Descriptions of the use of natural products in traditional medicine have served as starting points for new therapeutics. The details of the traditional use of these organisms can provide important information for future drug discovery and development efforts. Recent technologic advances provide the framework to leverage ethnopharmacologic data in the drug discovery process. Information on the traditional harvest, preparation, storage, and administration of the organisms, and the natural products they contain, provides valuable details regarding characteristics of the active compounds. Importantly, researchers can now rapidly analyze and identify the multiple, and often synergistic, compounds contained in these natural products. Although we are entering the acme of ethnopharmacology, where information regarding the traditional use of organisms can provide valuable natural product leads and accelerate the identification of new therapeutics, this ethnopharmacologic resource is threatened by the loss of traditional medicine knowledge and extinction of organisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Harvey AL, Edrada-Ebel R, Quinn RJ. 1.  2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14:2111–29Comprehensive review of the current state of natural products in drug discovery. [Google Scholar]
  2. Tao L, Zhu F, Qin C, Zhang C, Xu F. 2.  et al. 2014. Nature's contribution to today's pharmacopeia. Nat. Biotechnol. 32:10979–80Describes the contribution of natural products to the drugs approved for use by the United States Food and Drug Administration. [Google Scholar]
  3. Li JW, Vederas JC. 3.  2009. Drug discovery and natural products: end of an era or an endless frontier?. Science 325:5937161–65 [Google Scholar]
  4. Sukuru SCK, Jenkins JL, Beckwith RE, Scheiber J, Bender A. 4.  et al. 2009. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J. Biomol. Screen. 14:6690–99 [Google Scholar]
  5. Balandrin MF, Klocke J, Wurtele ES, Bollinger WH. 5.  1985. Natural plant chemicals: sources of industrial and medicinal materials. Science 228:47041154–59 [Google Scholar]
  6. Vining LC. 6.  1990. Functions of secondary metabolites. Annu. Rev. Microbiol. 44:1395–427 [Google Scholar]
  7. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. 7.  2012. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52:71757–68 [Google Scholar]
  8. Verpoorte R. 8.  1998. Exploration of nature's chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov. Today 3:5232–38 [Google Scholar]
  9. Alves RR, Rosa IL. 9.  2005. Why study the use of animal products in traditional medicines?. J. Ethnobiol. Ethnomedicine 1:15 [Google Scholar]
  10. Fabricant DS, Farnsworth NR. 10.  2001. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109:Suppl. 169–75 [Google Scholar]
  11. Gyllenhaal C, Kadushin MR, Southavong B, Sydara K, Bouamanivong S. 11.  et al. 2012. Ethnobotanical approach versus random approach in the search for new bioactive compounds: support of a hypothesis. Pharm. Biol. 50:130–41 [Google Scholar]
  12. Ntie-Kang F, Lifongo LL, Mbaze LM, Ekwelle N, Owono Owono LC. 12.  et al. 2013. Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complement. Altern. Med. 13:147 [Google Scholar]
  13. de Almeida CdFCBR, de Amorim ELc, de Albuquerque UP. 13.  2011. Insights into the search for new drugs from traditional knowledge: an ethnobotanical and chemical–ecological perspective. Pharm. Biol. 49:8864–73 [Google Scholar]
  14. Svetaz L, Zuljan F, Derita M, Petenatti E, Tamayo G. 14.  et al. 2010. Value of the ethnomedical information for the discovery of plants with antifungal properties: a survey among seven Latin American countries. J. Ethnopharmacol. 127:1137–58 [Google Scholar]
  15. Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ. 15.  et al. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. PNAS 109:3915835–40Demonstration of the value of bioprospecting traditional medicines. [Google Scholar]
