1932

Abstract

Nutrient content and nutrient timing are considered key regulators of human health and a variety of diseases and involve complex interactions with the mucosal immune system. In particular, the innate immune system is emerging as an important signaling hub that modulates the response to nutritional signals, in part via signaling through the gut microbiota. In this review we elucidate emerging evidence that interactions between innate immunity and diet affect human metabolic health and disease, including cardiometabolic disorders, allergic diseases, autoimmune disorders, infections, and cancers. Furthermore, we discuss the potential modulatory effects of the gut microbiota on interactions between the immune system and nutrition in health and disease, namely how it relays nutritional signals to the innate immune system under specific physiological contexts. Finally, we identify key open questions and challenges to comprehensively understanding the intersection between nutrition and innate immunity and how potential nutritional, immune, and microbial therapeutics may be developed into promising future avenues of precision treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-120919-094440
2020-08-21
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-120919-094440.html?itemId=/content/journals/10.1146/annurev-nutr-120919-094440&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW et al. 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11:191–98
    [Google Scholar]
  2. 2. 
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–95
    [Google Scholar]
  3. 3. 
    Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J 2018. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight 3:e99223
    [Google Scholar]
  4. 4. 
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104:979–84
    [Google Scholar]
  5. 5. 
    Baldry EL, Aithal GP, Kaye P, Idris IR, Bennett A et al. 2017. Effects of short-term energy restriction on liver lipid content and inflammatory status in severely obese adults: results of a randomized controlled trial using 2 dietary approaches. Diabetes Obes. Metab. 19:1179–83
    [Google Scholar]
  6. 6. 
    Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E et al. 2005. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174:4345–55
    [Google Scholar]
  7. 7. 
    Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L et al. 2012. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 95:1003–12
    [Google Scholar]
  8. 8. 
    Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM et al. 2004. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10:416–21
    [Google Scholar]
  9. 9. 
    Boulenouar S, Michelet X, Duquette D, Alvarez D, Hogan AE et al. 2017. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 46:273–86
    [Google Scholar]
  10. 10. 
    Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M et al. 2017. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356:44–50
    [Google Scholar]
  11. 11. 
    Brassard D, Tessier-Grenier M, Allaire J, Rajendiran E, She Y et al. 2017. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: a randomized controlled trial. Am. J. Clin. Nutr. 105:800–9
    [Google Scholar]
  12. 12. 
    Bray F, Soerjomataram I. 2015. The changing global burden of cancer: transitions in human development and implications for cancer prevention and control. Cancer, Vol. 3: Disease Control Priorities H Gelband, P Jha, R Sankaranarayanan, S Horton 23–44 Washington, DC: Int. Bank Reconstr. Dev./World Bank. , 3rd ed..
    [Google Scholar]
  13. 13. 
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519:242–46
    [Google Scholar]
  14. 14. 
    Brown EM, Wlodarska M, Willing BP, Vonaesch P, Han J et al. 2015. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6:7806
    [Google Scholar]
  15. 15. 
    Burrows K, Antignano F, Chenery A, Bramhall M, Korinek V et al. 2018. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis. PLOS Pathog 14:e1006869
    [Google Scholar]
  16. 16. 
    Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–68
    [Google Scholar]
  17. 17. 
    Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA et al. 2018. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11:785–95
    [Google Scholar]
  18. 18. 
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM et al. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57:1470–81
    [Google Scholar]
  19. 19. 
    Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P et al. 2012. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55:2823–34
    [Google Scholar]
  20. 20. 
    Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T et al. 2019. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 68:1430–38
    [Google Scholar]
  21. 21. 
    Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54
    [Google Scholar]
  22. 22. 
    Chan J, Tian Y, Tanaka KE, Tsang MS, Yu K et al. 1996. Effects of protein calorie malnutrition on tuberculosis in mice. PNAS 93:14857–61
    [Google Scholar]
  23. 23. 
    Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR et al. 2017. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep 18:2415–26
    [Google Scholar]
  24. 24. 
    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al. 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96
    [Google Scholar]
  25. 25. 
    Christ A, Gunther P, Lauterbach MAR, Duewell P, Biswas D et al. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172:162–75.e14
    [Google Scholar]
  26. 26. 
    Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J et al. 2012. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLOS ONE 7:e30571
    [Google Scholar]
  27. 27. 
    Cloots RHE, Poynter ME, Terwindt E, Lamers WH, Köhler SE 2018. Hypoargininemia exacerbates airway hyperresponsiveness in a mouse model of asthma. Respir. Res. 19:98
    [Google Scholar]
  28. 28. 
