Intrinsic mechanisms to restrain smooth muscle excitability are present in the bladder, and premature contractions during filling indicate a pathological phenotype. Some investigators have proposed that c-Kit+ interstitial cells (ICs) are pacemakers and intermediaries in efferent and afferent neural activity, but recent findings suggest these cells have been misidentified and their functions have been misinterpreted. Cells reported to be c-Kit+ cells colabel with vimentin antibodies, but vimentin is not a specific marker for c-Kit+ cells. A recent report shows that c-Kit+ cells in several species coexpress mast cell tryptase, suggesting that they are likely to be mast cells. In fact, most bladder ICs labeled with vimentin antibodies coexpress platelet-derived growth factor receptor α (PDGFRα). Rather than an excitatory phenotype, PDGFRα+ cells convey inhibitory regulation in the detrusor, and inhibitory mechanisms are activated by purines and stretch. PDGFRα+ cells restrain premature development of contractions during bladder filling, and overactive behavior develops when the inhibitory pathways in these cells are blocked. PDGFRα+ cells are also a prominent cell type in the submucosa and lamina propria, but little is known about their function in these locations. Effective pharmacological manipulation of bladder ICs depends on proper identification and further study of the pathways in these cells that affect bladder functions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wellner MC, Isenberg G. 1.  1993. Properties of stretch-activated channels in myocytes from the guinea-pig urinary bladder. J. Physiol. 466:213–27 [Google Scholar]
  2. Wellner MC, Isenberg G. 2.  1993. Stretch-activated nonselective cation channels in urinary bladder myocytes: importance for pacemaker potentials and myogenic response. Nonselective Cation Channels 66 Pharmacology, Physiology and Biophysics D Siemen, J Hescheler 93–99 Basel, Switz.: Birkhäuser [Google Scholar]
  3. Sanders KM, Ward SM, Koh SD. 3.  2014. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94:859–907 [Google Scholar]
  4. McCloskey KD, Gurney AM. 4.  2002. Kit positive cells in the guinea pig bladder. J. Urol. 168:832–36 [Google Scholar]
  5. Komuro T. 5.  1990. Re-evaluation of fibroblasts and fibroblast-like cells. Anat. Embryol. 182:103–12 [Google Scholar]
  6. Torihashi S, Gerthoffer WT, Kobayashi S, Sanders KM. 6.  1994. Identification and classification of interstitial cells in the canine proximal colon by ultrastructure and immunocytochemistry. Histochemistry 101:169–83 [Google Scholar]
  7. Iino S, Horiguchi K, Horiguchi S, Nojyo Y. 7.  2009. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor α in the murine gastrointestinal musculature. Histochem. Cell Biol. 131:691–702 [Google Scholar]
  8. Iino S, Nojyo Y. 8.  2009. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch. Histol. Cytol. 72:107–15 [Google Scholar]
  9. Kurahashi M, Nakano Y, Hennig GW, Ward SM, Sanders KM. 9.  2012. Platelet-derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J. Cell. Mol. Med. 16:1397–404 [Google Scholar]
  10. Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM. 10.  2011. A functional role for the “fibroblast-like cells” in gastrointestinal smooth muscles. J. Physiol. 589:697–710 [Google Scholar]
  11. Vanderwinden JM, Rumessen JJ. 11.  1999. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc. Res. Tech. 47:344–60 [Google Scholar]
  12. Komuro T, Seki K, Horiguchi K. 12.  1999. Ultrastructural characterization of the interstitial cells of Cajal. Arch. Histol. Cytol. 62:295–316 [Google Scholar]
