1932

Abstract

The history of vitamin A goes back over one hundred years, but our realization of its importance for the brain and cognition is much more recent. The brain is more efficient than other target tissues at converting vitamin A to retinoic acid (RA), which activates retinoic acid receptors (RARs). RARs regulate transcription, but their function in the cytoplasm to control nongenomic actions is also crucial. Controlled synthesis of RA is essential for regulating synaptic plasticity in regions of the brain involved in learning and memory, such as the hippocampus. Vitamin A deficiency results in a deterioration of these functions, and failure of RA signaling is perhaps associated with normal cognitive decline with age as well as with Alzheimer's disease. Further, several psychiatric and developmental disorders that disrupt cognition are also linked with vitamin A and point to their possible treatment with vitamin A or RA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-122319-034227
2020-08-21
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-122319-034227.html?itemId=/content/journals/10.1146/annurev-nutr-122319-034227&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abu-Abed S, MacLean G, Fraulob V, Chambon P, Petkovich M, Dollé P 2002. Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech. Dev. 110:1–2173–77
    [Google Scholar]
  2. 2. 
    Anderson DW, Schray RC, Duester G, Schneider JS 2011. Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res 1408:81–87
    [Google Scholar]
  3. 3. 
    Aoto J, Nam CI, Poon MM, Ting P, Chen L 2008. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:2308–20
    [Google Scholar]
  4. 4. 
    Arendt KL, Zhang Z, Ganesan S, Hintze M, Shin MM et al. 2015. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis. PNAS 112:42E5744-52
    [Google Scholar]
  5. 5. 
    Arendt KL, Zhang Y, Jurado S, Malenka RC, Südhof TC, Chen L 2015. Retinoic acid and LTP recruit postsynaptic AMPA receptors using distinct SNARE-dependent mechanisms. Neuron 86:2442–56
    [Google Scholar]
  6. 6. 
    Arfaoui A, Nasri I, Boulbaroud S, Ouichou A, Mesfioui A 2009. Effect of vitamin A deficiency on retinol and retinyl esters contents in rat brain. Pakistan J. Biol. Sci. 12:13939–48
    [Google Scholar]
  7. 7. 
    Aubry EM, Odermatt A. 2009. Retinoic acid reduces glucocorticoid sensitivity in C2C12 myotubes by decreasing 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor activities. Endocrinology 150:62700–8
    [Google Scholar]
  8. 8. 
    Balmer JE, Blomhoff R. 2002. Gene expression regulation by retinoic acid. J. Lipid Res. 43:111773–808
    [Google Scholar]
  9. 9. 
    Bao Y, Ibram G, Blaner WS, Quesenberry CP, Shen L et al. 2012. Low maternal retinol as a risk factor for schizophrenia in adult offspring. Schizophr. Res. 137:1–3159–65
    [Google Scholar]
  10. 10. 
    Bastien J, Rochette-Egly C. 2004. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16
    [Google Scholar]
  11. 11. 
    Berse B, Blusztajn JK. 1995. Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor α, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J. Biol. Chem. 270:3822101–4
    [Google Scholar]
  12. 12. 
    Bertoli-Avella AM, Oostra BA, Heutink P 2004. Chasing genes in Alzheimer's and Parkinson's disease. Hum. Genet. 114:5413–38
    [Google Scholar]
  13. 13. 
    Bird CM, Burgess N. 2008. The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9:3182–94
    [Google Scholar]
  14. 14. 
    Blomhoff R. 2009. Transport and metabolism of vitamin A. Nutr. Rev. 52:2S13–23
    [Google Scholar]
  15. 15. 
    Bonhomme D, Minni AM, Alfos S, Roux P, Richard E et al. 2014. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis. Front. Behav. Neurosci. 8:20
    [Google Scholar]
  16. 16. 
    Bonnet E, Touyarot K, Alfos S, Pallet V, Higueret P, Abrous DN 2008. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. PLOS ONE 3:10e3487
    [Google Scholar]
  17. 17. 
    Bourdel-Marchasson I. 2001. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30:3235–41
    [Google Scholar]
  18. 18. 
