1932

Abstract

Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to () provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; () identify common pitfalls when selecting a rodent model; and () discuss strengths and limitations of available preclinical models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-120420-032437
2021-10-11
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-120420-032437.html?itemId=/content/journals/10.1146/annurev-nutr-120420-032437&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acosta-Rodriguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS. 2017. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26:267–77.e2
    [Google Scholar]
  2. 2. 
    Adams TD, Stroup AM, Gress RE, Adams KF, Calle EE et al. 2009. Cancer incidence and mortality after gastric bypass surgery. Obesity 17:796–802
    [Google Scholar]
  3. 3. 
    Agarwal U, Didelija IC, Yuan Y, Wang X, Marini JC. 2017. Supplemental citrulline is more efficient than arginine in increasing systemic arginine availability in mice. J. Nutr. 147:596–602
    [Google Scholar]
  4. 4. 
    Allen BG, Bhatia SK, Anderson CM, Eichenberger-Gilmore JM, Sibenaller ZA et al. 2014. Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol 2:963–70
    [Google Scholar]
  5. 5. 
    Altman BJ, Stine ZE, Dang CV. 2016. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16:619–34
    [Google Scholar]
  6. 6. 
    Aminian A. 2018. Sleeve gastrectomy: metabolic surgical procedure of choice?. Trends Endocrinol. Metab. 29:531–34
    [Google Scholar]
  7. 7. 
    Anson RM, Guo Z, de Cabo R, Iyun T, Rios M et al. 2003. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake italicPNAS 1006216–20
    [Google Scholar]
  8. 8. 
    Aune D, Chan DS, Lau R, Vieira R, Greenwood DC et al. 2011. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343:d6617
    [Google Scholar]
  9. 9. 
    Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ et al. 2020. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89
    [Google Scholar]
  10. 10. 
    Banan B, Beckstead JA, Dunavant LE, Sohn Y, Adcock JM et al. 2020. Development of a novel murine model of lymphatic metastasis. Clin. Exp. Metastasis 37:247–55
    [Google Scholar]
  11. 11. 
    Beckwith H, Yee D 2015. Minireview: Were the IGF signaling inhibitors all bad?. Mol. Endocrinol. 29:1549–57
    [Google Scholar]
  12. 12. 
    Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C et al. 2017. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49:1567–75
    [Google Scholar]
  13. 13. 
    Berrigan D, Perkins SN, Haines DC, Hursting SD. 2002. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis 23:817–22
    [Google Scholar]
  14. 14. 
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D et al. 2011. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 1:508–23
    [Google Scholar]
  15. 15. 
    Bonnet D, Dick JE. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:730–37
    [Google Scholar]
  16. 16. 
    Bott AJ, Maimouni S, Zong W-X. 2019. The pleiotropic effects of glutamine metabolism in cancer. Cancers 11:770
    [Google Scholar]
  17. 17. 
    Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE et al. 2013. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J. Exp. Med. 210:2223–37
    [Google Scholar]
  18. 18. 
    Bousquenaud M, Fico F, Solinas G, Rüegg C, Santamaria-Martínez A. 2018. Obesity promotes the expansion of metastasis-initiating cells in breast cancer. Breast Cancer Res 20:104
    [Google Scholar]
  19. 19. 
    Bowers LW, Rossi EL, McDonell SB, Doerstling SS, Khatib SA et al. 2018. Leptin signaling mediates obesity-associated CSC enrichment and EMT in preclinical TNBC models. Mol. Cancer Res. 16:869–79
    [Google Scholar]
  20. 20. 
    Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S et al. 2015. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab 22:86–99
    [Google Scholar]
  21. 21. 
    Bruinsma BG, Uygun K, Yarmush ML, Saeidi N. 2015. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice. Nat. Protoc. 10:495–507
    [Google Scholar]
  22. 22. 
    Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P et al. 2020. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583:620–24
    [Google Scholar]
  23. 23. 
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. 2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348:1625–38
    [Google Scholar]
  24. 24. 
    Chaix A, Zarrinpar A, Miu P, Panda S. 2014. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005
    [Google Scholar]
  25. 25. 
    Chansky K, Benedetti J, Macdonald JS. 2005. Differences in toxicity between men and women treated with 5-fluorouracil therapy for colorectal carcinoma. Cancer 103:1165–71
    [Google Scholar]
  26. 26. 
    Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K et al. 2016. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–64
    [Google Scholar]
  27. 27. 
    Chassaing B, Miles-Brown J, Pellizzon M, Ulman E, Ricci M et al. 2015. Lack of soluble fiber drives diet-induced adiposity in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G528–528
    [Google Scholar]
  28. 28. 
