1932

Abstract

Each of the macronutrients—carbohydrate, protein, and fat—has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-121415-112624
2016-07-17
2024-05-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-121415-112624.html?itemId=/content/journals/10.1146/annurev-nutr-121415-112624&mimeType=html&fmt=ahah

Literature Cited

  1. Abou-Samra R, Keersmaekers L, Brienza D, Mukherjee R, Mace K. 1.  2011. Effect of different protein sources on satiation and short-term satiety when consumed as a starter. Nutr. J. 10:139 [Google Scholar]
  2. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jéquier E. 2.  1988. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am. J. Clin. Nutr. 48:240–47 [Google Scholar]
  3. Ackroff K, Vigorito M, Sclafani A. 3.  1990. Fat appetite in rats: the response of infant and adult rats to nutritive and non-nutritive oil emulsions. Appetite 15:171–88 [Google Scholar]
  4. Alfenas RCG, Mattes RD. 4.  2003. Effect of fat sources on satiety. Obes. Res. 11:183–87 [Google Scholar]
  5. Anand BK, Brobeck JR. 5.  1951. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24:123–40 [Google Scholar]
  6. Anand BK, Dua S, Singh B. 6.  1961. Electrical activity of the hypothalamic “feeding centres” under the effect of changes in blood chemistry. Electroencephalogr. Clin. Neurophysiol. 13:54–59 [Google Scholar]
  7. Anliker J, Mayer JM. 7.  1957. The regulation of food intake: some experiments relating behavioral, metabolic, and morphologic aspects. Am. J. Clin. Nutr. 5:148–53 [Google Scholar]
  8. Apolzan JW, Leidy HJ, Mattes RD, Campbell WW. 8.  2011. Effects of food form on food intake and postprandial appetite sensations, glucose and endocrine responses, and energy expenditure in resistance trained v. sedentary older adults. Br. J. Nutr. 106:1107–16 [Google Scholar]
  9. Aronoff SL, Berkowitz K, Shreiner B, Want L. 9.  2004. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 17:183–90 [Google Scholar]
  10. Avena NM, Gold JA, Kroll C, Gold MS. 10.  2012. Further developments in the neurobiology of food and addiction: update on the state of the science. Nutrition 28:341–43 [Google Scholar]
  11. Avena NM, Gold MS. 11.  2011. Variety and hyperpalatability: Are they promoting addictive overeating?. Am. J. Clin. Nutr. 94:367–68 [Google Scholar]
  12. Avena NM, Rada P, Hoebel BG. 12.  2008. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32:20–39 [Google Scholar]
  13. Avena NM, Rada P, Hoebel BG. 13.  2009. Sugar and fat bingeing have notable differences in addictive-like behavior. J. Nutr. 139:623–28 [Google Scholar]
  14. Avena NM, Rada P, Moise N, Hoebel BG. 14.  2006. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139:813–20 [Google Scholar]
  15. Bach AC, Babayan VK. 15.  1982. Medium-chain triglycerides: an update. Am. J. Clin. Nutr. 36:950–62 [Google Scholar]
  16. Baer DJ, Stote KS, Paul DR, Harris GK, Rumpler WV, Clevidence BA. 16.  2011. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J. Nutr. 141:1489–94 [Google Scholar]
  17. Barbano MF, Cador M. 17.  2007. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (Berl.) 191:497–506 [Google Scholar]
  18. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA. 18.  et al. 2002. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418:650–54 [Google Scholar]
  19. Bayliss WM, Starling EH. 19.  1902. The mechanism of pancreatic secretion. J. Physiol. 28:325–53 [Google Scholar]
  20. Beglinger C. 20.  1994. Effect of cholecystokinin on gastric motility in humans. Ann. N. Y. Acad. Sci. 713:219–25 [Google Scholar]
  21. Belza A, Ritz C, Sørensen MQ, Holst JJ, Rehfeld JF, Astrup A. 21.  2013. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am. J. Clin. Nutr. 97:980–89 [Google Scholar]
  22. Bendtsen LQ, Lorenzen JK, Bendsen NT, Rasmussen C, Astrup A. 22.  2013. Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Adv. Nutr. 4:418–38 [Google Scholar]
  23. Benoit SC, Davis JF, Davidson TL. 23.  2010. Learned and cognitive controls of food intake. Brain Res. 1350:71–76 [Google Scholar]
  24. Bernstein LM, Grossman MI. 24.  1956. An experimental test of the glucostatic theory of regulation of food intake. J. Clin. Investig. 35:627–33 [Google Scholar]
  25. Bertino M, Beauchamp GK, Engelman K. 25.  1986. Increasing dietary salt alters salt taste preference. Physiol. Behav. 38:203–13 [Google Scholar]
  26. Beucher S, Levenez F, Yvon M, Corring T. 26.  1994. Effects of gastric digestive products from casein on CCK release by intestinal cells in rat. J. Nutr. Biochem. 5:578–84 [Google Scholar]
  27. Beulens JWJ, Bindels JG, de Graaf C, Alles MS, Wouters-Wesseling W. 27.  2004. Alpha-lactalbumin combined with a regular diet increases plasma Trp-LNAA ratio. Physiol. Behav. 81:585–93 [Google Scholar]
  28. Blom WAM, Lluch A, Vinoy S, Stafleu A, van den Berg R. 28.  et al. 2006. Effects of gastric emptying on the postprandial gherlin response. Am. J. Physiol. Endocrinol. Metab. 290:E389–95 [Google Scholar]
  29. Blom WAM, Stafleu A, de Graaf C, Kok FJ, Schaafsma G, Hendriks HFJ. 29.  2005. Ghrelin response to carbohydrate-enriched breakfast is related to insulin. Am. Soc. Clin. Nutr. 81:367–75 [Google Scholar]
  30. Blundell JE, Burley VJ, Cotton JR, Lawton CL. 30.  1993. Dietary fat and the control of energy intake: evaluating the effects of fat on meal size and postmeal satiety. Am. J. Clin. Nutr. 57:5 Suppl.772–78S [Google Scholar]
  31. Blundell JE, Finlayson G. 31.  2004. Is susceptibility to weight gain characterized by homeostatic or hedonic risk factors for overconsumption?. Physiol. Behav. 82:21–25 [Google Scholar]
  32. Blundell JE, MacDiarmid JI. 32.  1997. Fat as a risk factor for overconsumption: satiation, satiety, and patterns of eating. J. Am. Diet. Assoc. 97:7 Suppl.S63–69 [Google Scholar]
  33. Blundell JE, Stubbs RJ, Golding C, Croden F, Alam R. 33.  et al. 2005. Resistance and susceptibility to weight gain: individual variability in response to a high-fat diet. Physiol. Behav. 86:614–22 [Google Scholar]
  34. Boirie Y, Dangin M, Gachon P, Vasson M, Maubois J, Beaufrere B. 34.  1997. Slow and fast dietary proteins differently modulate postprandial protein accretion. PNAS 94:14930–35 [Google Scholar]