    Bourne JN, Harris KM. 2008. Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31:47–67
    [Google Scholar]
  19. 19. 
    Buxbaum JN, Roberts AJ, Adame A, Masliah E 2014. Silencing of murine transthyretin and retinol binding protein genes has distinct and shared behavioral and neuropathologic effects. Neuroscience 275:352–64
    [Google Scholar]
  20. 20. 
    Cai L, Yan X-B, Chen X-N, Meng Q-Y, Zhou J-N 2010. Chronic all-trans retinoic acid administration induced hyperactivity of HPA axis and behavioral changes in young rats. Eur. Neuropsychopharmacol. 20:12839–47
    [Google Scholar]
  21. 21. 
    Chatzi C, Brade T, Duester G 2011. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLOS Biol 9:4e1000609
    [Google Scholar]
  22. 22. 
    Chen L, Lau AG, Sarti F 2014. Synaptic retinoic acid signaling and homeostatic synaptic plasticity. Neuropharmacology 78:C3–12
    [Google Scholar]
  23. 23. 
    Chiang MY, Misner D, Kempermann G, Schikorski T, Giguère V et al. 1998. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 21:61353–61
    [Google Scholar]
  24. 24. 
    Chow VW, Mattson MP, Wong PC, Gleichmann M 2010. An overview of APP processing enzymes and products. NeuroMol. Med. 12:11–12
    [Google Scholar]
  25. 25. 
    Cocco S, Diaz G, Stancampiano R, Diana A, Carta M et al. 2002. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 115:2475–82
    [Google Scholar]
  26. 26. 
    Corcoran JPT, So PL, Maden M 2004. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain. Eur. J. Neurosci. 20:4896–902
    [Google Scholar]
  27. 27. 
    Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Karlo JC et al. 2012. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:60751503–6
    [Google Scholar]
  28. 28. 
    Crandall J, Sakai Y, Zhang J, Koul O, Mineur Y et al. 2004. 13-cis-Retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. PNAS 101:145111–16
    [Google Scholar]
  29. 29. 
    Cummings JL, Zhong K, Kinney JW, Heaney C, Moll-Tudla J et al. 2016. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer's disease. Alzheimer's Res. Ther. 8:14
    [Google Scholar]
  30. 30. 
    Davis GW, Müller M. 2014. Homeostatic control of presynaptic neurotransmitter release. Annu. Rev. Physiol. 77:1251–70
    [Google Scholar]
  31. 31. 
    de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A 2017. GABAergic mechanisms in schizophrenia: linking postmortem and in vivo studies. Front. Psychiatry 8:118
    [Google Scholar]
  32. 32. 
    Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM et al. 2009. Age-associated cognitive decline. Br. Med. Bull. 92:1135–52
    [Google Scholar]
  33. 33. 
    Dickson PW, Aldred AR, Marley PD, Guo-Fen T, Howlett GJ, Schreiber G 1985. High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem. Biophys. Res. Commun. 127:3890–95
    [Google Scholar]
  34. 34. 
    Ding Y, Qiao A, Wang Z, Goodwin JS, Lee E-S et al. 2008. Retinoic acid attenuates β-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J. Neurosci. 28:4511622–34
    [Google Scholar]
  35. 35. 
    Dopheide MM, Morgan RE. 2008. Isotretinoin (13-cis-retinoic acid) alters learning and memory, but not anxiety-like behavior, in the adult rat. Pharmacol. Biochem. Behav. 91:2243–51
    [Google Scholar]
  36. 36. 
    Duan W, Schreiber G. 1992. Expression of retinol-binding protein mRNA in mammalian choroid plexus. Comp. Biochem. Physiol. B Comp. Biochem. 101:3399–406
    [Google Scholar]
  37. 37. 
    Dumetz F, Buré C, Alfos S, Bonneu M, Richard E et al. 2020. Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiol. Aging 85:1–10
    [Google Scholar]
  38. 38. 
    Endres K. 2019. Retinoic acid and the gut microbiota in Alzheimer's disease: fighting back-to-back. Curr. Alzheimer Res. 16:405–17
    [Google Scholar]
  39. 39. 