  16. Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. 16.  2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J. Ethnopharmacol. 123:2335–42Documentation of the loss of traditional medicine knowledge. [Google Scholar]
  17. Butchart SH, Walpole M, Collen B, Van Strien A, Scharlemann JP. 17.  et al. 2010. Global biodiversity: indicators of recent declines. Science 328:59821164–68 [Google Scholar]
  18. Buenz EJ. 18.  2005. Country development does not presuppose the loss of forest resources for traditional medicine use. J. Ethnopharmacol. 100:1118–23 [Google Scholar]
  19. Withering W. 19.  1785. An Account of the Foxglove and Some of its Medical Uses with Practical Remarks on Dropsy, and Other Diseases Birmingham, UK: M. Swinney
  20. Estes JW, White PD. 20.  1965. William Withering and the purple foxglove. Sci. Am. 212:110–19 [Google Scholar]
  21. Sharma M, Nazareth I, Petersen I. 21.  2016. Trends in incidence, prevalence and prescribing in type 2 diabetes mellitus between 2000 and 2013 in primary care: a retrospective cohort study. BMJ Open 6:1e010210 [Google Scholar]
  22. Culpeper N. 22.  1652. The English Physician or an Astrologo-Physical Discourse on the Vulgar Herbs of this Nation London: Peter Cole
  23. Bailey CJ, Day C. 23.  1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12:8553–64 [Google Scholar]
  24. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. 24.  2012. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122:6253–70 [Google Scholar]
  25. Horvath P, Aulner N, Bickle M, Davies AM, Nery ED. 25.  et al. 2016. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15:11751–69 [Google Scholar]
  26. Tulp M, Bohlin L. 26.  2004. Unconventional natural sources for future drug discovery. Drug Discov. Today 9:10450–58 [Google Scholar]
  27. Stone E. 27.  1763. An account of the success of the bark of the willow in the cure of agues. In a letter to the Right Honourable George Earl of Macclesfield, President of R.S. from the Rev. Mr. Edmund Stone, of Chipping-Norton in Oxfordshire. Philos. Trans. 53:195–200 [Google Scholar]
  28. Mahdi J, Mahdi A, Bowen I. 28.  2006. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif 39:2147–55 [Google Scholar]
  29. Hofmann A, Ott J. 29.  2013. LSD: My Problem Child Oxford, UK: Oxford Univ. Press
  30. Passie T, Seifert J, Schneider U, Emrich HM. 30.  2002. The pharmacology of psilocybin. Addict. Biol. 7:4357–64 [Google Scholar]
  31. Sellers EM. 31.  2017. Psilocybin: good trip or bad trip. Clin. Pharmacol. Ther. 102:580–84 [Google Scholar]
  32. Heydari M, Hashempur MH, Zargaran A. 32.  2013. Medicinal aspects of opium as described in Avicenna's Canon of Medicine. Acta Med. Hist. Adriat. 11:1101–12 [Google Scholar]
  33. Newman DJ, Cragg GM. 33.  2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70:3461–77 [Google Scholar]
  34. Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z. 34.  et al. 2007. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. PNAS 104:114389–94 [Google Scholar]
  35. Cox PA. 35.  2000. Will tribal knowledge survive the millennium?. Science 287:545044–45 [Google Scholar]
  36. Hedberg I. 36.  1993. Botanical methods in ethnopharmacology and the need for conservation of medicinal plants. J. Ethnopharmacol. 38:2–3121–28 [Google Scholar]
  37. Feeny D, Berkes F, McCay BJ, Acheson JM. 37.  1990. The tragedy of the commons: twenty-two years later. Hum. Ecol. 18:11–19 [Google Scholar]
  38. Canter PH, Thomas H, Ernst E. 38.  2005. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:4180–85 [Google Scholar]
  39. Kala CP. 39.  2000. Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biol. Conserv. 93:3371–79 [Google Scholar]
  40. Byard RW. 40.  2016. Traditional medicines and species extinction: another side to forensic wildlife investigation. Forensic Sci. Med. Pathol. 2:12125–27 [Google Scholar]
  41. Graham-Rowe D. 41.  2011. Biodiversity: endangered and in demand. Nature 480:7378S101–3 [Google Scholar]
  42. Balick MJ, Cox PA. 42.  1996. Plants, People, and Culture: The Science of Ethnobotany New York: W.H. Freeman CoClassic ethnobotanical textbook.