  35. Booth DA. 35.  1974. Food intake compensation for increase or decrease in the protein content of the diet. Behav. Biol. 12:31–40 [Google Scholar]
  36. Booth DA, Campbell AT, Chase A. 36.  1970. Temporal bounds of post-ingestive glucose induced satiety in man. Nature 228:1104–5 [Google Scholar]
  37. Booth DA, Chase A, Campbell AT. 37.  1970. Relative effectiveness of protein in the late stages of appetite suppression in man. Physiol. Behav. 5:1299–302 [Google Scholar]
  38. Bowen J, Noakes M, Clifton PM. 38.  2007. Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int. J. Obes. 31:1696–703 [Google Scholar]
  39. Boyd KA, O'Donovan DG, Doran S, Wishart J, Chapman IM. 39.  et al. 2003. High-fat diet effects on gut motility, hormone, and appetite responses to duodenal lipid in healthy men. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G188–96 [Google Scholar]
  40. Brooks CM, Lambert EF. 40.  1946. A study of the effect of limitation of food intake and the method of feeding on the rate of weight gain during hypothalamic obesity in the albino rat. Am. J. Physiol. 147:695–707 [Google Scholar]
  41. Brown RJ, Walter M, Rother KI. 41.  2009. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care 32:2184–86 [Google Scholar]
  42. Burger KS, Stice E. 42.  2011. Variability in reward responsivity and obesity: evidence from brain imaging studies. Curr. Drug Abuse Rev. 4:182–89 [Google Scholar]
  43. Burley VJ. 43.  2007. Commentary on Cotton J. R., Burley V. J., J. A. & Blundell J. E. (1994) Dietary fat and appetite: similarities and differences in the satiating effect of meals supplemented with either fat or carbohydrate. J. Hum. Nutr. Diet. 20:200–1 [Google Scholar]
  44. Burton-Freeman B, Davis PA, Schneeman BO. 44.  2004. Interaction of fat availability and sex on postprandial satiety and cholecystokinin after mixed-food meals. Am. J. Clin. Nutr. 80:1207–14 [Google Scholar]
  45. Campfield LA, Brandon P, Smith FJ. 45.  1985. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Res. Bull. 14:605–16 [Google Scholar]
  46. Casazza K, Fontaine KR, Astrup A, Birch LL, Brown AW. 46.  et al. 2013. Myths, presumptions, and facts about obesity. N. Engl. J. Med. 368:446–54 [Google Scholar]
  47. Chapman IM, Goble EA, Wittert GA, Morley JE, Horowitz M. 47.  1998. Effect of intravenous glucose and euglycemic insulin infusions on short-term appetite and food intake. Am. Physiol. Soc. 274:R596–603 [Google Scholar]
  48. Charlton KE, Tapsell LC, Batterham MJ, Thorne R, O'Shea J. 48.  et al. 2011. Pork, beef and chicken have similar effects on acute satiety and hormonal markers of appetite. Appetite 56:1–8 [Google Scholar]
  49. Chin-Chance C, Polonsky KS, Schoeller DA. 49.  2000. Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake. J. Clin. Endocrinol. Metab. 85:2685–91 [Google Scholar]
  50. Choi S, Disilvio B, Fernstrom MH, Fernstrom JD. 50.  2009. Meal ingestion, AAs and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rates. Physiol. Behav. 98:156–62 [Google Scholar]
  51. Clark MJ, Slavin JL. 51.  2013. The effect of fiber on satiety and food intake: a systematic review. J. Am. Coll. Nutr. 32:200–11 [Google Scholar]
  52. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. 52.  2014. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28:1221–38 [Google Scholar]
  53. Corwin RL, Avena NM, Boggiano MM. 53.  2011. Feeding and reward: perspectives from three rat models of binge eating. Physiol. Behav. 104:87–97 [Google Scholar]
  54. Covasa M, Ritter RC. 54.  1998. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides 19:1407–15 [Google Scholar]
  55. Crone C. 55.  1965. Facilitated transfer of glucose from blood into brain tissue. J. Physiol. 181:103–13 [Google Scholar]
  56. Crystal SR, Teff KL. 56.  2006. Tasting fat: cephalic phase hormonal responses and food intake in restrained and unrestrained eaters. Physiol. Behav. 89:213–20 [Google Scholar]
  57. Dailey MJ, Stingl KC, Moran TH. 57.  2012. Disassociation between preprandial gut peptide release and food-anticipatory activity. Endocrinology 153:132–42 [Google Scholar]
  58. Dalen JE, Devries S. 58.  2014. Diets to prevent coronary heart disease 1957–2013: What have we learned?. Am. J. Med. 127:364–69 [Google Scholar]
  59. Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP. 59.  2013. Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 304:G271–82 [Google Scholar]
  60. Darzi J, Frost GS, Robertson MD. 60.  2011. Do SCFA have a role in appetite regulation?. Proc. Nutr. Soc. 70:119–28 [Google Scholar]
  61. de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG. 61.  et al. 2008. Food reward in the absence of taste receptor signaling. Neuron 57:930–41 [Google Scholar]
  62. de Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ. 62.  2004. Biomarkers of satiation and satiety. Am. J. Clin. Nutr. 79:946–61 [Google Scholar]
  63. de Graaf C, Hulshof T, Weststrate JA, Jas P. 63.  1992. Short-term effects of different amounts of protein, fats, and carbohydrates on satiety. Am. J. Clin. Nutr. 55:33–38 [Google Scholar]
  64. de Ruyter JC, Katan MB, Kuijper LD, Liem DG, Olthof MR. 64.  2013. The effect of sugar-free versus sugar-sweetened beverages on satiety, liking and wanting: an 18 month randomized double-blind trial in children. PLOS ONE 8:e78039 [Google Scholar]
  65. Deutsch JA, Moore BO, Heinrichs SC. 65.  1989. Unlearned specific appetite for protein. Physiol. Behav. 46:619–24 [Google Scholar]
  66. DiBattista D. 66.  1991. Effects of time-restricted access to protein and to carbohydrate in adult mice and rats. Physiol. Behav. 49:263–69 [Google Scholar]
  67. Diepvens K, Haberer D, Westerterp-Plantenga M. 67.  2008. Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int. J. Obes. (Lond.) 32:510–18 [Google Scholar]
  68. Dotson CD, Geraedts MCP, Munger SD. 68.  2013. Peptide regulators of peripheral taste function. Semin. Cell Dev. Biol. 24:323–39 [Google Scholar]
  69. Drewnowski A, Almiron-Roig E, Marmonier C, Lluch A. 69.  2004. Dietary energy density and body weight: Is there a relationship?. Nutr. Rev. 62:403–13 [Google Scholar]
  70. Dubé M-C, Tremblay A, Lavoied C, Weisnagel SJ. 70.  2013. Effect of exercise on food consumption and appetite sensations in subjects with diabetes. Appetite 71:403–10 [Google Scholar]