    Endres K, Fahrenholz F, Lotz J, Hiemke C, Teipel S et al. 2014. Increased CSF APPs-α levels in patients with Alzheimer disease treated with acitretin. Neurology 83:211930–35
    [Google Scholar]
  40. 40. 
    Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R 2003. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav. Brain Res. 145:1–237–49
    [Google Scholar]
  41. 41. 
    Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V et al. 2001. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J. Neurosci. 21:166423–29
    [Google Scholar]
  42. 42. 
    Falco M, Amabile S, Acquaviva F 2017. RAI1 gene mutations: mechanisms of Smith-Magenis syndrome. Appl. Clin. Genet. 10:85–94
    [Google Scholar]
  43. 43. 
    Feart C, Pallet V, Boucheron C, Higueret D, Alfos S et al. 2005. Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur. J. Endocrinol. 152:3449–58
    [Google Scholar]
  44. 44. 
    Foster TC. 1999. Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res. Rev. 30:3236–49
    [Google Scholar]
  45. 45. 
    Fragoso YD, Stoney PN, Shearer KD, Sementilli A, Nanescu SE et al. 2015. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct. Funct. 220:21195–203
    [Google Scholar]
  46. 46. 
    Francis PT. 2005. The interplay of neurotransmitters in Alzheimer's disease. CNS Spectr 10:S186–9
    [Google Scholar]
  47. 47. 
    Francis PT, Palmer AM, Snape M, Wilcock GK 1999. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66:2137–47
    [Google Scholar]
  48. 48. 
    Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R et al. 2013. Amyloid β inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur. J. Neurosci. 37:71182–92
    [Google Scholar]
  49. 49. 
    Goodman AB. 1995. Chromosomal locations and modes of action of genes of the retinoid (vitamin A) system support their involvement in the etiology of schizophrenia. Am. J. Med. Genet. 60:4335–48
    [Google Scholar]
  50. 50. 
    Goodman AB. 1998. Three independent lines of evidence suggest retinoids as causal to schizophrenia. PNAS 95:137240–44
    [Google Scholar]
  51. 51. 
    Goodman AB. 2005. Microarray results suggest altered transport and lowered synthesis of retinoic acid in schizophrenia. Mol. Psychiatry 10:7620–21
    [Google Scholar]
  52. 52. 
    Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K et al. 2012. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 22:112171–83
    [Google Scholar]
  53. 53. 
    Grasselli G, Hansel C. 2014. Cerebellar long-term potentiation. Int. Rev. Neurobiol. 117:39–51
    [Google Scholar]
  54. 54. 
    Groth RD, Tsien RW. 2008. A role for retinoic acid in homeostatic plasticity. Neuron 60:2192–94
    [Google Scholar]
  55. 55. 
    Guo M, Zhu J, Yang T, Lai X, Liu X et al. 2018. Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): a pilot study. Brain Res. Bull. 137:35–40
    [Google Scholar]
  56. 56. 
    Hasselmo ME. 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16:6710–15
    [Google Scholar]
  57. 57. 
    Haybaeck J, Weis S, Postruznik M, Miller CL, Llenos IC, Dulay JR 2015. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Neuropsychiatr. Dis. Treat. 11:279–89
    [Google Scholar]
  58. 58. 
    Hou N, Ren L, Gong M, Bi Y, Gu Y et al. 2015. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol. Neurobiol. 51:2633–47
    [Google Scholar]
  59. 59. 
    Hsu Y-T, Li J, Wu D, Südhof TC, Chen L 2019. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. PNAS 116:147113–22
    [Google Scholar]
  60. 60. 
    Hu P, Liu J, Zhao J, Qi X-R, Qi C-C et al. 2013. All-trans retinoic acid-induced hypothalamus–pituitary–adrenal hyperactivity involves glucocorticoid receptor dysregulation. Transl. Psychiatry 3:12e336
    [Google Scholar]
  61. 61. 
