1932

Abstract

Ketone bodies play significant roles in organismal energy homeostasis, serving as oxidative fuels, modulators of redox potential, lipogenic precursors, and signals, primarily during states of low carbohydrate availability. Efforts to enhance wellness and ameliorate disease via nutritional, chronobiological, and pharmacological interventions have markedly intensified interest in ketone body metabolism. The two ketone body redox partners, acetoacetate and D-β-hydroxybutyrate, serve distinct metabolic and signaling roles in biological systems. We discuss the pleiotropic roles played by both of these ketones in health and disease. While enthusiasm is warranted, prudent procession through therapeutic applications of ketogenic and ketone therapies is also advised, as a range of metabolic and signaling consequences continue to emerge. Organ-specific and cell-type-specific effects of ketone bodies are important to consider as prospective therapeutic and wellness applications increase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-111120-111518
2021-09-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-111120-111518.html?itemId=/content/journals/10.1146/annurev-nutr-111120-111518&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adijanto J, Du J, Moffat C, Seifert EL, Hurley JB, Philp NJ. 2014. The retinal pigment epithelium utilizes fatty acids for ketogenesis: implications for metabolic coupling with the outer retina. J. Biol. Chem. 289:20570–82
    [Google Scholar]
  2. 2. 
    Al Batran, R, Gopal K, Capozzi ME, Chahade JJ, Saleme B et al. 2020. Pimozide alleviates hyperglycemia in diet-induced obesity by inhibiting skeletal muscle ketone oxidation. Cell Metab 31:909–19.e8
    [Google Scholar]
  3. 3. 
    Ang QY, Alexander M, Newman JC, Tian Y, Cai J et al. 2020. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181:1263–75.e16
    [Google Scholar]
  4. 4. 
    Aubert G, Martin OJ, Horton JL, Lai L, Vega RB et al. 2016. The failing heart relies on ketone bodies as a fuel. Circulation 133:698–705
    [Google Scholar]
  5. 5. 
    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–37
    [Google Scholar]
  6. 6. 
    Balasse EO, Fery F. 1989. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab. Rev. 5:247–70
    [Google Scholar]
  7. 7. 
    Bedi KC Jr., Snyder NW, Brandimarto J, Aziz M, Mesaros C et al. 2016. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133:706–16
    [Google Scholar]
  8. 8. 
    Beland-Millar A, Takimoto M, Hamada T, Messier C. 2020. Brain and muscle adaptation to high-fat diets and exercise: metabolic transporters, enzymes and substrates in the rat cortex and muscle. Brain Res 1749:147126
    [Google Scholar]
  9. 9. 
    Benyó Z, Gille A, Kero J, Csiky M, Suchánková MC et al. 2005. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Biol. Chem. 115:3634–40
    [Google Scholar]
  10. 10. 
    Bergstrom JD, Wong GA, Edwards PA, Edmond J. 1984. The regulation of acetoacetyl-CoA synthetase activity by modulators of cholesterol synthesis in vivo and the utilization of acetoacetate for cholesterogenesis. J. Biol. Chem. 259:14548–53
    [Google Scholar]
  11. 11. 
    BonDurant LD, Potthoff MJ. 2018. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 38:173–96
    [Google Scholar]
  12. 12. 
    Bregere C, Rebrin I, Gallaher TK, Sohal RS. 2010. Effects of age and calorie restriction on tryptophan nitration, protein content, and activity of succinyl-CoA:3-ketoacid CoA transferase in rat kidney mitochondria. Free Radic. Biol. Med. 48:609–18
    [Google Scholar]
  13. 13. 
    Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100
    [Google Scholar]
  14. 14. 
    Browning JD, Baxter J, Satapati S, Burgess SC. 2012. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J. Lipid Res. 53:577–86
    [Google Scholar]
  15. 15. 
    Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S et al. 2020. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13:e006277
    [Google Scholar]
  16. 16. 
    Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL et al. 2017. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl. Sci. 2:347–54
    [Google Scholar]
  17. 17. 
    Byrne NJ, Soni S, Takahara S, Ferdaoussi M, Al Batran R et al. 2020. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circ. Heart Fail. 13:e006573
    [Google Scholar]
  18. 18. 
    Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P et al. 2020. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583:620–24
    [Google Scholar]
  19. 19. 
    Cahill GF Jr. 2006. Fuel metabolism in starvation. Annu. Rev. Nutr. 26:1–22
    [Google Scholar]
  20. 20. 
    Camarero N, Mascaró C, Mayordomo C, Vilardell F, Haro D, Marrero PF. 2006. Ketogenic HMGCS2 is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer. Mol. Cancer Res. 4:645–53
    [Google Scholar]
  21. 21. 