  43. Li DL, Xing FW. 43.  2016. Ethnobotanical study on medicinal plants used by local Hoklos people on Hainan Island, China. J. Ethnopharmacol. 194:358–68 [Google Scholar]
  44. Buenz EJ, Schnepple DJ, Bauer BA, Elkin PL, Riddle JM, Motley TJ. 44.  2004. Techniques: bioprospecting historical herbal texts by hunting for new leads in old tomes. Trends Pharmacol. Sci. 25:9494–98 [Google Scholar]
  45. Adams M, Berset C, Kessler M, Hamburger M. 45.  2009. Medicinal herbs for the treatment of rheumatic disorders—a survey of European herbals from the 16th and 17th century. J. Ethnopharmacol. 121:3343–59 [Google Scholar]
  46. Martinez-Frances V, Rivera D, Heinrich M, Obon C, Rios S. 46.  2015. An ethnopharmacological and historical analysis of “Dictamnus”, a European traditional herbal medicine. J. Ethnopharmacol. 175:390–406 [Google Scholar]
  47. Scott G, Hewett ML. 47.  2008. Pioneers in ethnopharmacology: the Dutch East India Company (VOC) at the Cape from 1650 to 1800. J. Ethnopharmacol. 115:3339–60 [Google Scholar]
  48. Buenz EJ, Bauer BA, Johnson HE, Tavana G, Beekman EM. 48.  et al. 2006. Searching historical herbal texts for potential new drugs. BMJ 333:75821314–15 [Google Scholar]
  49. Buenz EJ, Johnson HE, Beekman EM, Motley TJ, Bauer BA. 49.  2005. Bioprospecting Rumphius's Ambonese Herbal: Volume I. J. Ethnopharmacol. 96:1–257–70 [Google Scholar]
  50. Buenz EJ, Bauer BA, Schnepple DJ, Wahner-Roedler DL, Vandell AG, Howe CL. 50.  2007. A randomized Phase I study of Atuna racemosa: a potential new anti-MRSA natural product extract. J. Ethnopharmacol. 114:3371–76 [Google Scholar]
  51. Soelberg J, Davis O, Jager AK. 51.  2016. Historical versus contemporary medicinal plant uses in the US Virgin Islands. J. Ethnopharmacol. 192:74–89 [Google Scholar]
  52. Soelberg J, Asase A, Akwetey G, Jager AK. 52.  2015. Historical versus contemporary medicinal plant uses in Ghana. J. Ethnopharmacol. 160:109–32 [Google Scholar]
  53. Barrett P, Flower A, Lo V. 53.  2015. What's past is prologue: Chinese medicine and the treatment of recurrent urinary tract infections. J. Ethnopharmacol. 167:86–96 [Google Scholar]
  54. Ningthoujam SS, Talukdar AD, Potsangbam KS, Choudhury MD. 54.  2012. Challenges in developing medicinal plant databases for sharing ethnopharmacological knowledge. J. Ethnopharmacol. 141:19–32Description of the challenges of using ethnopharmacologic data. [Google Scholar]
  55. Bajorath J. 55.  2017. Compound data mining for drug discovery. Methods Mol. Biol. 1526:247–56 [Google Scholar]
  56. Weckerle CS, Cabras S, Castellanos ME, Leonti M. 56.  2011. Quantitative methods in ethnobotany and ethnopharmacology: considering the overall flora—hypothesis testing for over-and underused plant families with the Bayesian approach. J. Ethnopharmacol. 137:1837–43 [Google Scholar]
  57. Kindscher K, Corbett S, McClure K. 57.  2013. A statistical analysis of medicinal plants: a case study of plant families in Kansas and the Great Plains. Trans. Kans. Acad. Sci. 116:3–4149–55 [Google Scholar]
  58. Sharma V, Sarkar IN. 58.  2013. Bioinformatics opportunities for identification and study of medicinal plants. Brief. Bioinform. 14:2238–50 [Google Scholar]
  59. Prinz F, Schlange T, Asadullah K. 59.  2011. Believe it or not: How much can we rely on published data on potential drug targets?. Nat. Rev. Drug Discov. 10:9712 [Google Scholar]
  60. 60. Natl. Cent. Complement. Integr. Health. 2017. Natural Product Libraries Bethesda, MD: Natl. Inst. Health https://nccih.nih.gov/grants/naturalproducts/libraries
  61. Joshi VK, Joshi A, Dhiman KS. 61.  2017. The Ayurvedic Pharmacopoeia of India, development and perspectives. J. Ethnopharmacol. 197:32–38 [Google Scholar]
  62. Heinrich M. 62.  2013. Ethnopharmacology and drug discovery. Comprehensive Natural Products II: Chemistry and Biology R Verpoorte 351–81 Oxford, UK: Elsevier [Google Scholar]
  63. Cressey D. 63.  2014. Biopiracy ban stirs red-tape fears. Nature 514:752014–15 [Google Scholar]
  64. 64. Secr. Conv. Biol. Divers. 2001. Handbook of the Convention on Biological Diversity London: Earthscan Publ.