    Huang X, Zhang H, Zhen J, Dong S, Guo Y et al. 2018. Diminished circulating retinol and elevated α-TOH/retinol ratio predict an increased risk of cognitive decline in aging Chinese adults, especially in subjects with ApoE2 or ApoE4 genotype. Aging 10:124066–83
    [Google Scholar]
  62. 62. 
    Husson M, Enderlin V, Alfos S, Boucheron C, Pallet V, Higueret P 2004. Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A-deprived rats. Mol. Brain Res. 123:1–27–17
    [Google Scholar]
  63. 63. 
    Imoesi PI, Bowman EE, Stoney PN, Matz S, McCaffery P 2019. Rapid action of retinoic acid on the hypothalamic pituitary adrenal axis. Front. Mol. Neurosci. 12:259
    [Google Scholar]
  64. 64. 
    Irving JT, Richards MB. 1938. Early lesions of vitamin A deficiency. J. Physiol. 94:3307–21
    [Google Scholar]
  65. 65. 
    Ishibashi S, Perrey S, Chen Z, Osuga J, Shimada M et al. 1996. Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. J. Biol. Chem. 271:3722422–27
    [Google Scholar]
  66. 66. 
    Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM et al. 2006. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. PNAS 103:103902–7
    [Google Scholar]
  67. 67. 
    Jiang Q, Lee CYD, Mandrekar S, Wilkinson B, Cramer P et al. 2008. ApoE promotes the proteolytic degradation of Aβ. Neuron 58:5681–93
    [Google Scholar]
  68. 68. 
    Jiang W, Yu Q, Gong M, Chen L, Wen EY et al. 2012. Vitamin A deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. J. Neurochem. 121:6932–43
    [Google Scholar]
  69. 69. 
    Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A et al. 2013. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J. Aging Res. 2013:1–13
    [Google Scholar]
  70. 70. 
    Jurado S, Goswami D, Zhang Y, Molina AJM, Südhof TC, Malenka RC 2013. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77:3542–58
    [Google Scholar]
  71. 71. 
    Kane MA, Folias AE, Napoli JL 2008. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 378:171–79
    [Google Scholar]
  72. 72. 
    Kawahara K, Nishi K, Suenobu M, Ohtsuka H, Maeda A et al. 2009. Oral administration of synthetic retinoid Am80 (tamibarotene) decreases brain β-amyloid peptides in APP23 mice. Biol. Pharm. Bull. 32:71307–9
    [Google Scholar]
  73. 73. 
    Kawahara K, Suenobu M, Ohtsuka H, Kuniyasu A, Sugimoto Y et al. 2014. Cooperative therapeutic action of retinoic acid receptor and retinoid X receptor agonists in a mouse model of Alzheimer's disease. J. Alzheimer's Dis. 42:2587–605
    [Google Scholar]
  74. 74. 
    Keck T, Hübener M, Bonhoeffer T 2017. Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance. Curr. Opin. Neurobiol. 43:87–93
    [Google Scholar]
  75. 75. 
    Kedishvili NY. 2013. Enzymology of retinoic acid biosynthesis and degradation. J. Lipid Res. 54:71744–60
    [Google Scholar]
  76. 76. 
    Kelly M, Widjaja-Adhi MAK, Palczewski G, von Lintig J 2016. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. FASEB J 30:82985–95
    [Google Scholar]
  77. 77. 
    Kesse-Guyot E, Andreeva VA, Ducros V, Jeandel C, Julia C et al. 2014. Carotenoid-rich dietary patterns during midlife and subsequent cognitive function. Br. J. Nutr. 111:5915–23
    [Google Scholar]
  78. 78. 
    Khatib T, Chisholm DR, Whiting A, Platt B, McCaffery P 2020. Decay in retinoic acid signaling in varied models of Alzheimer's disease and in-vitro test of novel retinoic acid receptor ligands (RAR-Ms) to regulate protective genes. J. Alzheimer's Dis. 73:3935–54
    [Google Scholar]
  79. 79. 
    Kim J-I, Ganesan S, Luo SX, Wu Y-W, Park E et al. 2015. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 350:6256102–6
    [Google Scholar]
  80. 80. 
    Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T 2005. Retinol-binding protein gene is highly expressed in higher-order association areas of the primate neocortex. Cereb. Cortex 15:196–108
    [Google Scholar]
  81. 81. 
    Koryakina A, Aeberhard J, Kiefer S, Hamburger M, Küenzi P 2009. Regulation of secretases by all-trans-retinoic acid. FEBS J 276:92645–55
    [Google Scholar]
  82. 82. 
    Krężel W, Kastner P, Chambon P 1999. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:41291–300
    [Google Scholar]
  83. 83. 
    Krężel W, Rühl R, de Lera AR 2019. Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol. 491:110436
    [Google Scholar]
  84. 84. 
    LaMantia A-S. 1999. Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biol. Psychiatry 46:119–30
    [Google Scholar]
  85. 85. 
    Lane MA, Bailey SJ. 2005. Role of retinoid signalling in the adult brain. Prog. Neurobiol. 75:4275–93
    [Google Scholar]
  86. 86. 
    Langlois M-C, Beaudry G, Zekki H, Rouillard C, Lévesque D 2001. Impact of antipsychotic drug administration on the expression of nuclear receptors in the neocortex and striatum of the rat brain. Neuroscience 106:1117–28
    [Google Scholar]
  87. 87. 
    Larsen R, Proue A, Scott EP, Christiansen M, Nakagawa Y 2019. The thalamus regulates retinoic acid signaling and development of parvalbumin interneurons in postnatal mouse prefrontal cortex. eNeuro 6:1 ENEURO 0018–19 2019.
    [Google Scholar]
  88. 88. 
    Lawrie SM, Abukmeil SS. 1998. Brain abnormality in schizophrenia. Br. J. Psychiatry 172:2110–20
    [Google Scholar]
  89. 89. 
    Lei H, Yan Z, Sun X, Zhang Y, Wang J et al. 2017. Axon guidance pathways served as common targets for human speech/language evolution and related disorders. Brain Lang 174:1–8
    [Google Scholar]
  90. 90. 
    Lerner V, McCaffery PJA, Ritsner MS 2016. Targeting retinoid receptors to treat schizophrenia: rationale and progress to date. CNS Drugs 30:4269–80
    [Google Scholar]
  91. 91. 
    Lerner V, Miodownik C, Gibel A, Kovalyonok E, Shleifer T et al. 2008. Bexarotene as add-on to antipsychotic treatment in schizophrenia patients. Clin. Neuropharmacol. 31:125–33
    [Google Scholar]
  92. 92. 
    Lerner V, Miodownik C, Gibel A, Sirota P, Bush I et al. 2013. The retinoid X receptor agonist bexarotene relieves positive symptoms of schizophrenia. J. Clin. Psychiatry 74:121224–32
    [Google Scholar]
  93. 93. 
    Li J, Park E, Zhong LR, Chen L 2019. Homeostatic synaptic plasticity as a metaplasticity mechanism—a molecular and cellular perspective. Curr. Opin. Neurobiol. 54:44–53
    [Google Scholar]
  94. 94. 
    Lin Y-L, Persaud SD, Nhieu J, Wei L-N 2017. Cellular retinoic acid–binding protein 1 modulates stem cell proliferation to affect learning and memory in male mice. Endocrinology 158:93004–14
    [Google Scholar]
  95. 95. 
    Liu L, Gudas LJ. 2005. Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J. Biol. Chem. 280:4840226–34
    [Google Scholar]
  96. 96. 
    Liu X, Liu J, Xiong X, Yang T, Hou N et al. 2016. Correlation between nutrition and symptoms: nutritional survey of children with autism spectrum disorder in Chongqing, China. Nutrients 8:5294
    [Google Scholar]
  97. 97. 
    Lu Y, An Y, Guo J, Zhang X, Wang H et al. 2016. Dietary intake of nutrients and lifestyle affect the risk of mild cognitive impairment in the Chinese elderly population: a cross-sectional study. Front. Behav. Neurosci. 10:229
    [Google Scholar]
  98. 98. 