    Chen S, Chen Y, Ma S, Zheng R, Zhao P et al. 2016. Dietary fibre intake and risk of breast cancer: a systematic review and meta-analysis of epidemiological studies. Oncotarget 7:80980–89
    [Google Scholar]
  29. 29. 
    Choi B-H, Coloff JL. 2019. The diverse functions of non-essential amino acids in cancer. Cancers 11:675
    [Google Scholar]
  30. 30. 
    Coleman DL. 1973. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–98
    [Google Scholar]
  31. 31. 
    Coleman DL, Hummel KP. 1969. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217:1298–304
    [Google Scholar]
  32. 32. 
    Combs JA, DeNicola GM. 2019. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers 11:678
    [Google Scholar]
  33. 33. 
    Eur. Comm 2019. 2019 report on the statistics on the use of animals for scientific purposes in the Member States of the European Union in 2015–2017 Rep. Eur. Comm. Brussels:
  34. 34. 
    Cramer SL, Saha A, Liu J, Tadi S, Tiziani S et al. 2017. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23:120–27
    [Google Scholar]
  35. 35. 
    Crusz SM, Balkwill FR. 2015. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12:584–96
    [Google Scholar]
  36. 36. 
    Cruzat V, Macedo Rogero M, Keane KN, Curi R, Newsholme P 2018. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10:1564
    [Google Scholar]
  37. 37. 
    Day CP, Merlino G, Van Dyke T. 2015. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163:39–53
    [Google Scholar]
  38. 38. 
    de Cabo R, Mattson MP. 2019. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381:2541–51
    [Google Scholar]
  39. 39. 
    de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I et al. 2020. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat. Commun. 11:3083
    [Google Scholar]
  40. 40. 
    de la Ballina LR, Cano-Crespo S, González-Muñoz E, Bial S, Estrach S et al. 2016. Amino acid transport associated to cluster of differentiation 98 heavy chain (CD98hc) is at the cross-road of oxidative stress and amino acid availability. J. Biol. Chem. 291:9700–11
    [Google Scholar]
  41. 41. 
    De Rosa G, Misso G, Salzano G, Caraglia M. 2013. Bisphosphonates and cancer: what opportunities from nanotechnology?. J. Drug Deliv. 2013 637976
    [Google Scholar]
  42. 42. 
    Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. 2016. Obesity, inflammation, and cancer. Annu. Rev. Pathol. Mech. Dis. 11:421–49
    [Google Scholar]
  43. 43. 
    Di Biase S, Lee C, Brandhorst S, Manes B, Buono R et al. 2016. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30:136–46
    [Google Scholar]
  44. 44. 
    Dobbs NA, Twelves CJ, Gillies H, James CA, Harper PG, Rubens RD. 1995. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother. Pharmacol. 36:473–76
    [Google Scholar]
  45. 45. 
    Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW et al. 1987. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–78
    [Google Scholar]
  46. 46. 
    Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D et al. 2016. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16:360
    [Google Scholar]
  47. 47. 
    Dorling JL, Das SK, Racette SB, Apolzan JW, Zhang D et al. 2020. Changes in body weight, adherence, and appetite during 2 years of calorie restriction: the CALERIE 2 randomized clinical trial. Eur. J. Clin. Nutr. 74:1210–20
    [Google Scholar]
  48. 48. 
    Dowling RJO, Lam S, Bassi C, Mouaaz S, Aman A et al. 2016. Metformin pharmacokinetics in mouse tumors: implications for human therapy. Cell Metab 23:567–68
    [Google Scholar]
  49. 49. 
    Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M et al. 2016. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab 23:1140–53
    [Google Scholar]
  50. 50. 
    Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK et al. 2017. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. PNAS 114:11404–9
    [Google Scholar]
  51. 51. 
    Ducker GS, Rabinowitz JD. 2017. One-carbon metabolism in health and disease. Cell Metab 25:27–42
    [Google Scholar]
  52. 52. 
    Dunlap SM, Chiao LJ, Nogueira L, Usary J, Perou CM et al. 2012. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev. Res. 5:930–42
    [Google Scholar]
  53. 53. 
    Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L et al. 2007. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5:181–94
    [Google Scholar]
  54. 54. 
    Erickson N, Boscheri A, Linke B, Huebner J. 2017. Systematic review: isocaloric ketogenic dietary regimes for cancer patients. Med. Oncol. 34:72
    [Google Scholar]
  55. 55. 
    Fane M, Weeraratna AT. 2020. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20:89–106
    [Google Scholar]
  56. 56. 
