Jackson KG et al. 2003. Mobilisation of enterocyte fat stores by oral glucose in humans. Gut 52:834–39
    [Google Scholar]
  104. 104. 
    Salo VT, Ikonen E. 2019. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr. Opin. Cell Biol. 57:64–70
    [Google Scholar]
  105. 105. 
    Salo VT, Li S, Vihinen H, Holtta-Vuori M, Szkalisity A et al. 2019. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev. Cell 50:4478–93.e9
    [Google Scholar]
  106. 106. 
    Santinho A, Salo VT, Chorlay A, Li S, Zhou X et al. 2020. Membrane curvature catalyzes lipid droplet assembly. Curr. Biol. 30:132481–94.e6
    [Google Scholar]
  107. 107. 
    Sato H, Zhang LS, Martinez K, Chang EB, Yang Q et al. 2016. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in Sprague-Dawley rats. Gastroenterology 151:923–32
    [Google Scholar]
  108. 108. 
    Schittmayer M, Vujic N, Darnhofer B, Korbelius M, Honeder S et al. 2020. Spatially resolved activity-based proteomic profiles of the murine small intestinal lipases. Mol. Cell. Proteom. 19:122104–15
    [Google Scholar]
  109. 109. 
    Shew T, Wolins NE, Cifarelli V. 2018. VEGFR-3 signaling regulates triglyceride retention and absorption in the intestine. Front. Physiol. 9:1783
    [Google Scholar]
  110. 110. 
    Shiau YF, Popper DA, Reed M, Umstetter C, Capuzzi D, Levine GM. 1985. Intestinal triglycerides are derived from both endogenous and exogenous sources. Am. J. Physiol. 248:G164–164
    [Google Scholar]
  111. 111. 
    Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM 2nd 2006. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J. Biol. Chem. 281:20974–82
    [Google Scholar]
  112. 112. 
    Stahel P, Xiao C, Davis X, Tso P, Lewis GF. 2019. Glucose and GLP-2 (glucagon-like peptide-2) mobilize intestinal triglyceride by distinct mechanisms. Arterioscler. Thromb. Vasc. Biol. 39:1565–73
    [Google Scholar]
  113. 113. 
    Stahel P, Xiao C, Nahmias A, Lewis GF. 2020. Role of the gut in diabetic dyslipidemia. Front. Endocrinol. 11:116
    [Google Scholar]
  114. 114. 
    Stine RR, Sakers AP, TeSlaa T, Kissig M, Stine ZE et al. 2019. PRDM16 maintains homeostasis of the intestinal epithelium by controlling region-specific metabolism. Cell Stem Cell 25:830–45.e8
    [Google Scholar]
  115. 115. 
    Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR et al. 2004. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279:11767–76
    [Google Scholar]
  116. 116. 
    Storch J, Zhou YX, Lagakos WS. 2008. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J. Lipid Res. 49:1762–69
    [Google Scholar]
  117. 117. 
    Suh SH, Choe K, Hong SP, Jeong SH, Mäkinen T et al. 2019. Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep 20:e46927
    [Google Scholar]
  118. 118. 
    Sui X, Wang K, Gluchowski NL, Elliott SD, Liao M et al. 2020. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 581:323–28
    [Google Scholar]
  119. 119. 
    Sztalryd C, Brasaemle DL. 2017. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1221–32
    [Google Scholar]
  120. 120. 
    Tazi A, Araujo JR, Mulet C, Arena ET, Nigro G et al. 2018. Disentangling host-microbiota regulation of lipid secretion by enterocytes: insights from commensals Lactobacillus paracasei and Escherichia coli. mBio 9:5e01493-18
    [Google Scholar]
  121. 121. 
    Tran TT, Poirier H, Clément L, Nassir F, Pelsers MM et al. 2011. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J. Biol. Chem. 286:25201–10
    [Google Scholar]
  122. 122. 
    Trujillo AN, Katnik C, Cuevas J, Cha BJ, Taylor-Clark TE, Breslin JW. 2017. Modulation of mesenteric collecting lymphatic contractions by σ1-receptor activation and nitric oxide production. Am. J. Physiol. Heart Circ. Physiol. 313:H839–839
    [Google Scholar]
  123. 123. 
    Tso P, Balint JA. 1986. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am. J. Physiol. 250:G715–715
    [Google Scholar]
  124. 124. 
    Uchida A, Slipchenko MN, Cheng JX, Buhman KK. 2011. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, alters triglyceride metabolism in enterocytes of mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811:170–76
    [Google Scholar]
  125. 125. 