  65. Sheridan C. 65.  2005. EPO neem patent revocation revives biopiracy debate. Nat. Biotechnol. 23:5511–12 [Google Scholar]
  66. Mgbeoji I. 66.  2014. Global Biopiracy: Patents, Plants, and Indigenous Knowledge Vancouver, Can.: UBC PressComprehensive presentation of biopiracy issues.
  67. Cressey D. 67.  2017. Treaty to stop biopiracy threatens to delay flu vaccines. Nat. News 542:7640148 [Google Scholar]
  68. Robinson DF. 68.  2014. Biodiversity, Access and Benefit-Sharing: Global Case Studies New York: Routledge
  69. Gustafson KR, Cardellina JH II, McMahon JB, Gulakowski RJ, Ishitoya J. 69.  et al. 1992. A nonpromoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J. Med. Chem. 35:111978–86 [Google Scholar]
  70. Miana GA, Riaz M, Shahzad-ul-Hussan S, Paracha RZ, Paracha UZ. 70.  2015. Prostratin: an overview. Mini Rev. Med. Chem. 15:131122–30 [Google Scholar]
  71. 71. Natl. Cancer Inst. 2006. Letter of Collection Bethesda, MD: Natl. Inst. Health https://dtp.cancer.gov/organization/npb/docs/loc.pdf
  72. 72. Biotechnol. Innov. Organ. 2017. Guidelines for BIO Members Engaging in Bioprospecting. Washington, DC: Biotechnol. Innov. Organ https://www.bio.org/articles/guidelines-bio-members-engaging-bioprospecting
  73. 73. Biotechnol. Innov. Organ. 2017. BIO Bioprospecting Guidelines Washington, DC: Biotechnol. Innov. Organ https://www.bio.org/articles/bio-bioprospecting-guidelines
  74. Muller WE, Wang X, Proksch P, Perry CC, Osinga R. 74.  et al. 2013. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?. Mar. Biotechnol. 15:4375–98 [Google Scholar]
  75. Souza AR, Baldoni DB, Lima J, Porto V, Marcuz C. 75.  et al. 2017. Selection, isolation, and identification of fungi for bioherbicide production. Braz. J. Microbiol. 48:1101–8 [Google Scholar]
  76. Eloff JN. 76.  2004. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine 11:4370–71 [Google Scholar]
  77. Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R. 77.  2001. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. 915:1217–23 [Google Scholar]
  78. Rhee IK, van Rijn RM, Verpoorte R. 78.  2003. Qualitative determination of false‐positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal. 14:3127–31 [Google Scholar]
  79. Ingkaninan K, de Best C, van der Heijden R, Hofte A, Karabatak B. 79.  et al. 2000. HPLC with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. 872:61–73 [Google Scholar]
  80. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. 80.  2014. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 32:61180–204 [Google Scholar]
  81. Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN. 81.  2017. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135:34–52 [Google Scholar]
  82. Gostincar C, Muggia L, Grube M. 82.  2012. Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front. Microbiol. 3:390 [Google Scholar]
  83. Buenz EJ, Tillner JE Jr., Limburg P, Bauer BA. 83.  2007. Antibacterial properties and toxicity of Atuna racemosa extract depend on kernel maturity. J. Ethnopharmacol. 111:3592–97 [Google Scholar]
  84. Waller G, Nowacki EK. 84.  2012. Alkaloid Biology and Metabolism in Plants New York/London: Plenum
  85. van Dam NM, Verpoorte R, van der Meijden E. 85.  1994. Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry 37:41013–16 [Google Scholar]