    Cordingley J, Nicol T. 1961. Effect of added vitamins on the phagocytic activity of the reticulo-endothelial system of mice. Nature 191:82–83
    [Google Scholar]
  29. 29. 
    Costes LMM, Lindenbergh-Kortleve DJ, van Berkel LA, Veenbergen S, Raatgeep HRC et al. 2019. IL-10 signaling prevents gluten-dependent intraepithelial CD4+ cytotoxic T lymphocyte infiltration and epithelial damage in the small intestine. Mucosal Immunol 12:479–90
    [Google Scholar]
  30. 30. 
    Dalmas E, Lehmann FM, Dror E, Wueest S, Thienel C et al. 2017. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity 47:928–42.e7
    [Google Scholar]
  31. 31. 
    DeChristopher LR, Tucker KL. 2018. Excess free fructose, high-fructose corn syrup and adult asthma: the Framingham Offspring Cohort. Br. J. Nutr. 119:1157–67
    [Google Scholar]
  32. 32. 
    Degos L, Wang ZY. 2001. All trans retinoic acid in acute promyelocytic leukemia. Oncogene 20:7140–45
    [Google Scholar]
  33. 33. 
    Demir S, Artim-Esen B, Sahinkaya Y, Pehlivan O, Alpay-Kanitez N et al. 2016. Metabolic syndrome is not only a risk factor for cardiovascular diseases in systemic lupus erythematosus but is also associated with cumulative organ damage: a cross-sectional analysis of 311 patients. Lupus 25:177–84
    [Google Scholar]
  34. 34. 
    Depommier C, Everard A, Druart C, Plovier H, Van Hul M et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:1096–103
    [Google Scholar]
  35. 35. 
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–53.e21
    [Google Scholar]
  36. 36. 
    Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG et al. 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–21
    [Google Scholar]
  37. 37. 
    Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N et al. 2012. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 97:E1677–85
    [Google Scholar]
  38. 38. 
    Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M 2013. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 17:860–72
    [Google Scholar]
  39. 39. 
    Dupree JL, Feinstein DL. 2018. Influence of diet on axonal damage in the EAE mouse model of multiple sclerosis. J. Neuroimmunol. 322:9–14
    [Google Scholar]
  40. 40. 
    Ebers GC. 2008. Environmental factors and multiple sclerosis. Lancet Neurol 7:268–77
    [Google Scholar]
  41. 41. 
    Eder W, Ege MJ, von Mutius E 2006. The asthma epidemic. N. Engl. J. Med. 355:2226–35
    [Google Scholar]
  42. 42. 
    Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N et al. 2012. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15:518–33
    [Google Scholar]
  43. 43. 
    Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA et al. 2007. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–70
    [Google Scholar]
  44. 44. 
    Eiwegger T, Hung L, San Diego KE, O'Mahony L, Upton J 2019. Recent developments and highlights in food allergy. Allergy 74:2355–67
    [Google Scholar]
  45. 45. 
    Elgazar-Carmon V, Rudich A, Hadad N, Levy R 2008. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res. 49:1894–903
    [Google Scholar]
  46. 46. 
    Erridge C, Attina T, Spickett CM, Webb DJ 2007. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86:1286–92
    [Google Scholar]
  47. 47. 
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D et al. 2018. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378:e34
    [Google Scholar]
  48. 48. 
    Fabbiano S, Suárez-Zamorano N, Chevalier C, Lazarević V, Kieser S et al. 2018. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab 28:907–21.e7
    [Google Scholar]
  49. 49. 
    Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Stevanovic Dokic A et al. 2016. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab 24:434–46
    [Google Scholar]
  50. 50. 
    Farnsworth CW, Schott EM, Benvie A, Kates SL, Schwarz EM et al. 2018. Exacerbated Staphylococcus aureus foot infections in obese/diabetic mice are associated with impaired germinal center reactions, Ig class switching, and humoral immunity. J. Immunol. 201:560–72
    [Google Scholar]
  51. 51. 
    Feng RN, Niu YC, Sun XW, Li Q, Zhao C et al. 2013. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial. Diabetologia 56:985–94
    [Google Scholar]
  52. 52. 
    Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ et al. 2014. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity 22:747–57
    [Google Scholar]
  53. 53. 
    Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R et al. 2015. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64:2116–28
    [Google Scholar]
  54. 54. 
    Fleischman A, Shoelson SE, Bernier R, Goldfine AB 2008. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31:289–94
    [Google Scholar]
  55. 55. 
    Forno E, Han YY, Libman IM, Muzumdar RH, Celedon JC 2018. Adiposity and asthma in a nationwide study of children and adults in the United States. Ann. Am. Thorac. Soc. 15:322–30
    [Google Scholar]
  56. 56. 
    Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V et al. 2012. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. PNAS 109:E1868–77
    [Google Scholar]
  57. 57. 
    Gao Z, Yin J, Zhang J, Ward RE, Martin RJ et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17
    [Google Scholar]
  58. 58. 
    Garidou L, Pomie C, Klopp P, Waget A, Charpentier J et al. 2015. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab 22:100–12
    [Google Scholar]
  59. 59. 
    Ghavipour M, Saedisomeolia A, Djalali M, Sotoudeh G, Eshraghyan MR et al. 2013. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 109:2031–35
    [Google Scholar]
  60. 60. 
    Goldberg RF, Austen WG Jr., Zhang X, Munene G, Mostafa G et al. 2008. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. PNAS 105:3551–56
    [Google Scholar]
  61. 61. 
    Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P et al. 2013. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56:714–23
    [Google Scholar]
  62. 62. 
    Graham KL, Werner BJ, Moyer KM, Patton AK, Krois CR et al. 2019. DGAT1 inhibits retinol-dependent regulatory T cell formation and mediates autoimmune encephalomyelitis. PNAS 116:3126–35
    [Google Scholar]
  63. 63. 
    Gronke K, Hernández PP, Zimmermann J, Klose CSN, Kofoed-Branzk M et al. 2019. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566:249–53
    [Google Scholar]
  64. 64. 
    Guillemot-Legris O, Muccioli GG. 2017. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci 40:237–53
    [Google Scholar]
  65. 65. 
    Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ 2012. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem. 120:1060–71
    [Google Scholar]
  66. 66. 
    Han MS, Jung DY, Morel C, Lakhani SA, Kim JK et al. 2013. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–22
    [Google Scholar]
  67. 67. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  68. 68. 
    Hanna Kazazian N, Wang Y, Roussel-Queval A, Marcadet L, Chasson L et al. 2019. Lupus autoimmunity and metabolic parameters are exacerbated upon high fat diet-induced obesity due to TLR7 signaling. Front. Immunol. 10:2015
    [Google Scholar]
  69. 69. 
    Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM et al. 2011. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Investig. 121:1858–70
    [Google Scholar]
  70. 70. 
    Honda T, Kabashima K. 2019. Current understanding of the role of dietary lipids in the pathophysiology of psoriasis. J. Dermatol. Sci. 94:314–20
    [Google Scholar]
  71. 71. 
    Hotamisligil GS, Shargill NS, Spiegelman BM 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91
    [Google Scholar]
  72. 72. 
    Hou JK, Abraham B, El-Serag H 2011. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106:563–73
    [Google Scholar]
  73. 73. 
    Hussain M, Bonilla-Rosso G, Kwong Chung CKC, Bäriswyl L, Rodriguez MP et al. 2019. High dietary fat intake induces a microbiota signature that promotes food allergy. J. Allergy Clin. Immunol. 144:157–70.e8
    [Google Scholar]
  74. 74. 
    Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F et al. 2010. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–405
    [Google Scholar]
  75. 75. 
    Inouye KE, Shi H, Howard JK, Daly CH, Lord GM et al. 2007. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56:2242–50
    [Google Scholar]
  76. 76. 
    Ji Y, Sun S, Xu A, Bhargava P, Yang L et al. 2012. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J. Biol. Chem. 287:13561–71
    [Google Scholar]
  77. 77. 
    Ji Z, Wu S, Xu Y, Qi J, Su X, Shen L 2019. Obesity promotes EAE through IL-6 and CCL-2-mediated T cells infiltration. Front. Immunol. 10:1881
    [Google Scholar]
  78. 78. 
    Juttukonda LJ, Berends ETM, Zackular JP, Moore JL, Stier MT et al. 2017. Dietary manganese promotes staphylococcal infection of the heart. Cell Host Microbe 22:531–42.e8
    [Google Scholar]
  79. 79. 
    Kawasaki A, Furukawa H, Kondo Y, Ito S, Hayashi T et al. 2011. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res. Ther. 13:R41
    [Google Scholar]
  80. 80. 
    Keller CW, Sina C, Kotur MB, Ramelli G, Mundt S et al. 2017. ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4+ T cell pathogenicity during CNS inflammation. PNAS 114:E11228–37
    [Google Scholar]
  81. 81. 
    Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F et al. 2002. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347:185–92
    [Google Scholar]
  82. 82. 
    Kim IW, Myung SJ, Do MY, Ryu YM, Kim MJ et al. 2010. Western-style diets induce macrophage infiltration and contribute to colitis-associated carcinogenesis. J. Gastroenterol. Hepatol. 25:1785–94
    [Google Scholar]
  83. 83. 