  71. Dubuc GR, Phinney SD, Stern JS, Havel PJ. 71.  1998. Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism 47:429–34 [Google Scholar]
  72. Duca FA, Lam TKT. 72.  2014. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes. Metab. 16:Suppl. 168–76 [Google Scholar]
  73. Duca FA, Sakar Y, Covasa M. 73.  2013. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J. Nutr. Biochem. 24:1663–77 [Google Scholar]
  74. Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA. 74.  et al. 2011. Hedonic and incentive signals for body weight control. Rev. Endocr. Metab. Disord. 12:141–51 [Google Scholar]
  75. Eisenstein J, Roberts S, Dallal G, Saltzman E. 75.  2002. High-protein weight-loss diets: Are they safe and do they work? A review of the experimental and epidemiologic data. Nutr. Rev. 60:189–200 [Google Scholar]
  76. Epstein AN, Teitelbaum P. 76.  1967. Specific loss of the hypoglycemic control of feeding in recovered lateral rats. Am. J. Physiol. 213:1159–67 [Google Scholar]
  77. Erdmann J, Leibl M, Wagenpfeil S, Lippl F, Schusdziarra V. 77.  2006. Ghrelin response to protein and carbohydrate meals in relation to food intake and glycerol levels in obese subjects. Regul. Pept. 135:1–223–29 [Google Scholar]
  78. Everard A, Cani PD. 78.  2014. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15:189–96 [Google Scholar]
  79. Faipoux R, Tomé D, Gougis S, Darcel N, Fromentin G. 79.  2008. Proteins activate satiety-related neuronal pathways in the brainstem and hypothalamus of rats. J. Nutr. 138:1172–78 [Google Scholar]
  80. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH. 80.  et al. 1999. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341:879–84 [Google Scholar]
  81. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E. 81.  et al. 2002. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Investig. 110:1093–103 [Google Scholar]
  82. Feinle C, Christen M, Grundy D, Faas H, Meier O. 82.  et al. 2002. Effects of duodenal fat, protein or mixed-nutrient infusions on epigastric sensations during sustained gastric distension in healthy humans. Neurogastroenterol. Motil. 14:205–13 [Google Scholar]
  83. Feinle C, Rades T, Otto B, Fried M. 83.  2001. Fat digestion modulates gastrointestinal sensations induced by gastric distention and duodenal lipid in humans. Gastroenterology 120:1100–7 [Google Scholar]
  84. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T. 84.  et al. 2008. Comparative effects of intraduodenal infusions of lauric and oleic acids on antropyloroduodenal motility, plasma cholecystokinin and peptide YY, appetite, and energy intake in healthy men. Am. J. Clin. Nutr. 87:1181–87 [Google Scholar]
  85. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJ. 85.  et al. 2004. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R524–33 [Google Scholar]
  86. Fernandes MF, Sharma S, Hryhorczuk C, Auguste S, Fulton S. 86.  2013. Nutritional controls of food reward. Can. J. Diabetes 37:260–68 [Google Scholar]
  87. Fernstrom JD. 87.  1977. Effects on the diet on brain neurotransmitters. Metabolism 26:207–23 [Google Scholar]
  88. Fernstrom JD, Fernstrom MH. 88.  2007. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 137:1539–48S [Google Scholar]
  89. Ferreira JG, Tellez LA, Ren X, Yeckel CW, de Araujo IE. 89.  2012. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 590:953–72 [Google Scholar]
  90. Field KL, Kimball BA, Mennella JA, Beauchamp GK, Bachmanov AA. 90.  2008. Avoidance of hydrolyzed casein by mice. Physiol. Behav. 93:189–99 [Google Scholar]
  91. Finlayson G, Dalton M. 91.  2012. Current progress in the assessment of “liking” versus “wanting” food in human appetite. Comment on “‘You say it's liking, I say it's wanting….’ On the difficulty of disentangling food reward in man.”. Appetite 58:373–78; discussion 252–55 [Google Scholar]
  92. Flatt JP. 92.  1996. Carbohydrate balance and body-weight regulation. Proc. Nutr. Soc. 55:449–65 [Google Scholar]
  93. Flegal K, Carroll MD, Ogden C, Curtin L. 93.  2010. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–41 [Google Scholar]
  94. Flint A, Raben A, Astrup A, Holst JJ. 94.  1998. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Investig. 101:515–20 [Google Scholar]
  95. 95. Food Agric. Org. United Nations Stat. Div 2002. FAOSTAT database. Rome: FAO Stat http://faostat3.fao.org/home/E [Google Scholar]
  96. 96. Food Forum, Food Nutr. Board, Inst. Med 2015. Relationships Among the Brain, the Digestive System, and Eating Behavior: Workshop Summary. Washington, DC: Natl. Acad. Press
  97. Frank GKW, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL. 97.  et al. 2008. Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage 39:1559–69 [Google Scholar]
  98. Frecka JM, Mattes RD. 98.  2008. Possible entrainment of ghrelin to habitual meal patterns in humans. Am. Physiol. Soc. 294:G699–707 [Google Scholar]
  99. Friedman MI, Stricker EM. 99.  1976. The physiological psychology of hunger: a physiological perspective. Psychol. Rev. 83:409–31 [Google Scholar]
  100. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A. 100.  et al. 2003. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93 [Google Scholar]
  101. Fujita Y, Wideman RD, Speck M, Asadi A, King DS. 101.  et al. 2009. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am. Physiol. Soc. 94:717–25 [Google Scholar]
  102. Gaetani S, Oveisi F, Piomelli D. 102.  2003. Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology 28:1311–16 [Google Scholar]
  103. Ganapathy V, Miyauchi S. 103.  2005. Transport systems for opioid peptides in mammalian tissues. AAPS J. 7:E852–56 [Google Scholar]
  104. Gearhardt AN, Corbin WR, Brownell KD. 104.  2009. Preliminary validation of the Yale Food Addiction Scale. Appetite 52:430–36 [Google Scholar]
  105. Gearhardt AN, Grilo CM, DiLeone RJ, Brownell KD, Potenza MN. 105.  2011. Can food be addictive? Public health and policy implications. Addiction 106:1208–12 [Google Scholar]
  106. Gearhardt AN, White MA, Masheb RM, Grilo CM. 106.  2013. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr. Psychiatry 54:500–5 [Google Scholar]
  107. Geiselman PJ, Novin D. 107.  1982. Role of carbohydrate in appetite, hunger and obesity. Appetite 3:203–23 [Google Scholar]