    Carley AN, Taegtmeyer H, Lewandowski ED. 2014. Mechanisms linking energy substrate metabolism to the function of the heart. Circ. Res. 114:717–29
    [Google Scholar]
  22. 22. 
    Carneiro L, Geller S, Fioramonti X, Hébert A, Repond C et al. 2016. Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice. Am. J. Physiol. Endocrinol. Metab. 310:E103–103
    [Google Scholar]
  23. 23. 
    Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B et al. 2018. Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension. Cell Rep 25:677–89.e4
    [Google Scholar]
  24. 24. 
    Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T et al. 2016. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7:10580
    [Google Scholar]
  25. 25. 
    Chen SW, Chou CT, Chang CC, Li YJ, Chen ST et al. 2017. HMGCS2 enhances invasion and metastasis via direct interaction with PPARα to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 8:22460–76
    [Google Scholar]
  26. 26. 
    Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA et al. 2016. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12:937–43
    [Google Scholar]
  27. 27. 
    Cheng A, Wang J, Ghena N, Zhao Q, Perone I et al. 2020. SIRT3 haploinsufficiency aggravates loss of GABAergic interneurons and neuronal network hyperexcitability in an Alzheimer's disease model. J. Neurosci. 40:694–709
    [Google Scholar]
  28. 28. 
    Cheng CW, Biton M, Haber AL, Gunduz N, Eng G et al. 2019. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178:1115–31.e15
    [Google Scholar]
  29. 29. 
    Cherbuy C, Andrieux C, Honvo-Houeto E, Thomas M, Ide C et al. 2004. Expression of mitochondrial HMGCoA synthase and glutaminase in the colonic mucosa is modulated by bacterial species. Eur. J. Biochem. 271:87–95
    [Google Scholar]
  30. 30. 
    Cherbuy C, Darcy-Vrillon B, Morel MT, Pegorier JP, Duee PH. 1995. Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine. Gastroenterology 109:1890–99
    [Google Scholar]
  31. 31. 
    Chriett S, Dabek A, Wojtala M, Vidal H, Balcerczyk A, Pirola L. 2019. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep. 9:742
    [Google Scholar]
  32. 32. 
    Comerford SA, Huang Z, Du X, Wang Y, Cai L et al. 2014. Acetate dependence of tumors. Cell 159:1591–602
    [Google Scholar]
  33. 33. 
    Cotter DG, d'Avignon DA, Wentz AE, Weber ML, Crawford PA. 2011. Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J. Biol. Chem. 286:6902–10
    [Google Scholar]
  34. 34. 
    Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA et al. 2014. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 124:5175–90
    [Google Scholar]
  35. 35. 
    Cotter DG, Schugar RC, Wentz AE, d'Avignon DA, Crawford PA. 2013. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am. J. Physiol. Endocrinol. Metab. 304:E363–363
    [Google Scholar]
  36. 36. 
    Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R et al. 2016. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab 24:256–68
    [Google Scholar]
  37. 37. 
    Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK et al. 2009. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. PNAS 106:11276–81
    [Google Scholar]
  38. 38. 
    Cui W, Luo W, Zhou X, Lu Y, Xu W et al. 2019. Dysregulation of ketone body metabolism is associated with poor prognosis for clear cell renal cell carcinoma patients. Front. Oncol. 9:1422
    [Google Scholar]
  39. 39. 
    Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G et al. 2020. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19:609–33
    [Google Scholar]
  40. 40. 
    d'Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE et al. 2018. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 3:12e99762
    [Google Scholar]
  41. 41. 
    Davis JD, Wirtshafter D, Asin KE, Brief D. 1981. Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212:81–83
    [Google Scholar]
  42. 42. 
    Davuluri G, Song P, Liu Z, Wald D, Sakaguchi TF et al. 2016. Inactivation of 3-hydroxybutyrate dehydrogenase 2 delays zebrafish erythroid maturation by conferring premature mitophagy. PNAS 113:E1460–1460
    [Google Scholar]
  43. 43. 
    de Cabo R, Mattson MP. 2019. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381:2541–51
    [Google Scholar]
  44. 44. 
    Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Fotuhi Siahpirani A et al. 2015. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab 21:637–46
    [Google Scholar]
  45. 45. 
    Felig P, Wahren J, Hendler R, Brundin T. 1974. Splanchnic glucose and amino acid metabolism in obesity. J. Biol. Chem. 53:582–90
    [Google Scholar]
  46. 46. 
    Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T et al. 2016. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65:1190–95
    [Google Scholar]
  47. 47. 