    Kim YI. 2003. Role of folate in colon cancer development and progression. J. Nutr. 133:11 Suppl. 13731S–39S
    [Google Scholar]
  84. 84. 
    Kirk EA, Sagawa ZK, McDonald TO, O'Brien KD, Heinecke JW 2008. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 57:1254–61
    [Google Scholar]
  85. 85. 
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N et al. 2013. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–22
    [Google Scholar]
  86. 86. 
    Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J et al. 2009. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–59
    [Google Scholar]
  87. 87. 
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85
    [Google Scholar]
  88. 88. 
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–45
    [Google Scholar]
  89. 89. 
    Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV et al. 2017. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26:611–19.e6
    [Google Scholar]
  90. 90. 
    Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N et al. 2017. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 25:1243–53.e5
    [Google Scholar]
  91. 91. 
    Kosaraju R, Guesdon W, Crouch MJ, Teague HL, Sullivan EM et al. 2017. B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J. Immunol. 198:4738–52
    [Google Scholar]
  92. 92. 
    Kostovcikova K, Coufal S, Galanova N, Fajstova A, Hudcovic T et al. 2019. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front. Immunol. 10:919
    [Google Scholar]
  93. 93. 
    Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F et al. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. . Cell Metab 22:971–82
    [Google Scholar]
  94. 94. 
    Kratz M, Kuzma JN, Hagman DK, van Yserloo B, Matthys CC et al. 2013. n3 PUFAs do not affect adipose tissue inflammation in overweight to moderately obese men and women. J. Nutr. 143:1340–47
    [Google Scholar]
  95. 95. 
    Krenkel O, Hundertmark J, Abdallah AT, Kohlhepp M, Puengel T et al. 2020. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69:551–63
    [Google Scholar]
  96. 96. 
    Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV et al. 2018. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23:1099–111
    [Google Scholar]
  97. 97. 
    Kunz M, Simon JC, Saalbach A 2019. Psoriasis: obesity and fatty acids. Front. Immunol. 10:1807
    [Google Scholar]
  98. 98. 
    Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S et al. 2018. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27:1096–110.e5
    [Google Scholar]
  99. 99. 
    Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG et al. 2019. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome 7:7
    [Google Scholar]
  100. 100. 
    Lazar MA. 2005. How obesity causes diabetes: not a tall tale. Science 307:373–75
    [Google Scholar]
  101. 101. 
    Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D et al. 2016. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab 23:685–98
    [Google Scholar]
  102. 102. 
    Lee JY, Sohn KH, Rhee SH, Hwang D 2001. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276:16683–89
    [Google Scholar]
  103. 103. 
    Lee YS, Wollam J, Olefsky JM 2018. An integrated view of immunometabolism. Cell 172:22–40
    [Google Scholar]
  104. 104. 
    Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G et al. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–43
    [Google Scholar]
  105. 105. 
    Li P, Liu S, Lu M, Bandyopadhyay G, Oh D et al. 2016. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167:973–84.e12
    [Google Scholar]
  106. 106. 
    Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S et al. 2015. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21:239–47
    [Google Scholar]
  107. 107. 
    Liu J, Divoux A, Sun J, Zhang J, Clement K et al. 2009. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15:940–45
    [Google Scholar]
  108. 108. 
    López-Alarcón M, Inda-Icaza P, Márquez-Maldonado MC, Armenta-Álvarez A, Barbosa-Cortés L et al. 2019. A randomized control trial of the impact of LCPUFA-ω3 supplementation on body weight and insulin resistance in pubertal children with obesity. Pediatr. Obes. 14:e12499
    [Google Scholar]
  109. 109. 
    Lumeng CN, Bodzin JL, Saltiel AR 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117:175–84
    [Google Scholar]
  110. 110. 
    Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23
    [Google Scholar]
  111. 111. 
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE et al. 2012. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37:574–87
    [Google Scholar]
  112. 112. 
    Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C 2009. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur. J. Immunol. 39:1893–901
    [Google Scholar]
  113. 113. 
    Ma X, Torbenson M, Hamad AR, Soloski MJ, Li Z 2008. High-fat diet modulates non-CD1d-restricted natural killer T cells and regulatory T cells in mouse colon and exacerbates experimental colitis. Clin. Exp. Immunol. 151:130–38
    [Google Scholar]
  114. 114. 
    Maedler K, Fontana A, Ris F, Sergeev P, Toso C et al. 2002. FLIP switches Fas-mediated glucose signaling in human pancreatic β cells from apoptosis to cell replication. PNAS 99:8236–41
    [Google Scholar]
  115. 115. 