  108. Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C. 108.  2011. The role of the gut sweet taste receptor in regulating GLP-1, PPY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301:E17–25 [Google Scholar]
  109. Gibbs J, Young RC, Smith GP. 109.  1973. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84:488–95 [Google Scholar]
  110. Glendinning JI, Stano S, Holter M, Azenkot T, Goldman O. 110.  et al. 2015. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R552–60 [Google Scholar]
  111. Goodlad RA, Lenton W, Ghatei MA, Adrian TE, Bloom SR, Wright NA. 111.  1987. Effects of an elemental diet, inert bulk and different types of dietary fibre on the response of the intestinal epithelium to refeeding in the rat and relationship to plasma gastrin, enteroglucagon, and PYY concentrations. Gut 28:171–80 [Google Scholar]
  112. Gosby AK, Conigrave AD, Lau NS, Iglesias MA, Hall RM. 112.  et al. 2011. Testing protein leverage in lean humans: a randomised controlled experimental study. PLOS ONE 6:e25929 [Google Scholar]
  113. Green E, Murphy C. 113.  2012. Altered processing of sweet taste in the brain of diet soda drinkers. Physiol. Behav. 107:560–67 [Google Scholar]
  114. Griffioen-Roose S, Mars M, Siebelink E, Finlayson G, Tomé D, de Graaf C. 114.  2012. Protein status elicits compensatory changes in food intake and food preferences. Am. J. Clin. Nutr. 95:32–38 [Google Scholar]
  115. Griffioen-Roose S, Smeets PA, van den Heuvel E, Boesveldt S, Finlayson G, de Graaf C. 115.  2014. Human protein status modulates brain reward responses to food cues. Am. J. Clin. Nutr. 100:113–22 [Google Scholar]
  116. Gustafson DR, McMahon DJ, Morrey J, Nan R. 116.  2001. Appetite is not influenced by a unique milk peptide: caseinomacropeptide (CMP). Appetite 36:157–63 [Google Scholar]
  117. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. 117.  1997. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. PNAS 94:8878–83 [Google Scholar]
  118. Hall W, Millward D, Long S, Morgan L. 118.  2003. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 89:239–48 [Google Scholar]
  119. Hamilton CL. 119.  1964. Rat's preference for high-fat diets. J. Comp. Physiol. Psychol. 58:459–60 [Google Scholar]
  120. Heath RB, Jones R, Frayn KN, Robertson MD. 120.  2004. Vagal stimulation exaggerates the inhibitory ghrelin response to oral fat in humans. J. Endocrinol. 180:273–81 [Google Scholar]
  121. Hebebrand J, Albayrak Ö, Adan R, Antel J, Diequez C. 121.  et al. 2014. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev. 47:295–306 [Google Scholar]
  122. Hervey GR. 122.  1959. The effects of lesions in the hypothalamus in parabiotic rats. J. Physiol. 145:336–52 [Google Scholar]
  123. Hetherington AW, Ranson SW. 123.  1940. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78:149–72 [Google Scholar]
  124. Hill AJ, Blundell JE. 124.  1986. Macronutrients and satiety: the effects of a high-protein or high-carbohydrate meal on subjective motivation to eat and food preferences. Nutr. Behav. 3:133–44 [Google Scholar]
  125. Hiraoka T, Fukuwatari T, Imaizumi M, Fushiki T. 125.  2003. Effects of oral stimulation with fats on the cephalic phase of pancreatic enzyme secretion in esophagostomized rats. Physiol. Behav. 79:4–5713–17 [Google Scholar]
  126. Hoertel HA, Will MJ, Leidy HJ. 126.  2014. A randomized crossover, pilot study examining the effects of a normal protein versus high protein breakfast on food cravings and reward signals in overweight/obese “breakfast skipping,” late-adolescent girls. Nutr. J. 13:80 [Google Scholar]
  127. Holt S, Brand J, Soveny C, Hansky J. 127.  1992. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 18:129–41 [Google Scholar]
  128. Hu T, Bazzano LA. 128.  2014. The low-carbohydrate diet and cardiovascular risk factors: evidence from epidemiologic studies. Nutr. Metab. Cardiovasc. Dis. 24:337–43 [Google Scholar]
  129. Hunt J. 129.  1960. The site of receptors slowing gastric emptying in response to starch in test meals. J. Physiol. 154:270–76 [Google Scholar]
  130. Ivy AC, Oldberg E. 130.  1928. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol. 86:599–613 [Google Scholar]
  131. Jang H-J, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim B-J. 131.  et al. 2007. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. PNAS 104:15069–74 [Google Scholar]
  132. Janssen S, Depoortere I. 132.  2013. Nutrient sensing in the gut: new roads to therapeutics?. Trends Endocrinol. Metab. 24:92–100 [Google Scholar]
  133. Jenkins DJA, Jenkins AL, Wolever TMS, Vuksan V, Rao AV. 133.  et al. 1994. Low glycemic index: lente carbohydrates and physiological effects of altered food frequency. Am. J. Clin. Nutr. 59:706–9S [Google Scholar]
  134. Johnston CS, Kim CM, Buller AJ. 134.  2004. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 27:281–82 [Google Scholar]
  135. Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. 135.  2012. Brain responses to high-protein diets. Adv. Nutr. 3:322–29 [Google Scholar]
  136. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C. 136.  et al. 2011. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94:58–65 [Google Scholar]
  137. Kaplan JM, Siemers W, Grill HJ. 137.  1997. Effect of oral versus gastric delivery on gastric emptying of corn oil emulsions. Am. J. Physiol. 273:R1263–70 [Google Scholar]
  138. Karalus M, Clark M, Greaves KA, Thomas W, Vickers Z. 138.  et al. 2012. Fermentable fibers do not affect satiety or food intake by women who do not practice restrained eating. J. Acad. Nutr. Diet. 112:1356–62 [Google Scholar]
  139. Kawai T, Fushiki T. 139.  2003. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R447–54 [Google Scholar]
  140. Kennedy GC. 140.  1950. The hypothalamic control of food intake in rats. Proc. R. Soc. B 137:535–49 [Google Scholar]
  141. Kennedy GC. 141.  1953. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. B 140:578–96 [Google Scholar]
  142. Kenny PJ. 142.  2011. Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–79 [Google Scholar]
  143. Kinsell LW, Gunning B, Michaels GD, Richardson J, Cox SE, Lemon C. 143.  1964. Calories do count. Metabolism 13:195–204 [Google Scholar]
  144. Kinzig KP, Hargrave SL, Hyun J, Moran TH. 144.  2007. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet. Physiol. Behav. 92:454–60 [Google Scholar]
