The intent is to tell a story—hopefully one that is at various times serious, light-hearted, or provocative—that describes my life in biomedical science, especially focusing on the 50 years from 1961 (as a college senior) to the present.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Conney AH, Gilman AG. 1.  1963. Puromycin inhibition of enzyme induction by 3-methylcholanthrene and phenobarbital. J. Biol. Chem. 238:3682–85 [Google Scholar]
  2. Rall TW, Sutherland EW, Berthet J. 2.  1957. The relationship of epinephrine and glucagon to liver phosphorylase: IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. J. Biol. Chem. 224:463–75 [Google Scholar]
  3. Rall TW, Sutherland EW, Wosilait WD. 3.  1956. The relationship of epinephrine and glucagon to liver phosphorylase: III. Reactivation of liver phosphorylase in slices and in extracts. J. Biol. Chem. 218:483–95 [Google Scholar]
  4. Kornberg A. 4.  2003. Ten commandments of enzymology, amended. Trends Biochem. Sci. 28:515–17 [Google Scholar]
  5. Walsh DA, Perkins JB, Krebs EG. 5.  1968. An adenosine 3′5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243:3763–65 [Google Scholar]
  6. Gilman AG. 6.  1970. A protein binding assay for adenosine 3′:5′-cyclic monophosphate. Proc. Natl. Acad. Sci. USA 67:305–12 [Google Scholar]
  7. Birnbaumer L, Rodbell M. 7.  1969. Adenyl cyclase in fat cells: II. Hormone receptors. J. Biol. Chem. 244:3477–82 [Google Scholar]
  8. Maguire ME, Goldmann PH, Gilman AG. 8.  1974. The reaction of [3H]norepinephrine with particulate fractions of cells responsive to catecholamines. Mol. Pharmacol. 10:563–81 [Google Scholar]
  9. Brown EM, Aurbach GD, Hauser D, Troxler F. 9.  1976. β-Adrenergic receptor interactions: characterization of iodohydroxybenzylpindolol as a specific ligand. J. Biol. Chem. 251:1232–38 [Google Scholar]
  10. Bourne HR, Coffino P, Tomkins GM. 10.  1975. Selection of a variant lymphoma cell line deficient in adenylate cyclase. Science 187:750–52 [Google Scholar]
  11. Insel PA, Maguire ME, Gilman AG, Bourne HR, Coffino P, Melmon KL. 11.  1976. β-Adrenergic receptors and adenylate cyclase: products of separate genes?. Mol. Pharmacol. 12:1062–69 [Google Scholar]
  12. Ross EM, Gilman AG. 12.  1977. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interaction of solubilized components with receptor-replete membranes. Proc. Natl. Acad. Sci. USA 74:3715–19 [Google Scholar]
  13. Ross EM, Howlett AC, Ferguson KM, Gilman AG. 13.  1978. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253:6401–12 [Google Scholar]
  14. Rodbell M, Birnbaumer L, Pohl SL, Krans HM. 14.  1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246:1877–82 [Google Scholar]
  15. Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG. 15.  1980. Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. USA 77:6516–20 [Google Scholar]
  16. Sternweis PC, Gilman AG. 16.  1982. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl. Acad. Sci. USA 79:4888–91 [Google Scholar]
  17. Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR. 17.  1994. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis.. Science 265:1405–12 [Google Scholar]
  18. Manning DR, Gilman AG. 18.  1983. The regulatory components of adenylate cyclase and transducin: a family of structurally homologous guanine nucleotide binding proteins. J. Biol. Chem. 258:7059–63 [Google Scholar]
  19. Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG. 19.  1984. Homologies between signal transducing G proteins and ras gene products. Science 226:860–62 [Google Scholar]
  20. Harris BA, Robishaw JD, Mumby SM, Gilman AG. 20.  1985. Molecular cloning of cDNA for the α subunit of the G protein that stimulates adenylate cyclase.. Science 229:1274–77 [Google Scholar]
  21. Robishaw JD, Russell DW, Harris BA, Smigel MD, Gilman AG. 21.  1986. Deduced primary structure of the α subunit of the GTP-binding stimulatory protein of adenylate cyclase. Proc. Natl. Acad. Sci. USA 83:1251–55 [Google Scholar]
  22. Mumby SM, Kahn RA, Manning DR, Gilman AG. 22.  1986. Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proc. Natl. Acad. Sci. USA 83:265–69 [Google Scholar]