    Farooqi IS, O'Rahilly S. 2008. Mutations in ligands and receptors of the leptin–melanocortin pathway that lead to obesity. Nat. Clin. Pract. Endocrinol. Metab. 4:569–77
    [Google Scholar]
  57. 57. 
    Fischer AW, Cannon B, Nedergaard J. 2019. The answer to the question “What is the best housing temperature to translate mouse experiments to humans?” is: thermoneutrality. Mol. Metab. 26:1–3
    [Google Scholar]
  58. 58. 
    Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P et al. 2015. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res 75:275–83
    [Google Scholar]
  59. 59. 
    Fogh J, Fogh JM, Orfeo T. 1977. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59:221–26
    [Google Scholar]
  60. 60. 
    Fontana L, Klein S. 2007. Aging, adiposity, and calorie restriction. JAMA 297:986–94
    [Google Scholar]
  61. 61. 
    Fontana L, Partridge L. 2015. Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–18
    [Google Scholar]
  62. 62. 
    Fox JG. 2007. The Mouse in Biomedical Research Amsterdam/Boston: Elsevier
  63. 63. 
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. 2018. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14:576–90
    [Google Scholar]
  64. 64. 
    Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA et al. 2019. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res 79:3251
    [Google Scholar]
  65. 65. 
    Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE et al. 2019. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572:397–401
    [Google Scholar]
  66. 66. 
    Gast CE, Shaw AK, Wong MH, Coussens LM. 2017. Surgical procedures and methodology for a preclinical murine model of de novo mammary cancer metastasis. J. Vis. Exp. 125:e54852
    [Google Scholar]
  67. 67. 
    Gibson JT, Orlandella RM, Turbitt WJ, Behring M, Manne U et al. 2020. Obesity-associated myeloid-derived suppressor cells promote apoptosis of tumor-infiltrating CD8 T cells and immunotherapy resistance in breast cancer. Front. Immunol. 11:590794
    [Google Scholar]
  68. 68. 
    Giles ED, Jackman MR, MacLean PS. 2016. Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front. Nutr. 3:50
    [Google Scholar]
  69. 69. 
    Giles ED, Wellberg EA. 2020. Preclinical models to study obesity and breast cancer in females: considerations, caveats, and tools. J. Mammary Gland Biol. Neoplasia 25:23753
    [Google Scholar]
  70. 70. 
    Göbel A, Rauner M, Hofbauer LC, Rachner TD. 2020. Cholesterol and beyond—the role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer 1873:188351
    [Google Scholar]
  71. 71. 
    Golovko D, Kedrin D, Yilmaz OH, Roper J. 2015. Colorectal cancer models for novel drug discovery. Expert Opin. Drug Discov. 10:1217–29
    [Google Scholar]
  72. 72. 
    Gottesman MM, Lavi O, Hall MD, Gillet J-P. 2016. Toward a better understanding of the complexity of cancer drug resistance. Annu. Rev. Pharmacol. Toxicol. 56:85–102
    [Google Scholar]
  73. 73. 
    Gravel SP, Hulea L, Toban N, Birman E, Blouin MJ et al. 2014. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res 74:7521–33
    [Google Scholar]
  74. 74. 
    Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M et al. 2020. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11:938
    [Google Scholar]
  75. 75. 
    Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A 2020. Preclinical murine tumor models: a structural and functional perspective. eLife 9:e50740
    [Google Scholar]
  76. 76. 
    Hanahan D. 1985. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–22
    [Google Scholar]
  77. 77. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  78. 78. 
    Hansen MF, Jensen SO, Fuchtbauer EM, Martensen PM. 2017. High folic acid diet enhances tumour growth in PyMT-induced breast cancer. Br. J. Cancer 116:752–61
    [Google Scholar]
  79. 79. 
    Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B et al. 2011. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int. J. Obes. 35:714–27
    [Google Scholar]
  80. 80. 
    Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC et al. 2020. Multi-omics analysis of the intermittent fasting response in mice identifies an unexpected role for HNF4α. Cell Rep 30:3566–82.e4
    [Google Scholar]
  81. 81. 
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–60
    [Google Scholar]
  82. 82. 
    He R, Yin Y, Yin W, Li Y, Zhao J, Zhang W. 2018. Prevention of pancreatic acinar cell carcinoma by Roux-en-Y gastric bypass surgery. Nat. Commun. 9:4183
    [Google Scholar]
  83. 83. 
    Hervey GR. 1959. The effects of lesions in the hypothalamus in parabiotic rats. J. Physiol. 145:336–52
    [Google Scholar]
  84. 84. 
    Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK et al. 2007. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67:9721–30
    [Google Scholar]
  85. 85. 
    Hirai K, Watanabe S, Nishijima N, Shibata K, Hase A et al. 2020. Molecular and functional analysis of choline transporters and antitumor effects of choline transporter-like protein 1 inhibitors in human pancreatic cancer cells. Int. J. Mol. Sci. 21:5190
    [Google Scholar]
  86. 86. 
    Hofso D, Fatima F, Borgeraas H, Birkeland KI, Gulseth HL et al. 2019. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol 7:912–24
    [Google Scholar]
  87. 87. 
    Hong J, Stubbins RE, Smith RR, Harvey AE, Nunez NP. 2009. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 8:11
    [Google Scholar]
  88. 88. 
    Hopkins BD, Pauli C, Du X, Wang DG, Li X et al. 2018. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560:499–503
    [Google Scholar]
  89. 89. 
    Howlader N, Noone AM, Krapcho M, Miller D, Brest A et al. 2019. SEER Cancer Statistics Review 1975–2017 Bethesda, MD: Natl. Cancer Inst.
  90. 90. 
    Hsieh MH, Choe JH, Gadhvi J, Kim YJ, Arguez MA et al. 2019. p63 and SOX2 dictate glucose reliance and metabolic vulnerabilities in squamous cell carcinomas. Cell Rep 28:1860–78.e9
    [Google Scholar]
  91. 91. 
    Hylander BL, Punt N, Tang H, Hillman J, Vaughan M et al. 2013. Origin of the vasculature supporting growth of primary patient tumor xenografts. J. Transl. Med. 11:110
    [Google Scholar]
  92. 92. 
    Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T et al. 2005. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γchainnull mice. Blood 106:1565–73
    [Google Scholar]
  93. 93. 
    Jackson SJ, Andrews N, Ball D, Bellantuono I, Gray J et al. 2017. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 51:160–69
    [Google Scholar]
  94. 94. 
    Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T et al. 2012. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–44
    [Google Scholar]
  95. 95. 
    Jiang W, Zhu Z, Thompson HJ. 2008. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res 68:5492–99
    [Google Scholar]
  96. 96. 
    Kanarek N, Petrova B, Sabatini DM. 2020. Dietary modifications for enhanced cancer therapy. Nature 579:507–17
    [Google Scholar]
  97. 97. 
    Kang J-S. 2020. Dietary restriction of amino acids for cancer therapy. Nutr. Metab. 17:20
    [Google Scholar]
  98. 98. 
    Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y et al. 2018. Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 9:915–23
    [Google Scholar]
  99. 99. 
    Keshet R, Szlosarek P, Carracedo A, Erez A. 2018. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 18:634–45
    [Google Scholar]
  100. 100. 
    Kim J, Hu Z, Cai L, Li K, Choi E et al. 2017. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546:168–72
    [Google Scholar]
  101. 101. 
    Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S et al. 2018. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14:140–62
    [Google Scholar]
  102. 102. 
    Kok DE, Steegenga WT, Smid EJ, Zoetendal EG, Ulrich CM, Kampman E. 2020. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit. Rev. Food Sci. Nutr. 60:244–56
    [Google Scholar]
  103. 103. 
    Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q et al. 2018. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. 24:5347–56
    [Google Scholar]
  104. 104. 
    Kuijk E, Jager M, van der Roest B, Locati MD, Van Hoeck A et al. 2020. The mutational impact of culturing human pluripotent and adult stem cells. Nat. Commun. 11:2493
    [Google Scholar]
  105. 105. 
    Kurmi K, Haigis MC. 2020. Nitrogen metabolism in cancer and immunity. Trends Cell Biol 30:408–24
    [Google Scholar]
  106. 106. 
    Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. 2014. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7:1248–58
    [Google Scholar]
  107. 107. 
    Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F et al. 2016. Body fatness and cancer—viewpoint of the IARC working group. N. Engl. J. Med. 375:794–98
    [Google Scholar]
  108. 108. 
    LeBoeuf SE, Wu WL, Karakousi TR, Karadal B, Jackson SR et al. 2020. Activation of oxidative stress response in cancer generates a druggable dependency on exogenous non-essential amino acids. Cell Metab 31:339–50.e4
    [Google Scholar]
  109. 109. 
    Lee JS, Adler L, Karathia H, Carmel N, Rabinovich S et al. 2018. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell 174:1559–70.e22
    [Google Scholar]
  110. 110. 