  145. Kissileff HR, Thornton JC, Torres MI, Pavlovich K, Mayer LS. 145.  et al. 2012. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 95:309–17 [Google Scholar]
  146. Kokrashvili Z, Yee KK, Ilegems E, Iwatsuki K, Li Y. 146.  et al. 2014. Endocrine taste cells. Br. J. Nutr. 111:S23–29 [Google Scholar]
  147. Kovacs EMR, Westerterp-Plantenga MS, Saris WHM, Melanson KJ, Goossens I, Brouns F. 147.  2002. Associations between spontaneous meal initiations and blood glucose dynamics in overweight men in negative energy balance. Br. J. Nutr. 87:39–45 [Google Scholar]
  148. Kozimor A, Chang H, Cooper JA. 148.  2013. Effects of dietary fatty acid composition from a high fat meal on satiety. Appetite 69:39–45 [Google Scholar]
  149. Krotkiewski M. 149.  2001. Value of VLCD supplementation with medium chain triglycerides. Int. J. Obes. Relat. Metab. Disord. 25:1393–400 [Google Scholar]
  150. Kuwahara A. 150.  2014. Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front. Endocrinol. 5:144 [Google Scholar]
  151. Lambert TC, Hill AJ, Blundell JE. 151.  1989. Investigating the satiating effect of protein with disguised liquid preloads. Appetite 12:220 [Google Scholar]
  152. Lang V, Bellisle F, Alamowitch C, Craplet C, Bornet FR. 152.  et al. 1999. Varying the protein source in mixed meal modifies glucose, insulin and glucagon kinetics in healthy men, has weak effects on subjective satiety and fails to affect food intake. Eur. J. Clin. Nutr. 53:959–65 [Google Scholar]
  153. Lang V, Bellisle F, Oppert J, Craplet C, Bornet F, Slama G. 153.  1998. Satiating effect of proteins in healthy subjects: a comparison of egg albumin, casein, gelatin, soy protein, pea protein, and wheat gluten. Am. J. Clin. Nutr. 67:1197–204 [Google Scholar]
  154. Latner JD, Schwartz M. 154.  1999. The effects of a high-carbohydrate, high-protein or balanced lunch upon later food intake and hunger ratings. Appetite 33:119–28 [Google Scholar]
  155. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M. 155.  et al. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Investig. 115:3177–84 [Google Scholar]
  156. Lawton CL, Delargy HJ, Brockman J, Smith FC, Blundell JE. 156.  2000. The degree of saturation of fatty acids influences post-ingestive satiety. Br. J. Nutr. 83:473–82 [Google Scholar]
  157. Leibel RL, Hirsch J, Appel BE, Checani GC. 157.  1992. Energy intake required to maintain body weight is not affected by wide variation in diet composition. Am. J. Clin. Nutr. 55:350–55 [Google Scholar]
  158. Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westerterp-Plantenga MS. 158.  et al. 2015. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 101:1320–29S [Google Scholar]
  159. Leidy HJ, Lepping RJ, Savage CR, Harris CT. 159.  2011. Neural responses to visual food stimuli after a normal versus higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity 19:2019–25 [Google Scholar]
  160. Leidy HJ, Ortinau LC, Douglas SM, Hoertel HA. 160.  2013. Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping,” late-adolescent girls. Am. J. Clin. Nutr. 97:677–88 [Google Scholar]
  161. Lemmens SG, Martens EA, Kester AD, Westerterp-Plantenga MS. 161.  2011. Changes in gut hormone and glucose concentrations in relation to hunger and fullness. Am. J. Clin. Nutr. 94:717–25 [Google Scholar]
  162. Leung PMB, Rogers QR. 162.  1986. Effect of amino acid imbalance and deficiency on dietary choice patterns of rats. Physiol. Behav. 37:747–58 [Google Scholar]
  163. Levitsky DA. 163.  2005. The non-regulation of food intake in humans: hope for reversing the epidemic of obesity. Physiol. Behav. 86:623–32 [Google Scholar]
  164. Liem DG, de Graaf C. 164.  2004. Sweet and sour preferences in young children and adults: role of repeated exposure. Physiol. Behav. 83:421–29 [Google Scholar]
  165. Little TJ, Gupta N, Maynard Case R, Thompson DG, McLaughlin JT. 165.  2009. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R632–39 [Google Scholar]
  166. Little TJ, Russo A, Meyer JH, Horowitz M, Smyth DR. 166.  et al. 2007. Free fatty acids have more potent effects on gastric emptying, gut hormones, and appetite than triacylglycerides. Gastroenterology 133:1124–31 [Google Scholar]
  167. Liu AG, Most MM, Brashear MM, Johnson WD, Cefalu WT, Greenway FL. 167.  2012. Reducing the glycemic index or carbohydrate content of mixed meals reduces postprandial glycemia and insulinemia over the entire day but does not affect satiety. Diabetes Care 35:1633–37 [Google Scholar]
  168. Longo WE, Ballantyne GH, Savoca PE, Adrian TE, Bilchik AJ, Modlin IM. 168.  1991. Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. Scand. J. Gastroenterol. 26:442–48 [Google Scholar]
  169. Lustig RH. 169.  2010. Fructose: metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc. 110:1307–21 [Google Scholar]
  170. Lutter M, Nestler EJ. 170.  2009. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr. 139:629–32 [Google Scholar]
  171. Ma J, Chang J, Checklin HL, Young RL, Jones KL. 171.  et al. 2010. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br. J. Nutr. 104:803–6 [Google Scholar]
  172. Ma J, Checklin HL, Wishart JM, Stevens JE, Jones KL. 172.  et al. 2013. A randomised trial of enteric-coated nutrient pellets to stimulate gastrointestinal peptide release and lower glycaemia in type 2 diabetes. Diabetologia 56:1236–42 [Google Scholar]
  173. Maclagan NF. 173.  1937. The role of appetite in the control of body weight. J. Physiol. 90:385–94 [Google Scholar]
  174. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH. 174.  et al. 1995. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1:1155–61 [Google Scholar]
  175. Marciani L, Cox EF, Pritchard SE, Major G, Hoad CL. 175.  et al. 2014. Additive effects of gastric volumes and macronutrient composition on the sensation of postprandial fullness in humans. Eur. J. Clin. Nutr. 69:380–84 [Google Scholar]
  176. Mars M, Stafleu A, de Graaf C. 176.  2012. Use of satiety peptides in assessing the satiating capacity of foods. Physiol. Behav. 105:483–88 [Google Scholar]
  177. Martens EA, Lemmens SG, Westerterp-Plantenga MS. 177.  2013. Protein leverage affects energy intake of high-protein diets in humans. Am. J. Clin. Nutr. 97:86–93 [Google Scholar]