  13. Horiguchi K, Komuro T. 13.  2000. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/Wν mouse small intestine. J. Auton. Nerv. Syst. 80:142–47 [Google Scholar]
  14. Kim SO, Oh BS, Chang IY, Song SH, Ahn K. 14.  et al. 2011. Distribution of interstitial cells of Cajal and expression of nitric oxide synthase after experimental bladder outlet obstruction in a rat model of bladder overactivity. Neurourol. Urodyn. 30:1639–45 [Google Scholar]
  15. Yu W, Zeidel ML, Hill WG. 15.  2012. Cellular expression profile for interstitial cells of Cajal in bladder—a cell often misidentified as myocyte or myofibroblast. PLOS ONE 7:e48897 [Google Scholar]
  16. Shafik A, El-Sibai O, Shafik AA, Shafik I. 16.  2004. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker. Urology 64:809–13 [Google Scholar]
  17. Van der Aa F, Roskams T, Blyweert W, Ost D, Bogaert G, De Ridder D. 17.  2004. Identification of kit positive cells in the human urinary tract. J. Urol. 171:2492–96 [Google Scholar]
  18. Rasmussen H, Rumessen JJ, Hansen A, Smedts F, Horn T. 18.  2009. Ultrastructure of Cajal-like interstitial cells in the human detrusor. Cell Tissue Res 335:517–27 [Google Scholar]
  19. Rasmussen H, Hansen A, Smedts F, Rumessen JJ, Horn T. 19.  2007. CD34-positive interstitial cells of the human detrusor. APMIS 115:1260–66 [Google Scholar]
  20. Gevaert T, Ridder D, Vanstreels E, Daelemans D, Everaerts W. 20.  et al. 2016. The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder. J. Cell. Mol. Med. 21:1206–16 [Google Scholar]
  21. Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG. 21.  et al. 2012. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J. Cell. Mol. Med. 16:691–700 [Google Scholar]
  22. McCloskey KD, Anderson UA, Davidson RA, Bayguinov YR, Sanders KM, Ward SM. 22.  2009. Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice. Br. J. Pharmacol. 156:273–83 [Google Scholar]
  23. Monaghan KP, Johnston L, McCloskey KD. 23.  2012. Identification of PDGFRα positive populations of interstitial cells in human and guinea pig bladders. J. Urol. 188:639–47 [Google Scholar]
  24. Vannucchi MG, Traini C, Guasti D, Del Popolo G, Faussone-Pellegrini MS. 24.  2014. Telocytes subtypes in human urinary bladder. J. Cell. Mol. Med. 18:2000–8 [Google Scholar]
  25. Andersson KE, McCloskey KD. 25.  2014. Lamina propria: the functional center of the bladder?. Neurourol. Urodyn. 33:9–16 [Google Scholar]
  26. Birder L, Andersson KE. 26.  2013. Urothelial signaling. Physiol. Rev. 93:653–80 [Google Scholar]
  27. Fry CH, Sui GP, Kanai AJ, Wu C. 27.  2007. The function of suburothelial myofibroblasts in the bladder. Neurourol. Urodyn. 26:914–19 [Google Scholar]
  28. McCloskey KD. 28.  2010. Interstitial cells in the urinary bladder—localization and function. Neurourol. Urodyn. 29:82–87 [Google Scholar]
  29. Johnston L, Woolsey S, Cunningham RM, O'Kane H, Duggan B. 29.  et al. 2010. Morphological expression of KIT positive interstitial cells of Cajal in human bladder. J. Urol. 184:370–77 [Google Scholar]
  30. Gevaert T, De Vos R, Van der Aa F, Joniau S, van den Oord J. 30.  et al. 2012. Identification of telocytes in the upper lamina propria of the human urinary tract. J. Cell. Mol. Med. 16:2085–93 [Google Scholar]
  31. Gevaert T, De Vos R, Everaerts W, Libbrecht L, Van der Aa F. 31.  et al. 2011. Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J. Cell. Mol. Med. 15:2586–93 [Google Scholar]
  32. Wiseman OJ, Fowler CJ, Landon DN. 32.  2003. The role of the human bladder lamina propria myofibroblast. BJU Int 91:89–93 [Google Scholar]