  23. Graziano MP, Casey PJ, Gilman AG. 23.  1987. Expression of cDNAs for G proteins in Escherichia coli: two forms of G stimulate adenylyl cyclase. J. Biol. Chem. 262:11375–81 [Google Scholar]
  24. Maguire ME, Sturgill TW, Gilman AG. 24.  1975. Frustration and adenylate cyclase. Metabolism 24:287–99 [Google Scholar]
  25. Krupinski J, Coussen F, Bakalyar HA, Tang W-J, Feinstein PG. 25.  et al. 1989. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244:1558–64 [Google Scholar]
  26. Taussig R, Gilman AG. 26.  1995. Mammalian membrane-bound adenylyl cyclases. J. Biol. Chem. 270:1–4 [Google Scholar]
  27. Tang W-J, Gilman AG. 27.  1995. Construction of a soluble adenylyl cyclase activated by G and forskolin. Science 268:1769–72 [Google Scholar]
  28. Whisnant RE, Gilman AG, Dessauer CW. 28.  1996. Interaction of the two cytosolic domains of mammalian adenylyl cyclase. Proc. Natl. Acad. Sci. USA 93:6621–25 [Google Scholar]
  29. Dessauer CW, Tesmer JJG, Sprang SR, Gilman AG. 29.  1998. Identification of a G binding site on type V adenylyl cyclase. J. Biol. Chem. 273:25831–39 [Google Scholar]
  30. Dessauer CW, Scully TT, Gilman AG. 30.  1997. Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J. Biol. Chem. 272:22272–77 [Google Scholar]
  31. Dessauer CW, Gilman AG. 31.  1997. The catalytic mechanism of mammalian adenylyl cyclase: equilibrium binding and kinetic analysis of P-site inhibition. J. Biol. Chem. 272:27787–95 [Google Scholar]
  32. Bokoch GM, Katada T, Northup JK, Ui M, Gilman AG. 32.  1984. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259:3560–67 [Google Scholar]
  33. Tang W-J, Gilman AG. 33.  1991. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–3 [Google Scholar]
  34. Buss JE, Mumby SM, Casey PJ, Gilman AG, Sefton BM. 34.  1987. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc. Natl. Acad. Sci. USA 84:7493–97 [Google Scholar]
  35. Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM. 35.  1993. Lipid modifications of G proteins: α subunits are palmitoylated. Proc. Natl. Acad. Sci. USA 90:3675–79 [Google Scholar]
  36. Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC. 36.  1990. G protein γ subunits contain a 20-carbon isoprenoid. Proc. Natl. Acad. Sci. USA 87:5873–77 [Google Scholar]
  37. Berman DM, Wilkie TM, Gilman AG. 37.  1996. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86:445–52 [Google Scholar]
  38. Berman DM, Kozasa T, Gilman AG. 38.  1996. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271:27209–12 [Google Scholar]
  39. Noel JP, Hamm HE, Sigler P. 39.  1993. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366:654–63 [Google Scholar]
  40. Lambright DG, Noel JP, Hamm HE, Sigler PB. 40.  1994. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369:621–28 [Google Scholar]
  41. Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB. 41.  1994. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α-GDP-AlF4. Nature 372:276–79 [Google Scholar]
  42. Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR. 42.  1995. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270:954–60 [Google Scholar]
  43. Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA. 43.  et al. 1995. The structure of the G protein heterotrimer Giα1β1γ2. Cell 83:1047–58 [Google Scholar]
  44. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. 44.  1996. The 2.0 Å crystal of a heterotrimeric G protein. Nature 379:311–19 [Google Scholar]
  45. Tesmer JJG, Berman DM, Gilman AG, Sprang SR. 45.  1997. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89:251–61 [Google Scholar]
  46. Tesmer JJG, Sunahara RK, Gilman AG, Sprang SR. 46.  1997. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with G·GTPγS. Science 278:1907–16 [Google Scholar]
  47. Bourne HR. 47.  2009. Ambition and Delight: A Life in Experimental Biology Bloomington, IN: Xlibris [Google Scholar]
  48. Gilman AG, Simon MI, Bourne HR, Harris BA, Long R. 48.  et al. 2002. Overview of the Alliance for Cellular Signaling. Nature 420:703–6 [Google Scholar]
  49. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R. 49.  2006. A global analysis of cross-talk in a mammalian cellular signaling network. Nat. Cell Biol. 8:571–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error