    Fisher-Wellman KH, Draper JA, Davidson MT, Williams AS, Narowski TM et al. 2019. Respiratory phenomics across multiple models of protein hyperacylation in cardiac mitochondria reveals a marginal impact on bioenergetics. Cell Rep 26:1557–72.e8
    [Google Scholar]
  48. 48. 
    Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. 2019. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 5:e127737
    [Google Scholar]
  49. 49. 
    Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE et al. 2016. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab 24:672–84
    [Google Scholar]
  50. 50. 
    Fu SP, Liu BR, Wang JF, Xue WJ, Liu HM et al. 2015. β-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus. J. Neuroendocrinol. 27:212–22
    [Google Scholar]
  51. 51. 
    Fukao T, Lopaschuk GD, Mitchell GA. 2004. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 70:243–51
    [Google Scholar]
  52. 52. 
    Gambhir D, Ananth S, Veeranan-Karmegam R, Elangovan S, Hester S et al. 2012. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 53:2208–17
    [Google Scholar]
  53. 53. 
    García-Caballero M, Zecchin A, Souffreau J, Truong ACK, Teuwen LA et al. 2019. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat. Metab. 1:666–75
    [Google Scholar]
  54. 54. 
    Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S et al. 2019. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Sci. Transl. Med. 11:eaay0284
    [Google Scholar]
  55. 55. 
    Gormsen LC, Svart M, Thomsen HH, Sondergaard E, Vendelbo MH et al. 2017. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J. Am. Heart Assoc. 6:e005066
    [Google Scholar]
  56. 56. 
    Green A, Bishop RE. 2019. Ketoacidosis—Where do the protons come from?. Trends Biochem. Sci. 44:484–89
    [Google Scholar]
  57. 57. 
    Grimsrud PA, Carson JJ, Hebert AS, Hubler SL, Niemi NM et al. 2012. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16:672–83
    [Google Scholar]
  58. 58. 
    Grinblat L, Pacheco Bolanos LF, Stoppani AO 1986. Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem. J. 240:49–56
    [Google Scholar]
  59. 59. 
    Guzman M, Blazquez C. 2001. Is there an astrocyte-neuron ketone body shuttle?. Trends Endocrinol. Metab. 12:169–73
    [Google Scholar]
  60. 60. 
    Halestrap AP. 2012. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9
    [Google Scholar]
  61. 61. 
    Halestrap AP, Wilson MC. 2012. The monocarboxylate transporter family—role and regulation. IUBMB Life 64:109–19
    [Google Scholar]
  62. 62. 
    Han YM, Bedarida T, Ding Y, Somba BK, Lu Q et al. 2018. β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol. Cell 71:1064–78.e5
    [Google Scholar]
  63. 63. 
    Harrison HC, Long CNH. 1940. The distribution of ketone bodies in tissues. J. Biol. Chem. 133:209–18
    [Google Scholar]
  64. 64. 
    Hasegawa S, Noda K, Maeda A, Matsuoka M, Yamasaki M, Fukui T. 2012. Acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, is controlled by SREBP-2 and affects serum cholesterol levels. Mol. Genet. Metab. 107:553–60
    [Google Scholar]
  65. 65. 
    Hashimoto T, Masuda S, Taguchi S, Brooks GA. 2005. Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. J. Physiol. 567:121–29
    [Google Scholar]
  66. 66. 
    Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N et al. 1996. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am. J. Physiol. Endocrinol. Metab. 270:E746–746
    [Google Scholar]
  67. 67. 
    Hegardt FG. 1999. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem. J. 338:Part 3569–82
    [Google Scholar]
  68. 68. 
    Hennebelle M, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, Castellano CA et al. 2016. Preliminary evaluation of a differential effect of an α-linolenate-rich supplement on ketogenesis and plasma omega-3 fatty acids in young and older adults. Nutrition 32:1211–16
    [Google Scholar]
  69. 69. 
    Henning SJ, Hird FJ. 1972. Ketogenesis from butyrate and acetate by the caecum and the colon of rabbits. Biochem. J. 130:785–90
    [Google Scholar]
  70. 70. 
    Ho KL, Karwi QG, Wagg C, Zhang L, Vo K et al. 2020. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc. Res. 117:41178–87
    [Google Scholar]
  71. 71. 
    Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K et al. 2019. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc. Res. 115:1606–16
    [Google Scholar]
  72. 72. 
    Hopkins BD, Pauli C, Du X, Wang DG, Li X et al. 2018. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560:499–503
    [Google Scholar]
  73. 73. 
    Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC et al. 2019. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 4:e124079
    [Google Scholar]
  74. 74. 