    Makki K, Deehan EC, Walter J, Backhed F 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–15
    [Google Scholar]
  116. 116. 
    Marengo A, Rosso C, Bugianesi E 2016. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med. 67:103–17
    [Google Scholar]
  117. 117. 
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–86
    [Google Scholar]
  118. 118. 
    Matveeva O, Bogie JFJ, Hendriks JJA, Linker RA, Haghikia A, Kleinewietfeld M 2018. Western lifestyle and immunopathology of multiple sclerosis. Ann. N. Y. Acad. Sci. 1417:71–86
    [Google Scholar]
  119. 119. 
    Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG et al. 2019. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 176:967–81.e19
    [Google Scholar]
  120. 120. 
    Metidji A, Omenetti S, Crotta S, Li Y, Nye E et al. 2018. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49:353–62.e5
    [Google Scholar]
  121. 121. 
    Miras C, Mantzos J, Samara V 1964. In vitro incorporation of acetate-1-14C into the leucocyte lipids following a high protein or fatty meal. Nature 202:801–3
    [Google Scholar]
  122. 122. 
    Moreira TG, Horta LS, Gomes-Santos AC, Oliveira RP, Queiroz N et al. 2019. CLA-supplemented diet accelerates experimental colorectal cancer by inducing TGF-β-producing macrophages and T cells. Mucosal Immunol 12:188–99
    [Google Scholar]
  123. 123. 
    Morinaga H, Mayoral R, Heinrichsdorff J, Osborn O, Franck N et al. 2015. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 64:1120–30
    [Google Scholar]
  124. 124. 
    Mozaffarian D, Micha R, Wallace S 2010. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLOS Med 7:e1000252
    [Google Scholar]
  125. 125. 
    Munro IA, Garg ML. 2012. Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br. J. Nutr. 108:1466–74
    [Google Scholar]
  126. 126. 
    Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MK et al. 2016. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 23:155–64
    [Google Scholar]
  127. 127. 
    Nagy MR, McGlumphy KC, Dopp R, Lewis TC, Hasson RE 2020. Association between asthma, obesity, and health behaviors in African American youth. J. Asthma 57:410–20
    [Google Scholar]
  128. 128. 
    Nakajima A, Nakatani A, Hasegawa S, Irie J, Ozawa K et al. 2017. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLOS ONE 12:e0179696
    [Google Scholar]
  129. 129. 
    Nakamizo S, Honda T, Adachi A, Nagatake T, Kunisawa J et al. 2017. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci. Rep. 7:14076
    [Google Scholar]
  130. 130. 
    Neerven R, Savelkoul H. 2017. Nutrition and allergic diseases. Nutrients 9:E762
    [Google Scholar]
  131. 131. 
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–81
    [Google Scholar]
  132. 132. 
    Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA et al. 2007. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282:35279–92
    [Google Scholar]
  133. 133. 
    Nobs SP, Elinav E. 2019. Walk on the wildling side. Science 365:444–45
    [Google Scholar]
  134. 134. 
    Nobs SP, Kopf M. 2018. PPAR-γ in innate and adaptive lung immunity. J. Leukoc. Biol. 104:737–41
    [Google Scholar]
  135. 135. 
    Nobs SP, Tuganbaev T, Elinav E 2019. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 20:e47129
    [Google Scholar]
  136. 136. 
    Nowotny B, Zahiragic L, Bierwagen A, Kabisch S, Groener JB et al. 2015. Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial. Diabetologia 58:255–64
    [Google Scholar]
  137. 137. 
    Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C et al. 2010. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59:916–25
    [Google Scholar]
  138. 138. 
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H et al. 2010. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–98
    [Google Scholar]
  139. 139. 
    Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D et al. 2014. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20:942–47
    [Google Scholar]
  140. 140. 
    O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F et al. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6:6342
    [Google Scholar]
  141. 141. 
    O'Rourke RW, Metcalf MD, White AE, Madala A, Winters BR et al. 2009. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int. J. Obes. 33:978–90
    [Google Scholar]
  142. 142. 
    O'Rourke RW, Meyer KA, Neeley CK, Gaston GD, Sekhri P et al. 2014. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity 22:2109–14
    [Google Scholar]
  143. 143. 
    O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P et al. 2016. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45:428–41
    [Google Scholar]
  144. 144. 
    Pal D, Dasgupta S, Kundu R, Maitra S, Das G et al. 2012. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18:1279–85
    [Google Scholar]
  145. 145. 
    Park E, Wong V, Guan X, Oprescu AI, Giacca A 2007. Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo. J. Endocrinol. 195:323–31
    [Google Scholar]
  146. 146. 