  86. Liu ZH, Wang DM, Fan SF, Li DW, Luo ZW. 86.  2016. Synergistic effects and related bioactive mechanism of Potentilla fruticosa L. leaves combined with Ginkgo biloba extracts studied with microbial test system (MTS). BMC Complement. Altern. Med. 16:1495 [Google Scholar]
  87. Tallarida RJ, Porreca F, Cowan A. 87.  1989. Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sci 45:11947–61 [Google Scholar]
  88. Tallarida RJ. 88.  2001. Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther. 298:3865–72 [Google Scholar]
  89. Inui T, Wang Y, Deng S, Smith DC, Franzblau SG, Pauli GF. 89.  2007. Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J. Chromatogr. 1151:1211–15 [Google Scholar]
  90. Patti GJ, Yanes O, Siuzdak G. 90.  2012. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13:4263–69 [Google Scholar]
  91. Nahin RL, Straus SE. 91.  2001. Research into complementary and alternative medicine: problems and potential. BMJ 322:7279161 [Google Scholar]
  92. Akhtar MT, Mushtaq MY, Verpoorte R, Richardson MK, Choi YH. 92.  2016. Zebrafish as a model for systems medicine R&D: rethinking the metabolic effects of carrier solvents and culture buffers determined by 1H NMR metabolomics. OMICS: J. Integr. Biol 20:142–52 [Google Scholar]
  93. O'Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. 93.  2014. C. elegans in high-throughput drug discovery. Adv. Drug Deliv. Rev. 69:247–53 [Google Scholar]
  94. Robinette SL, Brüschweiler R, Schroeder FC, Edison AS. 94.  2011. NMR in metabolomics and natural products research: two sides of the same coin. Acc. Chem. Res. 45:2288–97 [Google Scholar]
  95. van der Kooy F, Maltese F, Choi YH, Kim HK, Verpoorte R. 95.  2009. Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med 75:07763–75 [Google Scholar]
  96. Cardoso-Taketa AT, Pereda-Miranda R, Choi YH, Verpoorte R, Villarreal ML. 96.  2008. Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med 74:101295–301 [Google Scholar]
  97. Verpoorte R, Choi YH, Kim HK. 97.  2005. Ethnopharmacology and systems biology: a perfect holistic match. J. Ethnopharmacol. 100:1–253–56 [Google Scholar]
  98. Yuliana ND, Khatib A, Verpoorte R, Choi YH. 98.  2011. Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine A1 receptor binding compounds in Orthosiphon stamineus Benth. Anal. Chem. 83:176902–6 [Google Scholar]
  99. Patwardhan B. 99.  2005. Ethnopharmacology and drug discovery. J. Ethnopharmacol. 100:1–250–52 [Google Scholar]
  100. Butler MS, Robertson AA, Cooper MA. 100.  2014. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 31:111612–61 [Google Scholar]
  101. Cui L, Su XZ. 101.  2009. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti-Infect. Ther. 7:8999–1013 [Google Scholar]
  102. Heinrich M. 102.  2010. Ethnopharmacology in the 21st century – grand challenges. Front. Pharmacol. 1:8 [Google Scholar]
  103. Chakravarty R. 103.  2010. Preserving traditional knowledge: initiatives in India. IFLA J 36:4294–99 [Google Scholar]
  104. Jayaraman K. 104.  2009. India protects traditional medicines from piracy. Nature 457:933 [Google Scholar]
  105. Jeevan V. 105.  2004. Digital library development: identifying sources of content for developing countries with special reference to India. Int. Inf. Libr. Rev. 36:3185–97 [Google Scholar]
  106. Mukherjee A, Banerjee M, Mandal V, Shukla AC, Mandal SC. 106.  2014. Modernization of Ayurveda: a brief overview of Indian initiatives. Nat. Prod. Commun. 9:2287–90 [Google Scholar]