  33. Davidson RA, McCloskey KD. 33.  2005. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J. Urol. 173:1385–90 [Google Scholar]
  34. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. 34.  2002. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int 90:118–29 [Google Scholar]
  35. Andrae J, Gouveia L, He L, Betsholtz C. 35.  2014. Characterization of platelet-derived growth factor-A expression in mouse tissues using a lacZ knock-in approach. PLOS ONE 9:e105477 [Google Scholar]
  36. Drake MJ, Fry CH, Eyden B. 36.  2006. Structural characterization of myofibroblasts in the bladder. BJU Int 97:29–32 [Google Scholar]
  37. Eyden B. 37.  2009. Are there myofibroblasts in normal bladder?. Eur. Urol. 56:427–29 [Google Scholar]
  38. Wu C, Sui GP, Fry CH. 38.  2004. Purinergic regulation of guinea pig suburothelial myofibroblasts. J. Physiol. 559:231–43 [Google Scholar]
  39. Kuijpers KA, Heesakkers JP, Hafmans TG, Schalken JA. 39.  2014. An update of the interstitial cell compartment in the normal human bladder. BioMed Res. Int. 2014:464217 [Google Scholar]
  40. Sunagawa M, Wolf-Johnston A, Nomiya M, Sawada N, Andersson KE. 40.  et al. 2015. Urinary bladder mucosal responses to ischemia. World J. Urol. 33:275–80 [Google Scholar]
  41. Wang Y, Fang Q, Lu Y, Song B, Li W, Li L. 41.  2010. Effects of mechanical stretch on interstitial cells of Cajal in guinea pig bladder. J. Surg. Res. 164:e213–19 [Google Scholar]
  42. Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD. 42.  2008. Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am. J. Physiol. Ren. Physiol. 294:F645–55 [Google Scholar]
  43. McCloskey KD. 43.  2006. Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int 97:1338–43 [Google Scholar]
  44. McCloskey KD. 44.  2005. Characterization of outward currents in interstitial cells from the guinea pig bladder. J. Urol. 173:296–301 [Google Scholar]
  45. Fry CH, Sui G, Wu C. 45.  2006. T-type Ca2+ channels in non-vascular smooth muscles. Cell Calcium 40:231–39 [Google Scholar]
  46. Hashitani H, Brading AF. 46.  2003. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br. J. Pharmacol. 140:146–58 [Google Scholar]
  47. Petkov GV. 47.  2011. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat. Rev. Urol. 9:30–40 [Google Scholar]
  48. Anderson UA, Carson C, Johnston L, Joshi S, Gurney AM, McCloskey KD. 48.  2013. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity. Br. J. Pharmacol. 169:1290–304 [Google Scholar]
  49. Anderson UA, Carson C, McCloskey KD. 49.  2009. KCNQ currents and their contribution to resting membrane potential and the excitability of interstitial cells of Cajal from the guinea pig bladder. J. Urol. 182:330–36 [Google Scholar]
  50. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ. 50.  et al. 2009. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1370–81 [Google Scholar]
  51. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G. 51.  et al. 2009. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587:4887–904 [Google Scholar]
  52. Bijos DA, Drake MJ, Vahabi B. 52.  2014. Anoctamin-1 in the juvenile rat urinary bladder. PLOS ONE 9:e106190 [Google Scholar]
  53. Lam WP, Tang HC, Zhang X, Leung PC, Yew DT, Liang W. 53.  2014. Low concentrations of niflumic acid enhance basal spontaneous and carbachol-induced contractions of the detrusor. Int. Urol. Nephrol. 46:349–57 [Google Scholar]
  54. Kanai A, Roppolo J, Ikeda Y, Zabbarova I, Tai C. 54.  et al. 2007. Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists. Am. J. Physiol. Ren. Physiol. 292:F1065–72 [Google Scholar]