    MacDonald PN, Bok D, Ong DE 1990. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human. PNAS 87:114265–69
    [Google Scholar]
  99. 99. 
    Maden M, Holder N. 1992. Retinoic acid and development of the central nervous system. BioEssays 14:7431–38
    [Google Scholar]
  100. 100. 
    Mariani MM, Malm T, Lamb R, Jay TR, Neilson L et al. 2017. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer's disease. Sci. Rep. 7:142270
    [Google Scholar]
  101. 101. 
    Marissal-Arvy N, Hamiani R, Richard E, Moisan M-P, Pallet V 2013. Vitamin A regulates hypothalamic–pituitary–adrenal axis status in LOU/C rats. J. Endocrinol. 219:121–27
    [Google Scholar]
  102. 102. 
    Markiewicz I, Lukomska B. 2006. The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol. Exp. 66:4343–58
    [Google Scholar]
  103. 103. 
    McCutcheon RA, Abi-Dargham A, Howes OD 2019. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42:3205–20
    [Google Scholar]
  104. 104. 
    Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B et al. 2008. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J. Neurosci. 28:1279–91
    [Google Scholar]
  105. 105. 
    Misner DL, Jacobs S, Shimizu Y, de Urquiza AM, Solomin L et al. 2001. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. PNAS 98:2011714–19
    [Google Scholar]
  106. 106. 
    Moore T, Holmes PD. 1971. The production of experimental vitamin A deficiency in rats and mice. Lab. Anim. 5:2239–50
    [Google Scholar]
  107. 107. 
    Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE 2019. Nuclear receptors as therapeutic targets for neurodegenerative diseases: lost in translation. Annu. Rev. Pharmacol. Toxicol. 59:1237–61
    [Google Scholar]
  108. 108. 
    Mueser KT, McGurk SR. 2004. Schizophrenia. Lancet 363:94262063–72
    [Google Scholar]
  109. 109. 
    Murray RM, Bhavsar V, Tripoli G, Howes O 2017. 30 years on: how the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr. Bull. 43:61190–96
    [Google Scholar]
  110. 110. 
    Napoli JL. 2017. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: effects on retinoid metabolism, function and related diseases. Pharmacol. Ther. 173:19–33
    [Google Scholar]
  111. 111. 
    Noy N. 2016. Vitamin A transport and cell signaling by the retinol-binding protein receptor STRA6. Subcell. Biochem. 81:77–93
    [Google Scholar]
  112. 112. 
    Ono K, Yoshiike Y, Tskashima A, Hasegawa K, Naiki H, Yamada M 2004. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp. Neurol. 189:2380–92
    [Google Scholar]
  113. 113. 
    Owen MJ, O'Donovan MC, Thapar A, Craddock N 2011. Neurodevelopmental hypothesis of schizophrenia. Br. J. Psychiatry 198:3173–75
    [Google Scholar]
  114. 114. 
    Owen MJ, Sawa A, Mortensen PB 2016. Schizophrenia. Lancet 388:1003986–97
    [Google Scholar]
  115. 115. 
    Pallet V, Touyarot K. 2015. Vitamin A and cognitive processes. Nutr. Aging 3:121–31
    [Google Scholar]
  116. 116. 
    Pardridge WM, Sakiyama R, Coty WA 1985. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J. Neurochem. 44:41138–41
    [Google Scholar]
  117. 117. 
    Park E, Tjia M, Zuo Y, Chen L 2018. Postnatal ablation of synaptic retinoic acid signaling impairs cortical information processing and sensory discrimination in mice. J. Neurosci. 38:233028–17
    [Google Scholar]
  118. 118. 
    Poon MM, Chen L. 2008. Retinoic acid-gated sequence-specific translational control by RAR. PNAS 105:5120303–8
    [Google Scholar]
  119. 119. 
    Pozo K, Goda Y. 2010. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66:3337–51
    [Google Scholar]
  120. 120. 
    Rafii MS, Aisen PS. 2009. Recent developments in Alzheimer's disease therapeutics. BMC Med 7:17
    [Google Scholar]
  121. 121. 