  178. Martens EA, Tan SY, Dunlop MV, Mattes RD, Westerterp-Plantenga MS. 178.  2014. Protein leverage effects of beef protein on energy intake in humans. Am. J. Clin. Nutr. 99:1397–406 [Google Scholar]
  179. Mattes RD. 179.  1993. Fat preference and adherence to a reduced-fat diet. Am. J. Clin. Nutr. 57:373–81 [Google Scholar]
  180. Mayer J. 180.  1953. Glucostatic mechanism of regulation of food intake. N. Engl. J. Med. 249:13–16 [Google Scholar]
  181. Mayer J. 181.  1955. Regulation of energy intake and the body weight. Ann. N. Y. Acad. Sci. 63:15–43 [Google Scholar]
  182. Mayer J, Bates WM. 182.  1952. Blood glucose and food intake in normal and hypo-physectomized alloxan-treated rats. Am. J. Physiol. 168:812–19 [Google Scholar]
  183. McClung CA, Nestler EJ. 183.  2003. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nat. Neurosci. 6:1208–15 [Google Scholar]
  184. Mela DJ, Sacchetti DA. 184.  1991. Sensory preferences for fats: relationships with diet and body composition. Am. J. Clin. Nutr. 53:908–15 [Google Scholar]
  185. Mellinkoff SM, Frankland M, Boyle D, Greipel M. 185.  1956. Relationship between serum amino acid concentration and fluctuations in appetite. J. Appl. Physiol. 8:535–38 [Google Scholar]
  186. Miller PE, Perez V. 186.  2014. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 100:765–77 [Google Scholar]
  187. Min DK, Tuor UI, Koopmans HS, Chelikani PK. 187.  2011. Changes in differential functional magnetic resonance signals in the rodent brain elicited by mixed-nutrient or protein-enriched meals. Gastroenterology 141:1832–41 [Google Scholar]
  188. Mindell S, Smith GP, Greenberg D. 188.  1990. Corn oil and mineral oil stimulate sham feeding in rats. Physiol. Behav. 48:283–87 [Google Scholar]
  189. Morris MJ, Beilharz J, Maniam J, Reichelt A, Westbrook RF. 189.  2014. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci. Biobehav. Rev. 58:36–45 [Google Scholar]
  190. Morrison CD, Xi X, White CL, Ye J, Martin RJ. 190.  2007. Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 293:E165–71 [Google Scholar]
  191. Murphy C, Withee J. 191.  1987. Age and biochemical status predict preference for casein hydrolysate. J. Gerontol. 42:73–77 [Google Scholar]
  192. Mushref MA, Srinivasan S. 192.  2013. Effect of high fat-diet and obesity on gastrointestinal motility. Ann. Transl. Med. 1:14 [Google Scholar]
  193. Nakamura E, Hasumura M, Uneyama H, Torii K. 193.  2011. Luminal amino acid-sensing cells in gastric mucosa. Digestion 83:Suppl. 113–18 [Google Scholar]
  194. Nefti W. 194.  2009. Les modifications de la sensibilité du nerf vague aux neuropeptides gastro-intestinaux induites par des situations nutritionnelles chez la souris: bases cellulaires et conséquences sur le comportement alimentaire PhD Thesis Paris: Agroparistech
  195. Nestler EJ. 195.  2005. Is there a common molecular pathway for addiction?. Nat. Neurosci. 8:1445–49 [Google Scholar]
  196. Ogden CL, Carroll MD, Kit BK, Flegal KM. 196.  2014. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311:806–14 [Google Scholar]
  197. Onwulata C, Huth P. 197.  2008. Whey Processing, Functionality and Health Benefits Ames, Iowa: Wiley-Blackwell
  198. Ooyama K, Kojima K, Aoyama T, Takeuchi H. 198.  2009. Decrease of food intake in rats after ingestion of medium-chain triacylglycerol. J. Nutr. Sci. Vitaminol. (Tokyo) 55:423–27 [Google Scholar]
  199. Oveisi F, Gaetani S, Eng KT-P, Piomelli D. 199.  2004. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol. Res. 49:461–66 [Google Scholar]
  200. Paddon-Jones D, Leidy H. 200.  2014. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 17:5–11 [Google Scholar]
  201. Page L, Phipard EF. 201.  1956. Essentials of an Adequate Diet: Facts for Nutrition Programs. Washington, DC: US Dep. Agric.
  202. Pal S, Radavelli-Bagatini S, Hagger M, Ellis V. 202.  2014. Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: a randomized controlled trial. Eur. J. Clin. Nutr. 68:980–86 [Google Scholar]
  203. Pedram P, Wadden D, Amini P, Gulliver W, Randell E. 203.  et al. 2013. Food addiction: its prevalence and significant association with obesity in the general population. PLOS ONE 8:e74832 [Google Scholar]
  204. Pedrosa M, Pascual CY, Larco JI, Esteban MM. 204.  2006. Palatability of hydrolysates and other substitution formulas for cow's-milk-allergic children: a comparative study of taste, smell, and texture evaluated by healthy volunteers. J. Investig. Allergol. Clin. Immunol. 16:351–56 [Google Scholar]
  205. Penagini R, Spiller RC, Misiewicz JJ, Frost PG. 205.  1989. Effect of ileal infusion of glycochenodeoxycholic acid on segmental transit, motility, and flow in the human jejunum and ileum. Gut 30:609–17 [Google Scholar]
  206. Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. 206.  2013. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 36:2530–35 [Google Scholar]
  207. Perley MJ, Kipnis DM. 207.  1967. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J. Clin. Investig. 46:1954–62 [Google Scholar]
  208. Peters JC, Beck J, Cardel M, Wyatt HR, Foster GD. 208.  et al. 2015. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: a randomized clinical trial. Obesity 24:297–304 [Google Scholar]
  209. Peuhkuri K, Sihvola N, Korpela R. 209.  2011. Dietary proteins and food-related reward signals. Food Nutr. Res. 2011:55 [Google Scholar]
  210. Pilichiewicz AN, Little TJ, Brennan IM, Meyer JH, Wishart JM. 210.  et al. 2006. Effects of load, and duration, of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R668–77 [Google Scholar]
  211. Poppitt SD, Strik CM, MacGibbon AK, McArdle BH, Budgett SC, McGill AT. 211.  2010. Fatty acid chain length, postprandial satiety and food intake in lean men. Physiol. Behav. 101:161–67 [Google Scholar]
  212. Power ML, Schulkin J. 212.  2008. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite 50:194–206 [Google Scholar]
  213. Pursey K, Stanwell P, Gearhardt A, Collins CE, Burrows T. 213.  2014. The prevalence of food addiction as assessed by the Yale Food Addiction Scale: a systematic review. Nutrients 6:4552–90 [Google Scholar]
  214. Ren X, Ferreira JG, Zhou L, Shammah-Lagnado SJ, Yeckel CW, de Araujo IE. 214.  2010. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30:8012–23 [Google Scholar]