  55. Szell EA, Somogyi GT, de Groat WC, Szigeti GP. 55.  2003. Developmental changes in spontaneous smooth muscle activity in the neonatal rat urinary bladder. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R809–16 [Google Scholar]
  56. Lee H, Koh BH, Peri LE, Sanders KM, Koh SD. 56.  2013. Functional expression of SK channels in murine detrusor PDGFR+ cells. J. Physiol. 591:503–13 [Google Scholar]
  57. Herrera GM, Pozo MJ, Zvara P, Petkov GV, Bond CT. 57.  et al. 2003. Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. J. Physiol. 551:893–903 [Google Scholar]
  58. Parajuli SP, Soder RP, Hristov KL, Petkov GV. 58.  2012. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility. J. Pharmacol. Exp. Ther. 340:114–23 [Google Scholar]
  59. Lee H, Koh BH, Peri LE, Sanders KM, Koh SD. 59.  2014. Purinergic inhibitory regulation of murine detrusor muscles mediated by PDGFRα+ interstitial cells. J. Physiol. 592:1283–93 [Google Scholar]
  60. von Kugelgen I, Hoffmann K. 60.  2016. Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61 [Google Scholar]
  61. Lee H, Koh BH, Yamasaki E, George NE, Sanders KM, Koh SD. 61.  2015. UTP activates small-conductance Ca2+-activated K+ channels in murine detrusor PDGFRα+ cells. Am. J. Physiol. Ren. Physiol. 309:F569–74 [Google Scholar]
  62. Lee H, Koh BH, Peri LE, Corrigan RD, Lee HT. 62.  et al. 2016. Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα+ cells. Sci Rep. 7:112245 [Google Scholar]
  63. Fry CH, Young JS, Jabr RI, McCarthy C, Ikeda Y, Kanai AJ. 63.  2012. Modulation of spontaneous activity in the overactive bladder: the role of P2Y agonists. Am. J. Physiol. Ren. Physiol. 302:F1447–54 [Google Scholar]
  64. Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A. 64.  2007. Role of gap junctions in spontaneous activity of the rat bladder. Am. J. Physiol. Ren. Physiol. 293:F1018–25 [Google Scholar]
  65. Sui GP, Wu C, Roosen A, Ikeda Y, Kanai AJ, Fry CH. 65.  2008. Modulation of bladder myofibroblast activity: implications for bladder function. Am. J. Physiol. Ren. Physiol. 295:F688–97 [Google Scholar]
  66. Xue L, Li Y, Han X, Yao L, Yuan J. 66.  et al. 2012. Investigation of hyperpolarization-activated cyclic nucleotide-gated channels in interstitial cells of Cajal of human bladder. Urology 80:224.e13–18 [Google Scholar]
  67. Smet PJ, Jonavicius J, Marshall VR, de Vente J. 67.  1996. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 71:337–48 [Google Scholar]
  68. Gabella G. 68.  1995. The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat. J. Neurocytol. 24:159–87 [Google Scholar]
  69. Persson K, Andersson KE. 69.  1992. Nitric oxide and relaxation of pig lower urinary tract. Br. J. Pharmacol. 106:416–22 [Google Scholar]
  70. Persson K, Pandita RK, Aszodi A, Ahmad M, Pfeifer A. 70.  et al. 2000. Functional characteristics of urinary tract smooth muscles in mice lacking cGMP protein kinase type I. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1112–20 [Google Scholar]
  71. Groneberg D, Konig P, Koesling D, Friebe A. 71.  2011. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 140:1608–17 [Google Scholar]
  72. Robson SC, Sevigny J, Zimmermann H. 72.  2006. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–30 [Google Scholar]
  73. Yu W, Robson SC, Hill WG. 73.  2011. Expression and distribution of ectonucleotidases in mouse urinary bladder. PLOS ONE 6:e18704 [Google Scholar]
  74. Gabella G, Davis C. 74.  1998. Distribution of afferent axons in the bladder of rats. J. Neurocytol. 27:141–55 [Google Scholar]