    Park EJ, Lee JH, Yu GY, He G, Ali SR et al. 2010. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208
    [Google Scholar]
  147. 147. 
    Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D et al. 2004. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279:7370–77
    [Google Scholar]
  148. 148. 
    Patsouris D, Cao JJ, Vial G, Bravard A, Lefai E et al. 2014. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans. PLOS ONE 9:e110653
    [Google Scholar]
  149. 149. 
    Pein H, Ville A, Pace S, Temml V, Garscha U et al. 2018. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat. Commun. 9:3834
    [Google Scholar]
  150. 150. 
    Polinski KJ, Liu J, Boghossian NS, McLain AC 2017. Maternal obesity, gestational weight gain, and asthma in offspring. Prev. Chronic Dis. 14:E109
    [Google Scholar]
  151. 151. 
    Prieur X, Mok CY, Velagapudi VR, Núñez V, Fuentes L et al. 2011. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60:797–809
    [Google Scholar]
  152. 152. 
    Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA et al. 2014. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 5:3944
    [Google Scholar]
  153. 153. 
    Ramírez-Orozco RE, Franco Robles E, Pérez Vázquez V, Ramírez Emiliano J, Hernández Luna MA, López Briones S 2018. Diet-induced obese mice exhibit altered immune responses to early Salmonella typhimurium oral infection. J. Microbiol. 56:673–82
    [Google Scholar]
  154. 154. 
    Ramkhelawon B, Hennessy EJ, Menager M, Ray TD, Sheedy FJ et al. 2014. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 20:377–84
    [Google Scholar]
  155. 155. 
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  156. 156. 
    Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrugger S et al. 2019. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68:83–93
    [Google Scholar]
  157. 157. 
    Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK et al. 2019. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:eaaw4361
    [Google Scholar]
  158. 158. 
    Rubio-Patino C, Bossowski JP, De Donatis GM, Mondragon L, Villa E et al. 2018. Low-protein diet induces IRE1α-dependent anticancer immunosurveillance. Cell Metab 27:828–42.e7
    [Google Scholar]
  159. 159. 
    Saberi M, Woods NB, de Luca C, Schenk S, Lu JC et al. 2009. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10:419–29
    [Google Scholar]
  160. 160. 
    Sasaki T, Moro K, Kubota T, Kubota N, Kato T et al. 2019. Innate lymphoid cells in the induction of obesity. Cell Rep 28:202–17.e7
    [Google Scholar]
  161. 161. 
    Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C et al. 2009. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-κB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126:233–45
    [Google Scholar]
  162. 162. 
    Schiering C, Wincent E, Metidji A, Iseppon A, Li Y et al. 2017. Feedback control of AHR signalling regulates intestinal immunity. Nature 542:242–45
    [Google Scholar]
  163. 163. 
    Scrivo R, Massaro L, Barbati C, Vomero M, Ceccarelli F et al. 2017. The role of dietary sodium intake on the modulation of T helper 17 cells and regulatory T cells in patients with rheumatoid arthritis and systemic lupus erythematosus. PLOS ONE 12:e0184449
    [Google Scholar]
  164. 164. 
    Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M et al. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12:467–82
    [Google Scholar]
  165. 165. 
    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 116:3015–25
    [Google Scholar]
  166. 166. 
    Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A et al. 2013. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab 18:491–504
    [Google Scholar]
  167. 167. 
    Shimokawa C, Obi S, Shibata M, Olia A, Imai T et al. 2019. Suppression of obesity by an intestinal helminth through interactions with intestinal microbiota. Infect. Immun. 87:6e00042-19
    [Google Scholar]
  168. 168. 
    Showalter MR, Nonnecke EB, Linderholm AL, Cajka T, Sa MR et al. 2018. Obesogenic diets alter metabolism in mice. PLOS ONE 13:e0190632
    [Google Scholar]
  169. 169. 
    Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P et al. 2018. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175:679–94.e22
    [Google Scholar]
  170. 170. 
    Singh V, Yeoh BS, Walker RE, Xiao X, Saha P et al. 2019. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 68:1801–12
    [Google Scholar]
  171. 171. 
    Song Y, Yin W, Dan Y, Sheng J, Zeng Y, He R 2019. Chemerin partly mediates tumor-inhibitory effect of all-trans retinoic acid via CMKLR1-dependent natural killer cell recruitment. Immunology 157:248–56
    [Google Scholar]
  172. 172. 
    Spencer M, Finlin BS, Unal R, Zhu B, Morris AJ et al. 2013. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 62:1709–17
    [Google Scholar]
  173. 173. 
    Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432–37
    [Google Scholar]
  174. 174. 