  215. Ritter RC, Brenner L, Yox DP. 215.  1992. Participation of vagal sensory neurons in putative satiety signals from the upper gastrointestinal tract. Neuroanatomy and Physiology of Abdominal Vagal Afferents S Ritter, RC Ritter, CD Barnes 221–48 Ann Arbor, MI: CRC Press [Google Scholar]
  216. Robbins TW, Clark L. 216.  2015. Behavioral addictions. Curr. Opin. Neurobiol. 30:66–72 [Google Scholar]
  217. Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A. 217.  et al. 2016. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int. J. Obes. (Lond.) 40:381–94 [Google Scholar]
  218. Rolls BJ, Gnizak N, Summerfelt A, Laster LJ. 218.  1988. Food intake in dieters and nondieters after a liquid meal containing medium-chain triglycerides. Am. J. Clin. Nutr. 48:66–71 [Google Scholar]
  219. Rolls BJ, Hetherington M, Burley VJ. 219.  1988. The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety. Physiol. Behav. 43:145–53 [Google Scholar]
  220. Ropelle ER, Pauli JR, Fernandes MFA, Rocco SA, Marin RM. 220.  et al. 2008. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57:594–605 [Google Scholar]
  221. Rudenga KJ, Small DM. 221.  2012. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite 58:504–7 [Google Scholar]
  222. Ruijschop RMAJ, Boelrijk AEM, te Giffel MC. 222.  2008. Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int. Dairy J. 18:945–50 [Google Scholar]
  223. Rumpler WV, Kramer M, Rhodes DG, Paul DR. 223.  2006. The impact of the covert manipulation of macronutrient intake on energy intake and the variability in daily food intake in nonobese men. Int. J. Obes. 30:774–81 [Google Scholar]
  224. Sakar Y, Duca FA, Langelier B, Devime F, Blottiere H. 224.  et al. 2014. Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation. Int. J. Obes. 38:1440–48 [Google Scholar]
  225. Scharrer E, Langhans W. 225.  1986. Control of food intake by fatty acid oxidation. Am. J. Physiol. 250:6 Part 2R1003–6 [Google Scholar]
  226. Schick RR, Schusdziarra V, Mössner J, Neuberger J, Schröder B. 226.  et al. 1991. Effect of CCK on food intake in man: physiological or pharmacological effect?. Z. Gastroenterol. 29:53–58 [Google Scholar]
  227. Schiffman SS, Reilly DA, Clark TB. 227.  1979. Qualitative differences among sweeteners. Physiol. Behav. 23:1–9 [Google Scholar]
  228. Schoeller DA. 228.  2014. The effect of holiday weight gain on body weight. Physiol. Behav. 134:66–69 [Google Scholar]
  229. Schultz W. 229.  2002. Getting formal with dopamine and reward. Neuron 36:241–63 [Google Scholar]
  230. Seimon RV, Taylor P, Little TJ, Noakes M, Standfield S. 230.  et al. 2014. Effects of acute and longer-term dietary restriction on upper gut motility, hormone, appetite, and energy-intake responses to duodenal lipid in lean and obese men. Am. J. Clin. Nutr. 99:24–34 [Google Scholar]
  231. Simpson SJ, Raubenheimer D. 231.  2005. Obesity: the protein leverage hypothesis. Obes. Rev. 6:133–42 [Google Scholar]
  232. Sinha R, Garcia M, Paliwal P, Kreek M, Rounsaville BJ. 232.  2006. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch. Gen. Psychiatry 63:324–31 [Google Scholar]
  233. Smeets PA, Weijzen P, de Graaf C, Viergever MA. 233.  2011. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage 54:1367–74 [Google Scholar]
  234. Soenen S, Westerterp-Plantenga MS. 234.  2007. No differences in satiety or energy intake after high-fructose corn syrup, sucrose, or milk preloads. Am. J. Clin. Nutr. 86:1586–94 [Google Scholar]
  235. Solms J. 235.  1969. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17:686–88 [Google Scholar]
  236. Steinert RE, Feinle-Bisset C, Geary N, Beglinger C. 236.  2013. Digestive physiology of the pig symposium: secretion of gastrointestinal hormones and eating control. J. Anim. Sci. 91:1963–73 [Google Scholar]
  237. Stewart JE, Seimon RV, Otto B, Keast RSJ, Clifton PM, Feinle-Bisset C. 237.  2011. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am. J. Clin. Nutr. 93:703–11 [Google Scholar]
  238. Stice E, Spoor S, Ng J, Zald DH. 238.  2009. Relation of obesity to consummatory and anticipatory food reward. Physiol. Behav. 97:551–60 [Google Scholar]
  239. St-Onge MP, Mayrsohn B, O'Keeffe M, Kissileff HR, Choudhury AR, Laferrère B. 239.  2014. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men. Eur. J. Clin. Nutr. 68:1134–40 [Google Scholar]
  240. Strik CM, Lithander FE, McGill AT, MacGibbon AK, McArdle BH, Poppitt SD. 240.  2010. No evidence of differential effects of SFA, MUFA or PUFA on post-ingestive satiety and energy intake: a randomised trial of fatty acid saturation. Nutr. J. 9:24 [Google Scholar]
  241. Stubbs RJ, Johnstone AM, O'Reilly LM, Poppitt SD. 241.  1998. Methodological issues relating to the measurement of food, energy and nutrient intake in human laboratory-based studies. Proc. Nutr. Soc. 57:357–72 [Google Scholar]
  242. Stubbs RJ, Murgatroyd PR, Goldberg GR, Prentice AM. 242.  1993. Carbohydrate balance and the regulation of day-to-day food intake in humans. Am. J. Clin. Nutr. 57:897–903 [Google Scholar]
  243. Sun SZ, Anderson GH, Flickinger BD, Williamson-Hughes PS, Empie MW. 243.  2011. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 49:2875–82 [Google Scholar]
  244. Swithers SE, Martin AA, Clark KM, Laboy AF, Davidson TL. 244.  2010. Body weight gain in rats consuming sweetened liquids. Effects of caffeine and diet composition. Appetite 55:528–33 [Google Scholar]
  245. Szabo O, Szabo AJ. 245.  1972. Evidence for an insulin-sensitive receptor in the central nervous system. Am. J. Physiol. 223:1349–53 [Google Scholar]
  246. Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R. 246.  et al. 2015. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. 29:2268–80 [Google Scholar]
  247. Tang C, Ahmed K, Gille A, Lu S, Gröne HJ. 247.  et al. 2015. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat. Med. 21:173–77 [Google Scholar]
  248. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J. 248.  et al. 1995. Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–71 [Google Scholar]
  249. Teegarden SL, Bale TL. 249.  2007. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol. Psychiatry 61:1021–29 [Google Scholar]