  75. Grol S, Essers PB, van Koeveringe GA, Martinez-Martinez P, de Vente J, Gillespie JI. 75.  2009. M3 muscarinic receptor expression on suburothelial interstitial cells. BJU Int 104:398–405 [Google Scholar]
  76. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK. 76.  et al. 2006. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J. Urol. 176:367–73 [Google Scholar]
  77. Sui GP, Wu C, Fry CH. 77.  2006. Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. BJU Int 97:1327–31 [Google Scholar]
  78. Gray SM, McGeown JG, McMurray G, McCloskey KD. 78.  2013. Functional innervation of guinea-pig bladder interstitial cells of Cajal subtypes: Neurogenic stimulation evokes in situ calcium transients. PLOS ONE 8:e53423 [Google Scholar]
  79. Andersson KE. 79.  2015. Purinergic signalling in the urinary bladder. Auton. Neurosci. Basic Clin. 191:78–81 [Google Scholar]
  80. de Jongh R, van Koeveringe GA, van Kerrebroeck PEV, Markerink-van Ittersum M, de Vente J, Gillespie JI. 80.  2007. Alterations to network of NO/cGMP-responsive interstitial cells induced by outlet obstruction in guinea-pig bladder. Cell Tissue Res 330:147–60 [Google Scholar]
  81. Gillespie JI, Markerink-van Ittersum M, De Vente J. 81.  2006. Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 325:325–32 [Google Scholar]
  82. Fujiwara M, Andersson K, Persson K. 82.  2000. Nitric oxide-induced cGMP accumulation in the mouse bladder is not related to smooth muscle relaxation. Eur. J. Pharmacol. 401:241–50 [Google Scholar]
  83. Lies B, Groneberg D, Friebe A. 83.  2013. Correlation of cellular expression with function of NO-sensitive guanylyl cyclase in the murine lower urinary tract. J. Physiol. 591:5365–75 [Google Scholar]
  84. Hashitani H, Brading AF, Suzuki H. 84.  2004. Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br. J. Pharmacol. 141:183–93 [Google Scholar]
  85. Kubota Y, Kajioka S, Biers SM, Yokota E, Kohri K, Brading AF. 85.  2004. Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations. Auton. Neurosci. Basic Clin. 115:64–73 [Google Scholar]
  86. Drake MJ, Harvey IJ, Gillespie JI. 86.  2003. Autonomous activity in the isolated guinea pig bladder. Exp. Physiol. 88:19–30 [Google Scholar]
  87. Hashitani H, Brading AF. 87.  2003. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder. Br. J. Pharmacol. 140:159–69 [Google Scholar]
  88. Klockner U, Isenberg G. 88.  1985. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflüg. Arch. Eur. J. Physiol. 405:329–39 [Google Scholar]
  89. Montgomery BS, Fry CH. 89.  1992. The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J. Urol. 147:176–84 [Google Scholar]
  90. Heppner TJ, Bonev AD, Nelson MT. 90.  1997. Ca2+-activated K+ channels regulate action potential repolarization in urinary bladder smooth muscle. Am. J. Physiol. 273:C110–17 [Google Scholar]
  91. Vogalis F, Lang RJ, Bywater RA, Taylor GS. 91.  1993. Voltage-gated ionic currents in smooth muscle cells of guinea pig proximal colon. Am. J. Physiol. 264:C527–36 [Google Scholar]
  92. Okada S, Kojima Y, Kubota Y, Mizuno K, Sasaki S, Kohri K. 92.  2011. Attenuation of bladder overactivity in KIT mutant rats. BJU Int 108:E97–103 [Google Scholar]
  93. Biers SM, Reynard JM, Doore T, Brading AF. 93.  2006. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int 97:612–16 [Google Scholar]
  94. Vahabi B, McKay NG, Lawson K, Sellers DJ. 94.  2011. The role of c-kit-positive interstitial cells in mediating phasic contractions of bladder strips from streptozotocin-induced diabetic rats. BJU Int 107:1480–87 [Google Scholar]
  95. Min Y, He P, Wang Q, Jin X, Song B, Li L. 95.  2011. The effects of the c-kit blocker Glivec on the contractile response of urinary bladder. J. Surg. Res. 171:e193–99 [Google Scholar]