    Huang CK, Chang PH, Kuo WH, Chen CL, Jeng YM et al. 2017. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat. Commun. 8:14706
    [Google Scholar]
  75. 75. 
    Huang D, Li T, Wang L, Zhang L, Yan R et al. 2016. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res 26:1112–30
    [Google Scholar]
  76. 76. 
    Huang H, Zhang D, Weng Y, Delaney K, Tang Z et al. 2021. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Sci. Adv. 7:eabe2771
    [Google Scholar]
  77. 77. 
    Hyde PN, Sapper TN, Crabtree CD, LaFountain RA, Bowling ML et al. 2019. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 4:12e128308
    [Google Scholar]
  78. 78. 
    Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ et al. 2010. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–56.e6
    [Google Scholar]
  79. 79. 
    Ishimwe JA, Garrett MR, Sasser JM. 2020. 1,3-Butanediol attenuates hypertension and suppresses kidney injury in female rats. Am. J. Physiol. Ren. Physiol. 319:F106–106
    [Google Scholar]
  80. 80. 
    Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA et al. 2020. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metab 32:273–86
    [Google Scholar]
  81. 81. 
    Kajitani N, Iwata M, Miura A, Tsunetomi K, Yamanashi T et al. 2020. Prefrontal cortex infusion of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produces antidepressant-like effects in a rodent model of depression. Neuropsychopharmacol. Rep. 40:157–65
    [Google Scholar]
  82. 82. 
    Kakehashi A, Stefanov VE, Ishii N, Okuno T, Fujii H et al. 2017. Proteome characteristics of non-alcoholic steatohepatitis liver tissue and associated hepatocellular carcinomas. Int. J. Mol. Sci. 18:2434
    [Google Scholar]
  83. 83. 
    Kang HB, Fan J, Lin R, Elf S, Ji Q et al. 2015. Metabolic rewiring by oncogenic BRAF V600E links ketogenesis pathway to BRAF-MEK1 signaling. Mol. Cell 59:345–58
    [Google Scholar]
  84. 84. 
    Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. 2020. Myocardial ketones metabolism in heart failure. J. Card. Fail. 26:998–1005
    [Google Scholar]
  85. 85. 
    Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA et al. 1994. Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 269:25502–14
    [Google Scholar]
  86. 86. 
    Katsu-Jimenez Y, Gimenez-Cassina A. 2019. Fibroblast growth factor-21 promotes ketone body utilization in neurons through activation of AMP-dependent kinase. Mol. Cell. Neurosci. 101:103415
    [Google Scholar]
  87. 87. 
    Kennedy AR, Pissios P, Otu H, Xue B, Asakura K et al. 2007. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 292:E1724–1724
    [Google Scholar]
  88. 88. 
    Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S et al. 2017. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6
    [Google Scholar]
  89. 89. 
    Kim SR, Lee SG, Kim SH, Kim JH, Choi E et al. 2020. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11:2127
    [Google Scholar]
  90. 90. 
    Kimura I, Inoue D, Maeda T, Hara T, Ichimura A et al. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). PNAS 108:8030–35
    [Google Scholar]
  91. 91. 
    Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P et al. 2015. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21:739–46
    [Google Scholar]
  92. 92. 
    Koppel SJ, Swerdlow RH. 2018. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem. Int. 117:114–25
    [Google Scholar]
  93. 93. 
    Koutnik AP, Poff AM, Ward NP, DeBlasi JM, Soliven MA et al. 2020. Ketone bodies attenuate wasting in models of atrophy. J. Cachexia Sarcopenia Muscle 11:973–96
    [Google Scholar]
  94. 94. 
    Kuhla A, Hahn S, Butschkau A, Lange S, Wree A, Vollmar B. 2014. Lifelong caloric restriction reprograms hepatic fat metabolism in mice. J. Gerontol. A Biol. Sci. Med. Sci. 69:915–22
    [Google Scholar]
  95. 95. 
    Laeger T, Metges CC, Kuhla B. 2010. Role of β-hydroxybutyric acid in the central regulation of energy balance. Appetite 54:450–55
    [Google Scholar]
  96. 96. 
    Lai L, Leone TC, Keller MP, Martin OJ, Broman AT et al. 2014. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7:1022–31
    [Google Scholar]
  97. 97. 
    Le Foll C, Levin BE 2016. Fatty acid-induced astrocyte ketone production and the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R1186–1186
    [Google Scholar]
  98. 98. 
    Leclercq S, Le Roy T, Furgiuele S, Coste V, Bindels LB et al. 2020. Gut microbiota-induced changes in β-hydroxybutyrate metabolism are linked to altered sociability and depression in alcohol use disorder. Cell Rep 33:108238
    [Google Scholar]
  99. 99. 