    Lee SS-Y, Bindokas VP, Kron SJ. 2019. Multiplex three-dimensional mapping of macromolecular drug distribution in the tumor microenvironment. Mol. Cancer Ther. 18:213–26
    [Google Scholar]
  111. 111. 
    Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F 1996. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. PNAS 93:1726–30
    [Google Scholar]
  112. 112. 
    Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW et al. 2013. The cystine/glutamate antiporter system xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18:522–55
    [Google Scholar]
  113. 113. 
    Li AM, Ye J. 2020. The PHGDH enigma: Do cancer cells only need serine or also a redox modulator?. Cancer Lett 476:97–105
    [Google Scholar]
  114. 114. 
    Lieu EL, Nguyen T, Rhyne S, Kim J. 2020. Amino acids in cancer. Exp. Mol. Med. 52:15–30
    [Google Scholar]
  115. 115. 
    Lim JKM, Delaidelli A, Minaker SW, Zhang H-F, Colovic M et al. 2019. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. PNAS 116:9433
    [Google Scholar]
  116. 116. 
    Longo VD, Mattson MP. 2014. Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–92
    [Google Scholar]
  117. 117. 
    Lu W-C, Saha A, Yan W, Garrison K, Lamb C et al. 2020. Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. PNAS 117:13000–11
    [Google Scholar]
  118. 118. 
    Luengo A, Gui DY, Vander Heiden MG 2017. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24:1161–80
    [Google Scholar]
  119. 119. 
    Lukey MJ, Katt WP, Cerione RA. 2017. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today 22:796–804
    [Google Scholar]
  120. 120. 
    Lutz TA. 2018. Considering our methods: methodological issues with rodent models of appetite and obesity research. Physiol. Behav. 192:182–87
    [Google Scholar]
  121. 121. 
    MacLean PS, Giles ED, Johnson GC, McDaniel SM, Fleming-Elder BK et al. 2010. A surprising link between the energetics of ovariectomy-induced weight gain and mammary tumor progression in obese rats. Obesity 18:696–703
    [Google Scholar]
  122. 122. 
    Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T et al. 2017. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–76
    [Google Scholar]
  123. 123. 
    Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD. 2007. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice. Mol. Carcinog. 46:42–48
    [Google Scholar]
  124. 124. 
    Marinac CR, Nelson SH, Breen CI, Hartman SJ, Natarajan L et al. 2016. Prolonged nightly fasting and breast cancer prognosis. JAMA Oncol 2:1049–55
    [Google Scholar]
  125. 125. 
    Mariotto E, Viola G, Ronca R, Persano L, Aveic S et al. 2018. Choline kinase alpha inhibition by EB-3D triggers cellular senescence, reduces tumor growth and metastatic dissemination in breast cancer. Cancers 10:391
    [Google Scholar]
  126. 126. 
    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW et al. 2017. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8:14063
    [Google Scholar]
  127. 127. 
    Mesnage R, Defarge N, Rocque L-M, Spiroux de Vendômois J, Séralini G-E 2015. Laboratory rodent diets contain toxic levels of environmental contaminants: implications for regulatory tests. PLOS ONE 10:e0128429
    [Google Scholar]
  128. 128. 
    Meynet O, Ricci JE. 2014. Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol. Med. 20:419–27
    [Google Scholar]
  129. 129. 
    Minton DR, Nam M, McLaughlin DJ, Shin J, Bayraktar EC et al. 2018. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69:610–21.e5
    [Google Scholar]
  130. 130. 
    Mittelman SD. 2020. The role of diet in cancer prevention and chemotherapy efficacy. Annu. Rev. Nutr. 40:273–97
    [Google Scholar]
  131. 131. 
    Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW et al. 2013. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–39
    [Google Scholar]
  132. 132. 
    Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z et al. 2018. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554:128–32
    [Google Scholar]
  133. 133. 
    Moser AR, Pitot HC, Dove WF. 1990. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–24
    [Google Scholar]
  134. 134. 
    Murakami T, Li S, Han Q, Tan Y, Kiyuna T et al. 2017. Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–38
    [Google Scholar]
  135. 135. 
    Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW et al. 2020. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586:790–95
    [Google Scholar]
  136. 136. 
    Nair AB, Jacob S 2016. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7:27–31
    [Google Scholar]
  137. 137. 
    Nakamura M, Suetsugu A, Hasegawa K, Matsumoto T, Aoki H et al. 2017. Choline-deficient-diet-induced fatty liver is a metastasis-resistant microenvironment. Anticancer Res 37:3429–34
    [Google Scholar]
  138. 138. 
    Nambiar PR, Girnun G, Lillo NA, Guda K, Whiteley HE, Rosenberg DW. 2003. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int. J. Oncol. 22:145–50
    [Google Scholar]
  139. 139. 