  96. Kubota Y, Biers SM, Kohri K, Brading AF. 96.  2006. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol. Urodyn. 25:205–10 [Google Scholar]
  97. Hashitani H, Hayase M, Suzuki H. 97.  2008. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach. Br. J. Pharmacol. 154:451–59 [Google Scholar]
  98. Gevaert T, Hutchings G, Everaerts W, Prenen H, Roskams T. 98.  et al. 2014. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties. Neurourol. Urodyn. 33:461–68 [Google Scholar]
  99. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J. 99.  et al. 1997. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90:4947–52 [Google Scholar]
  100. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM. 100.  et al. 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2:561–66 [Google Scholar]
  101. Andersson KE, Ek A, Persson CGA. 101.  1977. Effects of prostaglandins on the isolated human bladder and urethra. Acta Physiol. Scand. 100:165–71 [Google Scholar]
  102. Bultitude MI, Hills NH, Shuttleworth KE. 102.  1976. Clinical and experimental studies on the action of prostaglandins and their synthesis inhibitors on detrusor muscle in vitro and in vivo. Br. J. Urol. 48:631–37 [Google Scholar]
  103. Choo LK, Mitchelson F. 103.  1980. The effect of indomethacin and adenosine 5′-triphosphate on the excitatory innervation of the rate urinary bladder. Can. J. Physiol. Pharmacol. 58:1042–48 [Google Scholar]
  104. Downie JW, Larsson C. 104.  1981. Prostaglandin involvement in contractions evoked in rabbit detrusor by field stimulation and by adenosine 5′-triphosphate. Can. J. Physiol. Pharmacol. 59:253–60 [Google Scholar]
  105. Johns A, Paton DM. 105.  1977. Effect of indomethacin on atropine-resistant transmission in rabbit and monkey urinary bladder: evidence for involvement of prostaglandins in transmission. Prostaglandins 13:245–54 [Google Scholar]
  106. de Jongh R, Grol S, van Koeveringe GA, van Kerrebroeck PEV, de Vente J, Gillespie JI. 106.  2009. The localization of cyclo-oxygenase immuno-reactivity (COX I-IR) to the urothelium and to interstitial cells in the bladder wall. J. Cell. Mol. Med. 13:3069–81 [Google Scholar]
  107. Rahnama'i MS, Biallosterski BT, de Wachter SGG, Van Kerrebroeck PEV, van Koeveringe GA. 107.  2012. The distribution of the prostaglandin E receptor type 2 (EP2) in the detrusor of the guinea pig. Prostaglandins Other Lipid Mediat 99:107–15 [Google Scholar]
  108. Rahnama'i MS, de Wachter SGG, van Koeveringe GA, van Kerrebroeck PEV, de Vente J, Gillespie JI. 108.  2011. The relationship between prostaglandin E receptor 1 and cyclooxygenase I expression in guinea pig bladder interstitial cells: proposition of a signal propagation system. J. Urol. 185:315–22 [Google Scholar]
  109. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. 109.  1993. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. PNAS 90:11693–97 [Google Scholar]
  110. Franck H, Kong ID, Shuttleworth CW, Sanders KM. 110.  1999. Rebound excitation and alternating slow wave patterns depend upon eicosanoid production in canine proximal colon. J. Physiol. 520:3885–95 [Google Scholar]
  111. Ferguson DR, Kennedy I, Burton TJ. 111.  1997. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism?. J. Physiol. 505:2503–11 [Google Scholar]
  112. Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K. 112.  et al. 2006. Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–30 [Google Scholar]
  113. Birder LA, Apodaca G, De Groat WC, Kanai AJ. 113.  1998. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am. J. Physiol. 275:F226–29 [Google Scholar]