    Lee J, Choi J, Selen Alpergin ES, Zhao L, Hartung T et al. 2017. Loss of hepatic mitochondrial long-chain fatty acid oxidation confers resistance to diet-induced obesity and glucose intolerance. Cell Rep 20:655–67
    [Google Scholar]
  100. 100. 
    Lehninger AL, Sudduth HC, Wise JB. 1960. D-β-Hydroxybutyric dehydrogenase of mitochondria. J. Biol. Chem. 235:2450–55
    [Google Scholar]
  101. 101. 
    Li B, Yu Y, Liu K, Zhang Y, Geng Q et al. 2021. β-Hydroxybutyrate inhibits histone deacetylase 3 to promote claudin-5 generation and attenuate cardiac microvascular hyperpermeability in diabetes. Diabetologia 64:226–39
    [Google Scholar]
  102. 102. 
    Lien EC, Vander Heiden MG 2019. A framework for examining how diet impacts tumour metabolism. Nat. Rev. Cancer 19:651–61
    [Google Scholar]
  103. 103. 
    Lommi J, Kupari M, Koskinen P, Naveri H, Leinonen H et al. 1996. Blood ketone bodies in congestive heart failure. J. Am. Coll. Cardiol. 28:665–72
    [Google Scholar]
  104. 104. 
    London ED, Margolin RA, Duara R, Holloway HW, Robertson-Tchabo EA et al. 1986. Effects of fasting on ketone body concentrations in healthy men of different ages. J. Gerontol. 41:599–604
    [Google Scholar]
  105. 105. 
    Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F. 2012. Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle 11:213956–63
    [Google Scholar]
  106. 106. 
    McCommis KS, Chen Z, Fu X, McDonald WG, Colca JR et al. 2015. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab 22:682–94
    [Google Scholar]
  107. 107. 
    McGarry JD, Foster DW. 1971. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J. Biol. Chem. 246:1149–59
    [Google Scholar]
  108. 108. 
    McGarry JD, Foster DW. 1980. Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49:395–420
    [Google Scholar]
  109. 109. 
    Miller VJ, LaFountain RA, Barnhart E, Sapper TS, Short J et al. 2020. A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am. J. Physiol. Endocrinol. Metab. 319:E995–995
    [Google Scholar]
  110. 110. 
    Miyamoto J, Ohue-Kitano R, Mukouyama H, Nishida A, Watanabe K et al. 2019. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. PNAS 116:23813–21
    [Google Scholar]
  111. 111. 
    Mujica-Parodi LR, Amgalan A, Sultan SF, Antal B, Sun X et al. 2020. Diet modulates brain network stability, a biomarker for brain aging, in young adults. PNAS 117:6170–77
    [Google Scholar]
  112. 112. 
    Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A et al. 2020. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370:364–68
    [Google Scholar]
  113. 113. 
    Neudorf H, Myette-Cote E, Little JP. 2020. The impact of acute ingestion of a ketone monoester drink on LPS-stimulated NLRP3 activation in humans with obesity. Nutrients 12:3854
    [Google Scholar]
  114. 114. 
    Neufer PD. 2019. Cutting fuel offers new clues in diabetic mystery. J. Biol. Chem. 294:12328–29
    [Google Scholar]
  115. 115. 
    Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH et al. 2019. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139:2129–41
    [Google Scholar]
  116. 116. 
    Orii KE, Fukao T, Song XQ, Mitchell GA, Kondo N. 2008. Liver-specific silencing of the human gene encoding succinyl-CoA: 3-ketoacid CoA transferase. Tohoku J. Exp. Med. 215:227–36
    [Google Scholar]
  117. 117. 
    Otsuka H, Kimura T, Ago Y, Nakama M, Aoyama Y et al. 2020. Deficiency of 3-hydroxybutyrate dehydrogenase (BDH1) in mice causes low ketone body levels and fatty liver during fasting. J. Inherit. Metab. Dis. 43:960–68
    [Google Scholar]
  118. 118. 
    Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ et al. 2020. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383:1413–24
    [Google Scholar]
  119. 119. 
    Paradies G, Papa S. 1976. Substrate regulation of the pyruvate-transporting system in rat liver mitochondria. FEBS Lett 62:318–21
    [Google Scholar]
  120. 120. 
    Park S, Kim DS, Daily JW. 2011. Central infusion of ketone bodies modulates body weight and hepatic insulin sensitivity by modifying hypothalamic leptin and insulin signaling pathways in type 2 diabetic rats. Brain Res 1401:95–103
    [Google Scholar]
  121. 121. 