    NIH (Natl. Inst. Health) 2015. Consideration of sex as a biological variable in NIH-funded research Notice NOT-OD-15-102 NIH, Bethesda MA: https://grants.nih.gov/grants/guide/notice-files/not-od-15-102.html
  140. 140. 
    Nencioni A, Caffa I, Cortellino S, Longo VD. 2018. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18:707–19
    [Google Scholar]
  141. 141. 
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–34
    [Google Scholar]
  142. 142. 
    Niklison-Chirou MV, Erngren I, Engskog M, Haglöf J, Picard D et al. 2017. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes Dev 31:1738–53
    [Google Scholar]
  143. 143. 
    Nunez NP, Perkins SN, Smith NC, Berrigan D, Berendes DM et al. 2008. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr. Cancer 60:534–41
    [Google Scholar]
  144. 144. 
    O'Donnell JS, Massi D, Teng MWL, Mandala M. 2018. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol 48:91–103
    [Google Scholar]
  145. 145. 
    Oleinik NV, Helke KL, Kistner-Griffin E, Krupenko NI, Krupenko SA. 2014. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation. J. Biol. Chem. 289:26383–94
    [Google Scholar]
  146. 146. 
    Orillion A, Damayanti NP, Shen L, Adelaiye-Ogala R, Affronti H et al. 2018. Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin. Cancer Res. 24:6383–95
    [Google Scholar]
  147. 147. 
    Owonikoko TK. 2015. Inhibitors of mTOR pathway for cancer therapy, moving on from rapalogs to TORKinibs. Cancer 121:3390–92
    [Google Scholar]
  148. 148. 
    Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA et al. 2016. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12:452–58
    [Google Scholar]
  149. 149. 
    Panda S. 2016. Circadian physiology of metabolism. Science 354:1008–15
    [Google Scholar]
  150. 150. 
    Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM et al. 2019. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Investig. 129:2964–79
    [Google Scholar]
  151. 151. 
    Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. 2014. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10:455–65
    [Google Scholar]
  152. 152. 
    Parzych K, Saavedra-García P, Valbuena GN, Al-Sadah HA, Robinson ME et al. 2019. The coordinated action of VCP/p97 and GCN2 regulates cancer cell metabolism and proteostasis during nutrient limitation. Oncogene 38:3216–31
    [Google Scholar]
  153. 153. 
    Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM et al. 2018. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab 27:428–38.e5
    [Google Scholar]
  154. 154. 
    Pellizzon MA, Ricci MR. 2018. The common use of improper control diets in diet-induced metabolic disease research confounds data interpretation: the fiber factor. Nutr. Metab. 15:3
    [Google Scholar]
  155. 155. 
    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ et al. 1996. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 13:18–19
    [Google Scholar]
  156. 156. 
    Pieroth R, Paver S, Day S, Lammersfeld C. 2018. Folate and its impact on cancer risk. Curr. Nutr. Rep. 7:70–84
    [Google Scholar]
  157. 157. 
    Prendergast BJ, Onishi KG, Zucker I. 2014. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40:1–5
    [Google Scholar]
  158. 158. 
    Quail DF, Olson OC, Bhardwaj P, Walsh LA, Akkari L et al. 2017. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat. Cell Biol. 19:974–87
    [Google Scholar]
  159. 159. 
    Ribeiro AM, Andrade S, Pinho F, Monteiro JD, Costa M et al. 2010. Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int. J. Exp. Pathol. 91:374–86
    [Google Scholar]
  160. 160. 
    Riess C, Shokraie F, Classen CF, Kreikemeyer B, Fiedler T et al. 2018. Arginine-depleting enzymes—an increasingly recognized treatment strategy for therapy-refractory malignancies. Cell. Physiol. Biochem 51:85470
    [Google Scholar]
  161. 161. 
    Robanus-Maandag EC, Koelink PJ, Breukel C, Salvatori DC, Jagmohan-Changur SC et al. 2010. A new conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31:946–52
    [Google Scholar]
  162. 162. 
    Roper J, Tammela T, Akkad A, Almeqdadi M, Santos SB et al. 2018. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat. Protoc. 13:217–34
    [Google Scholar]
  163. 163. 
    Saggar J, Yu M, Tan Q, Tannock I. 2013. The tumor microenvironment and strategies to improve drug distribution. Front. Oncol. 3:154
    [Google Scholar]
  164. 164. 
    Sanderson SM, Gao X, Dai Z, Locasale JW. 2019. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19:625–37
    [Google Scholar]
  165. 165. 