    Rahmam AS, Kimura M, Yokoi K, Naher T-E, Itokawa Y 1996. Neurological disorder and excessive accumulation of calcium in brain of clinically vitamin A-deficient rats. Biol. Trace Elem. Res. 53:1–357–64
    [Google Scholar]
  122. 122. 
    Reay WR, Atkins JR, Quidé Y, Carr VJ, Green MJ, Cairns MJ 2018. Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Mol. Psychiatry 25:4719–31
    [Google Scholar]
  123. 123. 
    Regen F, Cosma N-C, Otto LR, Clemens V, Saksone L et al. 2020. Clozapine modulates retinoid homeostasis in human brain and normalizes serum retinoic acid deficit in patients with schizophrenia. Mol. Psychiatry. https://doi.org/10.1038/s41380-020-0791-8
    [Crossref] [Google Scholar]
  124. 124. 
    Rioux L, Arnold SE. 2005. The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res 133:113–21
    [Google Scholar]
  125. 125. 
    Rutjes AWS, Denton DA, Di Nisio M, Chong L-Y, Abraham RP et al. 2018. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst. Rev. 17:CD011906
    [Google Scholar]
  126. 126. 
    Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV et al. 2014. Classifying neurocognitive disorders: the DSM-5 approach. Nat. Rev. Neurol. 10:11634–42
    [Google Scholar]
  127. 127. 
    Samad TA, Krezel W, Chambon P, Borrelli E 1997. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor–retinoid X receptor family. PNAS 94:2614349–54
    [Google Scholar]
  128. 128. 
    Sarti F, Zhang Z, Schroeder J, Chen L 2013. Rapid suppression of inhibitory synaptic transmission by retinoic acid. J. Neurosci. 33:2811440–50
    [Google Scholar]
  129. 129. 
    Schmidt B, Marrone DF, Markus EJ 2012. Disambiguating the similar: the dentate gyrus and pattern separation. Behav. Brain Res. 226:156–65
    [Google Scholar]
  130. 130. 
    Schmidt CK, Brouwer A, Nau H 2003. Chromatographic analysis of endogenous retinoids in tissues and serum. Anal. Biochem. 315:136–48
    [Google Scholar]
  131. 131. 
    Seeman P. 2014. Clozapine, a fast-off-D2 antipsychotic. ACS Chem. Neurosci. 5:124–29
    [Google Scholar]
  132. 132. 
    Selkoe DJ. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81:2741–66
    [Google Scholar]
  133. 133. 
    Shearer KD, Fragoso YD, Clagett-Dame M, McCaffery PJ 2012. Astrocytes as a regulated source of retinoic acid for the brain. Glia 60:121964–76
    [Google Scholar]
  134. 134. 
    Shearer KD, Goodman TH, Ross AW, Reilly L, Morgan PJ, McCaffery PJ 2010. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J. Neurochem. 112:1246–57
    [Google Scholar]
  135. 135. 
    Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ 2012. A vitamin for the brain. Trends Neurosci 35:12733–41
    [Google Scholar]
  136. 136. 
    Shudo K, Fukasawa H, Nakagomi M, Yamagata N 2009. Towards retinoid therapy for Alzheimer's disease. Curr. Alzheimer Res. 6:3302–11
    [Google Scholar]
  137. 137. 
    Shudo K, Kagechika H, Yamazaki N, Igarashi M, Tateda C 2004. A synthetic retinoid Am80 (tamibarotene) rescues the memory deficit caused by scopolamine in a passive avoidance paradigm. Biol. Pharm. Bull. 27:111887–89
    [Google Scholar]
  138. 138. 
    Smith JE. 1990. Preparation of vitamin A-deficient rats and mice. Methods Enzymol 190:1980229–36
    [Google Scholar]
  139. 139. 
    Soden ME, Chen L. 2010. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J. Neurosci. 30:5016910–21
    [Google Scholar]
  140. 140. 
    Stephan KE, Baldeweg T, Friston KJ 2006. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59:10929–39
    [Google Scholar]
  141. 141. 