    Uchida A, Whitsitt MC, Eustaquio T, Slipchenko MN, Leary JF et al. 2012. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front. Physiol. 3:26
    [Google Scholar]
  126. 126. 
    Van Dyck F, Braem CV, Chen Z, Declercq J, Deckers R et al. 2007. Loss of the PlagL2 transcription factor affects lacteal uptake of chylomicrons. Cell Metab 6:406–13
    [Google Scholar]
  127. 127. 
    van Rijn JM, Ardy RC, Kuloğlu Z, Härter B, van Haaften-Visser DY et al. 2018. Intestinal failure and aberrant lipid metabolism in patients with DGAT1 deficiency. Gastroenterology 155:130–43.e15
    [Google Scholar]
  128. 128. 
    Wang L, Qian H, Nian Y, Han Y, Ren Z et al. 2020. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 581:329–32
    [Google Scholar]
  129. 129. 
    Werno MW, Wilhelmi I, Kuropka B, Ebert F, Freund C, Schurmann A. 2018. The GTPase ARFRP1 affects lipid droplet protein composition and triglyceride release from intracellular storage of intestinal Caco-2 cells. Biochem. Biophys. Res. Commun. 506:259–65
    [Google Scholar]
  130. 130. 
    Whitt J, Woo V, Lee P, Moncivaiz J, Haberman Y et al. 2018. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 155:501–13
    [Google Scholar]
  131. 131. 
    Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R et al. 2014. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3:e01607
    [Google Scholar]
  132. 132. 
    Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24:384–99
    [Google Scholar]
  133. 133. 
    Xiao C, Stahel P, Carreiro AL, Buhman KK, Lewis GF. 2018. Recent advances in triacylglycerol mobilization by the gut. Trends Endocrinol. Metab. 29:3151–63
    [Google Scholar]
  134. 134. 
    Xiao C, Stahel P, Carreiro AL, Hung YH, Dash S et al. 2019. Oral glucose mobilizes triglyceride stores from the human intestine. Cell. Mol. Gastroenterol. Hepatol. 7:313–37
    [Google Scholar]
  135. 135. 
    Xiao C, Stahel P, Lewis GF. 2019. Regulation of chylomicron secretion: focus on post-assembly mechanisms. Cell. Mol. Gastroenterol. Hepatol. 7:487–501
    [Google Scholar]
  136. 136. 
    Xie P, Guo F, Ma Y, Zhu H, Wang F et al. 2014. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption. PLOS ONE 9:e91652
    [Google Scholar]
  137. 137. 
    Xie Y, Matsumoto H, Kennedy S, Newberry EP, Moritz W et al. 2019. Impaired chylomicron assembly modifies hepatic metabolism through bile acid-dependent and transmissible microbial adaptations. Hepatology 70:1168–84
    [Google Scholar]
  138. 138. 
    Xu H, Diolintzi A, Storch J. 2019. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr. Opin. Clin. Nutr. Metab. Care 22:407–12
    [Google Scholar]
  139. 139. 
    Ye J, Li JZ, Liu Y, Li X, Yang T et al. 2009. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9:177–90
    [Google Scholar]
  140. 140. 
    Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF 2019. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 8:e48479
    [Google Scholar]
  141. 141. 
    Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. 2008. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49:2283–301
    [Google Scholar]
  142. 142. 
    Yusta B, Matthews D, Koehler JA, Pujadas G, Kaur KD, Drucker DJ. 2019. Localization of glucagon-like peptide-2 receptor expression in the mouse. Endocrinology 160:1950–63
    [Google Scholar]
  143. 143. 
    Zechner R, Madeo F, Kratky D. 2017. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18:671–84
    [Google Scholar]
  144. 144. 
    Zhang C, Liu P. 2019. The new face of the lipid droplet: lipid droplet proteins. Proteomics 19:e1700223
    [Google Scholar]
  145. 145. 
    Zhang F, Zarkada G, Han J, Li J, Dubrac A et al. 2018. Lacteal junction zippering protects against diet-induced obesity. Science 361:599–603
    [Google Scholar]
  146. 146. 
    Zhang LJ, Wang C, Yuan Y, Wang H, Wu J et al. 2014. Cideb facilitates the lipidation of chylomicrons in the small intestine. J. Lipid Res. 55:1279–87
    [Google Scholar]
  147. 147. 
    Zhu J, Lee B, Buhman KK, Cheng JX. 2009. A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. J. Lipid Res. 50:1080–89
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-110320-013657
Loading
/content/journals/10.1146/annurev-nutr-110320-013657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error