    Pedersen KJ. 1929. The ketonic decomposition of beta-keto carboxylic acids. J. Am. Chem. Soc. 51:2098–107
    [Google Scholar]
  122. 122. 
    Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K et al. 2018. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J. Lipid Res. 59:1977–86
    [Google Scholar]
  123. 123. 
    Petersen KF, Befroy DE, Dufour S, Rothman DL, Shulman GI. 2016. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by 13C magnetic resonance spectroscopy. Cell Metab 24:167–71
    [Google Scholar]
  124. 124. 
    Pissios P, Hong S, Kennedy AR, Prasad D, Liu FF, Maratos-Flier E. 2013. Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol. Metab. 2:306–13
    [Google Scholar]
  125. 125. 
    Poff AM, Koutnik AP, Egan B. 2020. Nutritional ketosis with ketogenic diets or exogenous ketones: features, convergence, and divergence. Curr. Sports Med. Rep. 19:251–59
    [Google Scholar]
  126. 126. 
    Pramfalk C, Pavlides M, Banerjee R, McNeil CA, Neubauer S et al. 2015. Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J. Clin. Endocrinol. Metab. 100:4425–33
    [Google Scholar]
  127. 127. 
    Puchalska P, Crawford PA. 2017. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25:262–84
    [Google Scholar]
  128. 128. 
    Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA 2018. Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments. iScience 9:298–313
    [Google Scholar]
  129. 129. 
    Puchalska P, Martin SE, Huang X, Lengfeld JE, Daniel B et al. 2019. Hepatocyte-macrophage acetoacetate shuttle protects against tissue fibrosis. Cell Metab 29:383–98.e7
    [Google Scholar]
  130. 130. 
    Puchalska P, Nelson AB, Stagg DB, Crawford PA. 2021. Determination of ketone bodies in biological samples via rapid UPLC-MS/MS. Talanta 225:122048
    [Google Scholar]
  131. 131. 
    Quant PA, Robin D, Robin P, Girard J, Brand MD. 1989. Control of acetoacetate production from exogenous palmitoyl-CoA in isolated rat liver mitochondria. Biochem. Soc. Trans. 17:1089–90
    [Google Scholar]
  132. 132. 
    Rando G, Tan CK, Khaled N, Montagner A, Leuenberger N et al. 2016. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife 5:e11853
    [Google Scholar]
  133. 133. 
    Rardin MJ, He W, Nishida Y, Newman JC, Carrico C et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–33
    [Google Scholar]
  134. 134. 
    Retterstol K, Svendsen M, Narverud I, Holven KB. 2018. Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: a randomized controlled study. Atherosclerosis 279:52–61
    [Google Scholar]
  135. 135. 
    Riehle C, Abel ED. 2016. Insulin signaling and heart failure. Circ. Res. 118:1151–69
    [Google Scholar]
  136. 136. 
    Robinson AM, Williamson DH. 1980. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60:143–87
    [Google Scholar]
  137. 137. 
    Rodrigues LM, Uribe-Lewis S, Madhu B, Honess DJ, Stubbs M, Griffiths JR. 2017. The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox. Cancer Metab 5:4
    [Google Scholar]
  138. 138. 
    Ruiz M, Labarthe F, Fortier A, Bouchard B, Thompson Legault J et al. 2017. Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am. J. Physiol. Heart Circ. Physiol. 313:H768–768
    [Google Scholar]
  139. 139. 
    Salomón T, Sibbersen C, Hansen J, Britz D, Svart MV et al. 2017. Ketone body acetoacetate buffers methylglyoxal via a non-enzymatic conversion during diabetic and dietary ketosis. Cell Chem. Biol. 24:935–43.e7
    [Google Scholar]
  140. 140. 
    Samuel VT, Shulman GI. 2018. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab 27:22–41
    [Google Scholar]
  141. 141. 
    Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S et al. 2019. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73:1931–44
    [Google Scholar]
  142. 142. 
    Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA et al. 2019. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392:2705–17
    [Google Scholar]
  143. 143. 
    Sasaki K, Sasaki D, Hannya A, Tsubota J, Kondo A. 2020. In vitro human colonic microbiota utilises D-β-hydroxybutyrate to increase butyrogenesis. Sci. Rep. 10:8516
    [Google Scholar]
  144. 144. 
    Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L et al. 2015. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Biol. Chem. 125:4447–62
    [Google Scholar]
  145. 145. 
    Schugar RC, Huang X, Moll AR, Brunt EM, Crawford PA. 2013. Role of choline deficiency in the fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet. PLOS ONE 8:e74806
    [Google Scholar]
  146. 146. 