    Saxena M, Christofori G. 2013. Rebuilding cancer metastasis in the mouse. Mol. Oncol. 7:283–96
    [Google Scholar]
  166. 166. 
    Sayin VI, LeBoeuf SE, Singh SX, Davidson SM, Biancur D et al. 2017. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. eLife 6:e28083
    [Google Scholar]
  167. 167. 
    Schauer DP, Feigelson HS, Koebnick C, Caan B, Weinmann S et al. 2019. Bariatric surgery and the risk of cancer in a large multisite cohort. Ann. Surg. 269:95–101
    [Google Scholar]
  168. 168. 
    Schemmel R, Mickelsen O, Gill JL. 1970. Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J. Nutr. 100:1041–48
    [Google Scholar]
  169. 169. 
    Sengupta P. 2013. The laboratory rat: relating its age with human's. Int. J. Prev. Med. 4:624–30
    [Google Scholar]
  170. 170. 
    Serra M, Marongiu F, Pisu MG, Serra M, Laconi E. 2019. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging 11:3851–63
    [Google Scholar]
  171. 171. 
    Seyhan AA. 2019. Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Transl. Med. Commun. 4:18
    [Google Scholar]
  172. 172. 
    Sharma V, McNeill JH. 2009. To scale or not to scale: the principles of dose extrapolation. Br. J. Pharmacol. 157:907–21
    [Google Scholar]
  173. 173. 
    Shin C-S, Mishra P, Watrous JD, Carelli V, D'Aurelio M et al. 2017. The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat. Commun. 8:15074
    [Google Scholar]
  174. 174. 
    Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. 2014. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014:694–708
    [Google Scholar]
  175. 175. 
    Sinclair LV, Howden AJ, Brenes A, Spinelli L, Hukelmann JL et al. 2019. Antigen receptor control of methionine metabolism in T cells. eLife 8:e44210
    [Google Scholar]
  176. 176. 
    Siolas D, Hannon GJ. 2013. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73:5315–19
    [Google Scholar]
  177. 177. 
    Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC et al. 2014. High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3 4:2353–63
    [Google Scholar]
  178. 178. 
    Speakman JR. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 43:1491–92
    [Google Scholar]
  179. 179. 
    Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS et al. 2017. Genomes of the mouse collaborative cross. Genetics 206:537–56
    [Google Scholar]
  180. 180. 
    Steeg PS. 2016. Targeting metastasis. Nat. Rev. Cancer 16:201–18
    [Google Scholar]
  181. 181. 
    Stemmer K, Kotzbeck P, Zani F, Bauer M, Neff C et al. 2015. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int. J. Obes. 39:791–97
    [Google Scholar]
  182. 182. 
    Stewart TA, Pattengale PK, Leder P. 1984. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–37
    [Google Scholar]
  183. 183. 
    Sulli G, Lam MTY, Panda S. 2019. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer 5:475–94
    [Google Scholar]
  184. 184. 
    Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R et al. 2012. High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190:437–47
    [Google Scholar]
  185. 185. 
    Swindell WR. 2012. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res. Rev. 11:254–70
    [Google Scholar]
  186. 186. 
    Thomas KR, Capecchi MR. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–12
    [Google Scholar]
  187. 187. 
    Thomas RM, Van Dyke T, Merlino G, Day CP. 2016. Concepts in cancer modeling: a brief history. Cancer Res 76:5921–25
    [Google Scholar]
  188. 188. 
    Threadgill DW, Miller DR, Churchill GA, de Villena FP. 2011. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 52:24–31
    [Google Scholar]
  189. 189. 
    Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC et al. 2020. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585:113–18
    [Google Scholar]
  190. 190. 
    Agric. Res. Serv 2018. What we eat in America, NHANES 2015–2016 Rep., Agric. Res. Serv., US Dep. Agric. Washington, DC: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1516/tables_1-36_2015-2016.pdf
    [Google Scholar]
  191. 191. 
    US Dep. Agric., US Dep. Health Hum. Serv 2020. Dietary guidelines for Americans, 2020–2025 Guidel., US Dep. Agric., US Dep. Health Hum. Serv. Washington, DC: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf
  192. 192. 
    van de Steeg E, Kleemann R, Jansen HT, van Duyvenvoorde W, Offerman EH et al. 2013. Combined analysis of pharmacokinetic and efficacy data of preclinical studies with statins markedly improves translation of drug efficacy to human trials. J. Pharmacol. Exp. Ther. 347:635–44
    [Google Scholar]
  193. 193. 
    Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. 2018. Metformin as an anticancer agent. Trends Pharmacol. Sci. 39:867–78
    [Google Scholar]
  194. 194. 
    Varady KA. 2011. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss?. Obes. Rev. 12:e593–593
    [Google Scholar]
  195. 195. 
    Veettil SK, Lim KG, Ching SM, Saokaew S, Phisalprapa P, Chaiyakunapruk N. 2017. Effects of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. BMC Cancer 17:763
    [Google Scholar]
  196. 196. 
    Vettore L, Westbrook RL, Tennant DA. 2020. New aspects of amino acid metabolism in cancer. Br. J. Cancer 122:150–56
    [Google Scholar]
  197. 197. 
    Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F et al. 2020. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11:362
    [Google Scholar]
  198. 198. 
    Visentin M, Zhao R, Goldman ID. 2012. The antifolates. Hematol. Oncol. Clin. North Am. 26:629–48
    [Google Scholar]
  199. 199. 
    Wallace JL, McKnight W, Reuter BK, Vergnolle N. 2000. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology 119:706–14
    [Google Scholar]
  200. 200. 
    Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL et al. 2017. Humanized mouse models of clinical disease. Annu. Rev. Pathol. Mech. Dis. 12:187–215
    [Google Scholar]
  201. 201. 
    Wanders D, Stone KP, Forney LA, Cortez CC, Dille KN et al. 2016. Role of GCN2-independent signaling through a noncanonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 65:1499–510
    [Google Scholar]
  202. 202. 
    Wang P, Wang Y, Langley SA, Zhou YX, Jen KY et al. 2019. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 68:1942–52
    [Google Scholar]
  203. 203. 
    Watanabe S, Nishijima N, Hirai K, Shibata K, Hase A et al. 2020. Anticancer activity of Amb4269951, a choline transporter-like protein 1 inhibitor, in human glioma cells. Pharmaceuticals 13:104
    [Google Scholar]
  204. 204. 
    Wege AK, Ernst W, Eckl J, Frankenberger B, Vollmann-Zwerenz A et al. 2011. Humanized tumor mice—a new model to study and manipulate the immune response in advanced cancer therapy. Int. J. Cancer 129:2194–206
    [Google Scholar]
  205. 205. 
    Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW et al. 2017. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9:eaai8700
    [Google Scholar]
  206. 206. 
    Wei Z, Song J, Wang G, Cui X, Zheng J et al. 2018. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun. 9:4468
    [Google Scholar]
  207. 207. 
    Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S et al. 2020. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31:92–104.e5
    [Google Scholar]
  208. 208. 
    Winter JM, Gildea DE, Andreas JP, Gatti DM, Williams KA et al. 2017. Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate cancer. Cell Syst 4:31–45.e6
    [Google Scholar]
  209. 209. 
    Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y et al. 2014. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26:549–64
    [Google Scholar]
  210. 210. 
    World Cancer Res. Fund, Am. Inst. Cancer Res 2018. Diet, nutrition, physical activity and cancer: a global perspective: the third expert report Rep., World Cancer Res. Fund London:
  211. 211. 
    Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E et al. 2017. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171:642–54.e12
    [Google Scholar]
  212. 212. 
    Yang L, Garcia Canaveras JC, Chen Z, Wang L, Liang L et al. 2020. Serine catabolism feeds NADH when respiration is impaired. Cell Metab 31:809–21.e6
    [Google Scholar]
  213. 213. 
    Yang X, Wang Z, Li X, Liu B, Liu M et al. 2018. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res 78:372
    [Google Scholar]
  214. 214. 
    Ye J, Fan J, Venneti S, Wan YW, Pawel BR et al. 2014. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406–17
    [Google Scholar]
  215. 215. 
    Yoon DY, Mansukhani NA, Stubbs VC, Helenowski IB, Woodruff TK, Kibbe MR. 2014. Sex bias exists in basic science and translational surgical research. Surgery 156:508–16
    [Google Scholar]
  216. 216. 
    Zeisel S. 2017. Choline, other methyl-donors and epigenetics. Nutrients 9:445
    [Google Scholar]
  217. 217. 
    Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H et al. 2019. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26:623–33.e9
    [Google Scholar]
  218. 218. 
    Zhao R, Coker OO, Wu J, Zhou Y, Zhao L et al. 2020. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159:969–83.e4
    [Google Scholar]
  219. 219. 
    Zhao Y, Liu M, Chan XY, Tan SY, Subramaniam S et al. 2017. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice. Blood 130:1995–2005
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-120420-032437
Loading
/content/journals/10.1146/annurev-nutr-120420-032437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error