  114. Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML. 114.  et al. 2001. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. PNAS 98:13396–401 [Google Scholar]
  115. Birder LA, Nealen ML, Kiss S, de Groat WC, Caterina MJ. 115.  et al. 2002. β-Adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J. Neurosci. 22:8063–70 [Google Scholar]
  116. Ferguson DR. 116.  1999. Urothelial function. BJU Int 84:235–42 [Google Scholar]
  117. Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A. 117.  2004. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63:17–23 [Google Scholar]
  118. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y. 118.  et al. 2000. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–15 [Google Scholar]
  119. Burnstock G. 119.  1972. Purinergic nerves. Pharmacol. Rev. 24:509–81 [Google Scholar]
  120. Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. 120.  2005. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br. J. Pharmacol. 144:1089–99 [Google Scholar]
  121. Moro C, Uchiyama J, Chess-Williams R. 121.  2011. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol. Urology 78:1442.e9–15 [Google Scholar]
  122. Kullmann FA, Artim DE, Birder LA, de Groat WC. 122.  2008. Activation of muscarinic receptors in rat bladder sensory pathways alters reflex bladder activity. J. Neurosci. 28:1977–87 [Google Scholar]
  123. McLatchie LM, Young JS, Fry CH. 123.  2014. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br. J. Pharmacol. 171:3394–403 [Google Scholar]
  124. Rahnama'i MS, van Koeveringe GA, Essers PB, de Wachter SG, de Vente J. 124.  et al. 2010. Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria. J. Urol. 183:1241–47 [Google Scholar]
  125. Nile CJ, Gillespie JI. 125.  2012. Interactions between cholinergic and prostaglandin signaling elements in the urothelium: role for muscarinic type 2 receptors. Urology 79:240.e17–23 [Google Scholar]
  126. Nile CJ, de Vente J, Gillespie JI. 126.  2010. Stretch independent regulation of prostaglandin E2 production within the isolated guinea-pig lamina propria. BJU Int 105:540–48 [Google Scholar]
  127. Arrighi S, Bosi G, Groppetti D, Cremonesi F. 127.  2010. Identification of c-kit-positive interstitial cells in the dog lower urinary tract and relationship with smooth muscle and nerves. Hypotheses for a likely pacemaker role. Vet. Med. Int. 2010:981693 [Google Scholar]
  128. Cunningham RM, Larkin P, McCloskey KD. 128.  2011. Ultrastructural properties of interstitial cells of Cajal in the Guinea pig bladder. J. Urol. 185:1123–31 [Google Scholar]
  129. Metzger R, Neugebauer A, Rolle U, Bohlig L, Till H. 129.  2008. C-Kit receptor (CD117) in the porcine urinary tract. Pediatr. Surg. Int. 24:67–76 [Google Scholar]
  130. Piaseczna-Piotrowska A, Rolle U, Solari V, Puri P. 130.  2004. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon intestinal hypoperistalsis syndrome. BJU Int 94:143–46 [Google Scholar]
  131. Piaseczna-Piotrowska AM, Dzieniecka M, Kulig A, Danilewicz M, Chilarski A. 131.  2011. Different distribution of c-kit positive interstitial cells of Cajal-like in children's urinary bladders. Folia Histochem. Cytobiol. 49:431–35 [Google Scholar]
  132. Vahabi B, Sellers DJ, Bijos DA, Drake MJ. 132.  2013. Phasic contractions in urinary bladder from juvenile versus adult pigs. PLOS ONE 8:e58611 [Google Scholar]
  133. Heppner TJ, Tykocki NR, Hill-Eubanks D, Nelson MT. 133.  2016. Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J. Gen. Physiol. 147:323–35 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error