    Schugar RC, Moll AR, d'Avignon DA, Weinheimer CJ, Kovacs A, Crawford PA. 2014. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol. Metab. 3:754–69
    [Google Scholar]
  147. 147. 
    Selvaraj S, Kelly DP, Margulies KB. 2020. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 141:1800–12
    [Google Scholar]
  148. 148. 
    Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini D. 2010. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468:1100–4
    [Google Scholar]
  149. 149. 
    Shi X, Li X, Li D, Li Y, Song Y et al. 2014. β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes. Cell. Physiol. Biochem. 33:920–32
    [Google Scholar]
  150. 150. 
    Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B et al. 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–61
    [Google Scholar]
  151. 151. 
    Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K et al. 2013. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–14
    [Google Scholar]
  152. 152. 
    Shippy DC, Wilhelm C, Viharkumar PA, Raife TJ, Ulland TK. 2020. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer's disease pathology. J. Neuroinflamm. 17:280
    [Google Scholar]
  153. 153. 
    Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P. 2014. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2:18
    [Google Scholar]
  154. 154. 
    Simithy J, Sidoli S, Yuan ZF, Coradin M, Bhanu NV et al. 2017. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 8:1141
    [Google Scholar]
  155. 155. 
    Soeters MR, Sauerwein HP, Faas L, Smeenge M, Duran M et al. 2009. Effects of insulin on ketogenesis following fasting in lean and obese men. Obesity 17:1326–31
    [Google Scholar]
  156. 156. 
    Sondhi V, Agarwala A, Pandey RM, Chakrabarty B, Jauhari P et al. 2020. Efficacy of ketogenic diet, modified Atkins diet, and low glycemic index therapy diet among children with drug-resistant epilepsy: a randomized clinical trial. JAMA Pediatr 174:944–51
    [Google Scholar]
  157. 157. 
    Song JP, Chen L, Chen X, Ren J, Zhang NN et al. 2020. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci. Transl. Med. 12:eaay8329
    [Google Scholar]
  158. 158. 
    Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N et al. 2020. Glioblastoma utilizes fatty acids and ketone bodies for growth allowing progression during ketogenic diet therapy. iScience 23:101453
    [Google Scholar]
  159. 159. 
    Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ et al. 2017. On the metabolism of exogenous ketones in humans. Front. Physiol. 8:848
    [Google Scholar]
  160. 160. 
    Stubbs BJ, Koutnik AP, Goldberg EL, Upadhyay V, Turnbaugh PJ et al. 2020. Investigating ketone bodies as immunometabolic countermeasures against respiratory viral infections. Med 1:43–65
    [Google Scholar]
  161. 161. 
    Sunny NE, Parks EJ, Browning JD, Burgess SC. 2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–10
    [Google Scholar]
  162. 162. 
    Taggart AK, Kero J, Gan X, Cai TQ, Cheng K et al. 2005. (D)-β-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280:26649–52
    [Google Scholar]
  163. 163. 
    Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L et al. 2016. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J 30:1913–26
    [Google Scholar]
  164. 164. 
    Thomas LK, Ittmann M, Cooper C. 1982. The role of leucine in ketogenesis in starved rats. Biochem. J. 204:399–403
    [Google Scholar]
  165. 165. 
    Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N et al. 2011. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res 21:95–105
    [Google Scholar]
  166. 166. 
    Timper K, Del Rio-Martin A, Cremer AL, Bremser S, Alber J et al. 2020. GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab 31:1189–205.e13
    [Google Scholar]
  167. 167. 
    Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K et al. 2020. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab 32:404–19.e6
    [Google Scholar]
  168. 168. 
    Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A et al. 2003. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9:352–55
    [Google Scholar]
  169. 169. 
    Turko IV, Marcondes S, Murad F. 2001. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am. J. Physiol. Heart Circ. Physiol. 281:H2289–2289
    [Google Scholar]
  170. 170. 
    van Hasselt PM, Ferdinandusse S, Monroe GR, Ruiter JP, Turkenburg M et al. 2014. Monocarboxylate transporter 1 deficiency and ketone utilization. N. Engl. J. Med. 371:1900–7
    [Google Scholar]
  171. 171. 
    Vanoverschelde JL, Wijns W, Kolanowski J, Bol A, Decoster PM et al. 1993. Competition between palmitate and ketone bodies as fuels for the heart: study with positron emission tomography. Am. J. Physiol. Heart Circ. Physiol. 264:H701–701
    [Google Scholar]
  172. 172. 