    Stoney PN, Fragoso YD, Saeed RB, Ashton A, Goodman T et al. 2016. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct. Funct. 221:63315–26
    [Google Scholar]
  142. 142. 
    Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P 2016. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 64:3425–39
    [Google Scholar]
  143. 143. 
    Takasaki J, Ono K, Yoshiike Y, Hirohata M, Ikeda T et al. 2011. Vitamin A has anti-oligomerization effects on amyloid-β in vitro. J. Alzheimer's Dis. 27:2271–80
    [Google Scholar]
  144. 144. 
    Tanprasertsuk J, Mohn ES, Matthan NR, Lichtenstein AH, Barger K et al. 2019. Serum carotenoids, tocopherols, total n-3 polyunsaturated fatty acids, and n-6/n-3 polyunsaturated fatty acid ratio reflect brain concentrations in a cohort of centenarians. J. Gerontol. Ser. A 74:3306–14
    [Google Scholar]
  145. 145. 
    Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F 2009. Up-regulation of the α-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23:61643–54
    [Google Scholar]
  146. 146. 
    Turrigiano GG. 2008. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:3422–35
    [Google Scholar]
  147. 147. 
    Van Der Loo B, Labugger R, Aebischer CP, Bachschmid M, Spitzer V et al. 2004. Age-related changes of vitamin A status. J. Cardiovasc. Pharmacol. 43:126–30
    [Google Scholar]
  148. 148. 
    Van Rhijn J-R, Vernes SC 2015. Retinoic acid signaling: a new piece in the spoken language puzzle. Front. Psychol. 6:1816
    [Google Scholar]
  149. 149. 
    Wan C, Shi Y, Zhao X, Tang W, Zhang M et al. 2009. Positive association between ALDH1A2 and schizophrenia in the Chinese population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33:81491–95
    [Google Scholar]
  150. 150. 
    Wan C, Yang Y, Li H, La Y, Zhu H et al. 2006. Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J. Proteome Res. 5:113213–16
    [Google Scholar]
  151. 151. 
    Wang C, Kane MA, Napoli JL 2011. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J. Biol. Chem. 286:86542–53
    [Google Scholar]
  152. 152. 
    Wang H-L, Zhang Z, Hintze M, Chen L 2011. Decrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity. J. Neurosci. 31:4917764–71
    [Google Scholar]
  153. 153. 
    Wang R, Chen S, Liu Y, Diao S, Xue Y et al. 2015. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J. Biol. Chem. 290:3722532–42
    [Google Scholar]
  154. 154. 
    Wei L-N. 2016. Cellular retinoic acid binding proteins: genomic and non-genomic functions and their regulation. Subcell. Biochem. 81:163–78
    [Google Scholar]
  155. 155. 
    Werner EA, Deluca HF. 2002. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am. J. Physiol. Endocrinol. Metab. 282:3E672–78
    [Google Scholar]
  156. 156. 
    Wietrzych M, Meziane H, Sutter A, Ghyselinck N, Chapman PF et al. 2005. Working memory deficits in retinoid X receptor γ-deficient mice. Learn. Mem. 12:3318–26
    [Google Scholar]
  157. 157. 
    Woloszynowska-Fraser MU, Wulff P, Riedel G 2017. Parvalbumin-containing GABA cells and schizophrenia. Behav. Pharmacol. 28:8630–41
    [Google Scholar]
  158. 158. 
    Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT 2012. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci. 32:4817321–31
    [Google Scholar]
  159. 159. 
    Yang A, Tsai S-J. 2017. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 18:81689
    [Google Scholar]
  160. 160. 
    Zeng J, Chen L, Wang Z, Chen Q, Fan Z et al. 2017. Marginal vitamin A deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathol 133:6967–82
    [Google Scholar]
  161. 161. 
    Zetterström RH, Simon A, Giacobini MMJ, Eriksson U, Olson L 1994. Localization of cellular retinoid-binding proteins suggests specific roles for retinoids in the adult central nervous system. Neuroscience 62:3899–918
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-122319-034227
Loading
/content/journals/10.1146/annurev-nutr-122319-034227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error