  250. Teegarden SL, Scott AN, Bale TL. 250.  2009. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 162:924–32 [Google Scholar]
  251. Teff KL, Mattes RD, Engleman K, Mattern J. 251.  1993. Cephalic-phase insulin in obese and normal-weight men: relation to postprandial insulin. Metabolism 42:1600–8 [Google Scholar]
  252. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P. 252.  et al. 2013. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341:800–2 [Google Scholar]
  253. Temizkan S, Deyneli O, Yasar M, Arpa M, Gunes M. 253.  et al. 2014. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur. J. Clin. Nutr. 69:162–66 [Google Scholar]
  254. Tucker RM, Mattes RD, Running CA. 254.  2014. Mechanisms and effects of “fat taste” in humans. BioFactors 40:313–26 [Google Scholar]
  255. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 255.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  256. Uematsu A, Tsurugizawa T, Kitamura A, Ichikawa R, Iwatsuki K. 256.  et al. 2011. Evaluation of the “liking” and “wanting” properties of umami compound in rats. Physiol. Behav. 102:553–58 [Google Scholar]
  257. Uhe AM, Collier GR, O'Dea K. 257.  1992. A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. J. Nutr. 122:467–72 [Google Scholar]
  258. Vahl TP, Drazen DL, Seeley RJ, D'Alessio DA, Woods SC. 258.  2010. Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology 151:569–75 [Google Scholar]
  259. Van Itallie TB, Beaudoin R, Mayer J. 259.  1953. Arteriovenous glucose differences, metabolic hypoglycemia, and food intake in man. J. Clin. Nutr. 1:208–17 [Google Scholar]
  260. Van Wymelbeke V, Himaya A, Louis-Sylvestre J, Fantino M. 260.  1998. Influence of medium-chain and long-chain triacylglycerols on the control of food intake in men. Am. J. Clin. Nutr. 68:226–34 [Google Scholar]
  261. Van Wymelbeke V, Louis-Sylvestre J, Fantino M. 261.  2001. Substrate oxidation and control of food intake in men after a fat-substitute meal compared with meals supplemented with an isoenergetic load of carbohydrate, long-chain triacylglycerols, or medium-chain triacylglycerols. Am. J. Clin. Nutr. 74:620–30 [Google Scholar]
  262. Vandewater K, Vickers Z. 262.  1996. Higher-protein foods produce greater sensory-specific satiety. Physiol. Behav. 59:579–83 [Google Scholar]
  263. Vazquez M, Pearson PB, Beauchamp GK. 263.  1982. Flavor preferences in malnourished Mexican infants. Physiol. Behav. 28:513–19 [Google Scholar]
  264. Verschoor E, Finlayson G, Blundell J, Markus CR, King NA. 264.  2010. Effects of an acute alpha-lactalbumin manipulation on mood and food hedonics in high- and low-trait anxiety individuals. Br. J. Nutr. 104:595–602 [Google Scholar]
  265. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. 265.  2011. Addiction: beyond dopamine reward circuitry. PNAS 108:15037–42 [Google Scholar]
  266. Wagner JW, De Groot J. 266.  1963. Changes in feeding behaviour after intracerebral injections in the rat. Am. J. Physiol. 204:483–87 [Google Scholar]
  267. Wallace DL, Vialou V, Rios L, Carle-Florence TL, Chakravarty S. 267.  et al. 2008. The influence of ΔFosB in the nucleus accumbens on natural reward-related behavior. J. Neurosci. 28:10272–77 [Google Scholar]
  268. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT. 268.  et al. 2001. Brain dopamine and obesity. Lancet 357:354–57 [Google Scholar]
  269. Wardlaw SL, Burant CF, Klein S, Meece K, White A. 269.  et al. 2014. Continuous 24-hour leptin, proopiomelanocortin, and amino acid measurements in human cerebrospinal fluid: correlations with plasma leptin, soluble leptin receptor, and amino acid levels. J. Clin. Endocrinol. Metab. 99:2540–48 [Google Scholar]
  270. Weaver CM, Dwyer J, Fulgoni VL 3rd, King JC, Leveille GA. 270.  et al. 2014. Processed foods: contributions to nutrition. Am. J. Clin. Nutr. 99:1525–42 [Google Scholar]
  271. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE. 271.  et al. 2005. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 82:41–48 [Google Scholar]
  272. White CL, Purpera MN, Ballard K, Morrison CD. 272.  2010. Decreased food intake following overfeeding involves leptin-dependent and leptin-independent mechanisms. Physiol. Behav. 100:408–16 [Google Scholar]
  273. Wichman A, Allahyar A, Greiner TU, Plovier H, Lundén G. 273.  et al. 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14:582–90 [Google Scholar]
  274. Wilding JP. 274.  2001. Leptin and the control of obesity. Curr. Opin. Pharmacol. 1:656–61 [Google Scholar]
  275. Wisén O, Björvell H, Cantor P, Johansson C, Theodorsson E. 275.  1992. Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal. Regul. Pept. 39:43–54 [Google Scholar]
  276. Wøjdemann M, Traberg P, Stadil F, Sternby B, Larsen S. 276.  et al. 1998. Effect of sham feeding and acute suppression of acid secretion on human gastric lipase secretion. Am. J. Gastroenterol. 93:244–48 [Google Scholar]
  277. Wolfe RR. 277.  2006. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 84:475–82 [Google Scholar]
  278. Woods SC, D'Alessio DA, Tso P, Rushing PA, Clegg DJ. 278.  et al. 2004. Consumption of a high-fat diet alters the homeostatic regulation of energy. Physiol. Behav. 83:573–78 [Google Scholar]
  279. Woods SC, Langhans W. 279.  2012. Inconsistencies in the assessment of food intake. Am. J. Physiol. Endocrinol. Metab. 303:E1408–18 [Google Scholar]
  280. Woods SC, Schwartz MW, Baskin DG, Seeley RJ. 280.  2000. Food intake and the regulation of body weight. Annu. Rev. Psychol. 51:255–77 [Google Scholar]
  281. Wurtman RJ, Fernstrom JD. 281.  1975. Control of brain monoamine synthesis by diet and plasma amino acids. Am. J. Clin. Nutr. 28:638–47 [Google Scholar]
  282. Yanovski JA, Yanovski SZ, Sovik KN, Nguyen TT, Neil PM, Sebring NG. 282.  2000. A prospective study of holiday weight gain. N. Engl. J. Med. 342:861–67 [Google Scholar]
  283. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 283.  1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–32 [Google Scholar]
  284. Ziauddeen H, Farooqi IS, Fletcher PC. 284.  2012. Obesity and the brain: How convincing is the addiction model?. Nat. Rev. Neurosci. 13:279–86 [Google Scholar]
/content/journals/10.1146/annurev-nutr-121415-112624
Loading
/content/journals/10.1146/annurev-nutr-121415-112624
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error