    Verma S, Rawat S, Ho KL, Wagg CS, Zhang L et al. 2018. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl. Sci. 3:575–87
    [Google Scholar]
  173. 173. 
    Vila-Brau A, De Sousa-Coelho AL, Mayordomo C, Haro D, Marrero PF. 2011. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J. Biol. Chem. 286:20423–30
    [Google Scholar]
  174. 174. 
    von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A et al. 2013. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17:436–47
    [Google Scholar]
  175. 175. 
    Voros G, Ector J, Garweg C, Droogne W, Van Cleemput J et al. 2018. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ. Heart Fail. 11:e004953
    [Google Scholar]
  176. 176. 
    Wagner GR, Bhatt DP, O'Connell TM, Thompson JW, Dubois LG et al. 2017. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab 25:823–37.e8
    [Google Scholar]
  177. 177. 
    Wang Q, Zhou Y, Rychahou P, Fan TWM, Lane AN et al. 2017. Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ 24:458–68
    [Google Scholar]
  178. 178. 
    Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ et al. 2019. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab 30:174–89.e5
    [Google Scholar]
  179. 179. 
    Wang YH, Liu CL, Chiu WC, Twu YC, Liao YJ. 2019. HMGCS2 mediates ketone production and regulates the proliferation and metastasis of hepatocellular carcinoma. Cancers 11:1876
    [Google Scholar]
  180. 180. 
    Wang YH, Suk FM, Liao YJ. 2020. Loss of HMGCS2 enhances lipogenesis and attenuates the protective effect of the ketogenic diet in liver cancer. Cancers 12:1797
    [Google Scholar]
  181. 181. 
    Webber RJ, Edmond J. 1977. Utilization of L(+)-3-hydroxybutyrate, D(−)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat. J. Biol. Chem. 252:5222–26
    [Google Scholar]
  182. 182. 
    Weidemann MJ, Krebs HA. 1969. The fuel of respiration of rat kidney cortex. Biochem. J. 112:149–66
    [Google Scholar]
  183. 183. 
    Wentz AE, d'Avignon DA, Weber ML, Cotter DG, Doherty JM et al. 2010. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J. Biol. Chem. 285:24447–56
    [Google Scholar]
  184. 184. 
    Williamson DH, Bates MW, Page MA, Krebs HA. 1971. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem. J. 121:41–47
    [Google Scholar]
  185. 185. 
    Williamson DH, Lund P, Krebs HA. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–27
    [Google Scholar]
  186. 186. 
    Williamson JR, Scholz R, Browning ET. 1969. Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J. Biol. Chem. 244:4617–27
    [Google Scholar]
  187. 187. 
    Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. 2004. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432:1027–32
    [Google Scholar]
  188. 188. 
    Xia S, Lin R, Jin L, Zhao L, Kang HB et al. 2017. Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab 25:358–73
    [Google Scholar]
  189. 189. 
    Xie Z, Zhang D, Chung D, Tang Z, Huang H et al. 2016. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62:194–206
    [Google Scholar]
  190. 190. 
    Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D et al. 2016. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 24:685–700
    [Google Scholar]
  191. 191. 
    Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M et al. 2015. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 21:263–69
    [Google Scholar]
  192. 192. 
    Zelniker TA, Braunwald E. 2020. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75:422–34
    [Google Scholar]
  193. 193. 
    Zhang D, Yang H, Kong X, Wang K, Mao X et al. 2011. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 300:E287–287
    [Google Scholar]
  194. 194. 
    Zhang J, Jia PP, Liu QL, Cong MH, Gao Y et al. 2018. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J. Lipid Res. 59:625–34
    [Google Scholar]
  195. 195. 
    Zhang S, Xie C. 2017. The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism. Life Sci 183:110–15
    [Google Scholar]
  196. 196. 
    Zhang WW, Churchill S, Lindahl R, Churchill P. 1989. Regulation of D-β-hydroxybutyrate dehydrogenase in rat hepatoma cell lines. Cancer Res 49:2433–37
    [Google Scholar]
  197. 197. 
    Zou K, Hu Y, Li M, Wang H, Zhang Y et al. 2019. Potential role of HMGCS2 in tumor angiogenesis in colorectal cancer and its potential use as a diagnostic marker. Can. J. Gastroenterol. Hepatol. 2019 8348967
    [Google Scholar]
  198. 198. 
    Zwiebel FM, Schwabe U, Olson MS, Scholz R. 1982. Role of pyruvate transporter in the regulation of the pyruvate dehydrogenase multienzyme complex in perfused rat liver. Biochemistry 21:346–53
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-111120-111518
Loading
/content/journals/10.1146/annurev-nutr-111120-111518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error