    Stelzner K, Herbert D, Popkova Y, Lorz A, Schiller J et al. 2016. Free fatty acids sensitize dendritic cells to amplify TH1/TH17-immune responses. Eur. J. Immunol. 46:2043–53
    [Google Scholar]
  175. 175. 
    Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG 2017. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab 26:142–56
    [Google Scholar]
  176. 176. 
    Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL et al. 2011. Inflammasome is a central player in the induction of obesity and insulin resistance. PNAS 108:15324–29
    [Google Scholar]
  177. 177. 
    Sun H, Yang W, Tian Y, Zeng X, Zhou J et al. 2018. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nat. Commun. 9:5214
    [Google Scholar]
  178. 178. 
    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18:1407–12
    [Google Scholar]
  179. 179. 
    Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG et al. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15:2809–24
    [Google Scholar]
  180. 180. 
    Teng KT, Chang LF, Vethakkan SR, Nesaretnam K, Sanders TAB 2017. Effects of exchanging carbohydrate or monounsaturated fat with saturated fat on inflammatory and thrombogenic responses in subjects with abdominal obesity: a randomized controlled trial. Clin. Nutr. 36:1250–58
    [Google Scholar]
  181. 181. 
    Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E et al. 2018. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359:1376–83
    [Google Scholar]
  182. 182. 
    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH et al. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 122:153–62
    [Google Scholar]
  183. 183. 
    Theurich S, Tsaousidou E, Hanssen R, Lempradl AM, Mauer J et al. 2017. IL-6/Stat3-dependent induction of a distinct, obesity-associated NK cell subpopulation deteriorates energy and glucose homeostasis. Cell Metab 26:171–84.e6
    [Google Scholar]
  184. 184. 
    Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6:7320
    [Google Scholar]
  185. 185. 
    Tilg H, Zmora N, Adolph TE, Elinav E 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20:40–54
    [Google Scholar]
  186. 186. 
    Tousoulis D, Plastiras A, Siasos G, Oikonomou E, Verveniotis A et al. 2014. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 232:10–16
    [Google Scholar]
  187. 187. 
    Tremaroli V, Backhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–49
    [Google Scholar]
  188. 188. 
    Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48:992–1005.e8
    [Google Scholar]
  189. 189. 
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66
    [Google Scholar]
  190. 190. 
    Truax AD, Chen L, Tam JW, Cheng N, Guo H et al. 2018. The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe 24:364–78.e6
    [Google Scholar]
  191. 191. 
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  192. 192. 
    Ueharaguchi Y, Honda T, Kusuba N, Hanakawa S, Adachi A et al. 2018. Thromboxane A2 facilitates IL-17A production from Vγ4+ γδ T cells and promotes psoriatic dermatitis in mice. J. Allergy Clin. Immunol. 142:680–83.e2
    [Google Scholar]
  193. 193. 
    Ussher JR, Koves TR, Cadete VJ, Zhang L, Jaswal JS et al. 2010. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59:2453–64
    [Google Scholar]
  194. 194. 
    Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR et al. 2017. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:185–97.e3
    [Google Scholar]
  195. 195. 
    Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK 2014. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–38
    [Google Scholar]
  196. 196. 
    van Leeuwen MA, Costes LMM, van Berkel LA, Simons-Oosterhuis Y, du Pré MF et al. 2017. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance. Mucosal Immunol 10:635–49
    [Google Scholar]
  197. 197. 
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K et al. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179–88
    [Google Scholar]
  198. 198. 
    Varma V, Yao-Borengasser A, Rasouli N, Nolen GT, Phanavanh B et al. 2009. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am. J. Physiol. Endocrinol. Metab. 296:E1300–10
    [Google Scholar]
  199. 199. 
    Vasseur P, Serres L, Jegou JF, Pohin M, Delwail A et al. 2016. High-fat diet-induced IL-17A exacerbates psoriasiform dermatitis in a mouse model of steatohepatitis. Am. J. Pathol. 186:2292–301
    [Google Scholar]
  200. 200. 
    Vellozo NS, Pereira-Marques ST, Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL et al. 2017. All-trans retinoic acid promotes an M1- to M2-phenotype shift and inhibits macrophage-mediated immunity to Leishmania major. Front. . Immunol 8:1560
    [Google Scholar]
  201. 201. 
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–31
    [Google Scholar]
  202. 202. 
    Vorobyev A, Gupta Y, Sezin T, Koga H, Bartsch YC et al. 2019. Gene-diet interactions associated with complex trait variation in an advanced intercross outbred mouse line. Nat. Commun. 10:4097
    [Google Scholar]
  203. 203. 
    Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C et al. 2012. Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. Br. J. Nutr. 107:1727–38
    [Google Scholar]
  204. 204. 
    Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A et al. 2014. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59:130–42
    [Google Scholar]
  205. 205. 
    Wang A, Huen SC, Luan HH, Yu S, Zhang C et al. 2016. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166:1512–25.e12
    [Google Scholar]
  206. 206. 
    Wang N, Tian X, Chen Y, Tan HQ, Xie PJ et al. 2017. Low dose doxycycline decreases systemic inflammation and improves glycemic control, lipid profiles, and islet morphology and function in Db/Db mice. Sci. Rep. 7:14707
    [Google Scholar]
  207. 207. 
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
    [Google Scholar]
  208. 208. 
    Wang Z, Liu D, Wang F, Liu S, Zhao S et al. 2012. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr. 107:229–41
    [Google Scholar]
  209. 209. 
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112:1796–808
    [Google Scholar]
  210. 210. 
    Weiskirchen R, Tacke F. 2014. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 3:344–63
    [Google Scholar]
  211. 211. 
    Wen H, Gris D, Lei Y, Jha S, Zhang L et al. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12:408–15
    [Google Scholar]
  212. 212. 
    Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT et al. 2015. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16:376–85
    [Google Scholar]
  213. 213. 
    Wilhelm C, Harrison OJ, Schmitt V, Pelletier M, Spencer SP et al. 2016. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213:1409–18
    [Google Scholar]
  214. 214. 
    Witkowski M, Witkowski M, Gagliani N, Huber S 2018. Recipe for IBD: Can we use food to control inflammatory bowel disease. Semin. Immunopathol. 40:145–56
    [Google Scholar]
  215. 215. 
    Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH 2009. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 284:27384–92
    [Google Scholar]
  216. 216. 
    World Health Organ 2020. Malnutrition. Fact Sheet, World Health Organ. Geneva: https://www.who.int/news-room/fact-sheets/detail/malnutrition
    [Google Scholar]
  217. 217. 
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47
    [Google Scholar]
  218. 218. 
    Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA et al. 2012. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. PNAS 109:E1143–52
    [Google Scholar]
  219. 219. 
    Wu Z, Isik M, Moroz N, Steinbaugh MJ, Zhang P, Blackwell TK 2019. Dietary restriction extends lifespan through metabolic regulation of innate immunity. Cell Metab 29:1192–205.e8
    [Google Scholar]
  220. 220. 
    Xu H, Barnes GT, Yang Q, Tan G, Yang D et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112:1821–30
    [Google Scholar]
  221. 221. 
    Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T et al. 2007. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27:145–59
    [Google Scholar]
  222. 222. 
    Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R et al. 2013. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–63
    [Google Scholar]
  223. 223. 
    Ye D, Li FY, Lam KS, Li H, Jia W et al. 2012. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61:1058–67
    [Google Scholar]
  224. 224. 
    Yin W, Song Y, Liu Q, Wu Y, He R 2017. Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+ T-cell immunity. Immunology 152:287–97
    [Google Scholar]
  225. 225. 
    Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M et al. 2015. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21:263–69
    [Google Scholar]
  226. 226. 
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW et al. 2001. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. . Science 293:1673–77
    [Google Scholar]
  227. 227. 
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94
    [Google Scholar]
  228. 228. 
    Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ, Di Ricco ML, Vieira SM et al. 2019. A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25:113–27.e6
    [Google Scholar]
  229. 229. 
    Zhang D, Jin W, Wu R, Li J, Park SA et al. 2019. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51:4671–81.e5
    [Google Scholar]
  230. 230. 
    Zhang WC, Du LJ, Zheng XJ, Chen XQ, Shi C et al. 2018. Elevated sodium chloride drives type I interferon signaling in macrophages and increases antiviral resistance. J. Biol. Chem. 293:1030–39
    [Google Scholar]
  231. 231. 
    Zhao Z, Feng Q, Yin Z, Shuang J, Bai B et al. 2017. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget 8:83306–14
    [Google Scholar]
  232. 232. 
    Zhou B, Pan Y, Hu Z, Wang X, Han J et al. 2012. All-trans-retinoic acid ameliorated high fat diet-induced atherosclerosis in rabbits by inhibiting platelet activation and inflammation. J. Biomed. Biotechnol. 2012:259693
    [Google Scholar]
  233. 233. 
    Zlotnikov N, Javid A, Ahmed M, Eshghi A, Tang TT et al. 2017. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet-induced obesity. Cell. Microbiol. 19:5e12689
    [Google Scholar]
  234. 234. 
    Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M et al. 2018. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23:41–53.e4
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-120919-094440
Loading
/content/journals/10.1146/annurev-nutr-120919-094440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error