  107. Patwardhan B, Mashelkar RA. 107.  2009. Traditional medicine-inspired approaches to drug discovery: Can Ayurveda show the way forward?. Drug Discov. Today 14:15804–11 [Google Scholar]
  108. Tandon N, Yadav SS. 108.  2016. Contributions of Indian Council of Medical Research (ICMR) in the area of medicinal plants/traditional medicine. J. Ethnopharmacol. 197:239–45 [Google Scholar]
  109. Qu L, Zou W, Zhou Z, Zhang T, Greef J, Wang M. 109.  2014. Non-European traditional herbal medicines in Europe: a community herbal monograph perspective. J. Ethnopharmacol. 156:107–14 [Google Scholar]
  110. Gupta PD, Daswani PG, Birdi TJ. 110.  2014. Approaches in fostering quality parameters for medicinal botanicals in the Indian context. Indian J. Pharmacol. 46:4363 [Google Scholar]
  111. Luna LE. 111.  1984. The healing practices of a Peruvian shaman. J. Ethnopharmacol. 11:2123–33 [Google Scholar]
  112. Pires APS, De Oliveira CDR, Moura S, Dörr FA, Silva WAE, Yonamine M. 112.  2009. Gas chromatographic analysis of dimethyltryptamine and β-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage. Phytochem. Anal. 20:2149–53 [Google Scholar]
  113. McKenna DJ, Towers GH, Abbott F. 113.  1984. Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and β-carboline constituents of ayahuasca. J. Ethnopharmacol. 10:2195–223 [Google Scholar]
  114. Dos Santos RG, Osório FL, Crippa JA, Riba J, Zuardi AW, Hallak JEC. 114.  2016. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther. Adv. Psychopharmacol. 6:3193–213 [Google Scholar]
  115. da Silva G, Serrano R, Silva O. 115.  2011. Maytenus heterophylla and Maytenus senegalensis, two traditional herbal medicines. J. Nat. Sci. Biol. Med. 2:159–65 [Google Scholar]
  116. Liu H, Tian X, Zhang Y, Wang C, Jiang H. 116.  2013. The discovery of Artemisia annua L. in the Shengjindian cemetery, Xinjiang, China and its implications for early uses of traditional Chinese herbal medicine qinghao. J. Ethnopharmacol. 146:1278–86 [Google Scholar]
  117. Lascaratos J. 117.  1995. ‘Arthritis’ in Byzantium (AD 324–1453): unknown information from non-medical literary sources. Ann. Rheum. Dis. 54:12951–57 [Google Scholar]
  118. Lock O, Perez E, Villar M, Flores D, Rojas R. 118.  2016. Bioactive compounds from plants used in Peruvian traditional medicine. Nat. Prod. Commun. 11:3315–37 [Google Scholar]
  119. Nambudiri NS, Nambudiri VE. 119.  2013. Euphorbia peplus: 18th-century insights on a 21st-century therapy. JAMA Dermatol 149:91081 [Google Scholar]
  120. Arteaga S, Andrade-Cetto A, Cárdenas R. 120.  2005. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol. 98:3231–39 [Google Scholar]
  121. Bailey CJ, Day C. 121.  2004. Metformin: its botanical background. Pract. Diabetes Int. 21:3115–17 [Google Scholar]
  122. Man S, Gao W, Wei C, Liu C. 122.  2012. Anticancer drugs from traditional toxic Chinese medicines. Phytother. Res. 26:101449–65 [Google Scholar]
  123. Tzankova V, Danchev N. 123.  2007. Cytisine—from ethomedical use to the development as a natural alternative for smoking cessation. Biotechnol. Biotechnol. Equip. 21:2151–60 [Google Scholar]
  124. Haanpaa M, Treede RD. 124.  2012. Capsaicin for neuropathic pain: linking traditional medicine and molecular biology. Eur. Neurol. 68:5264–75 [Google Scholar]
  125. Ho YS, So KF, Chang RCC. 125.  2011. Drug discovery from Chinese medicine against neurodegeneration in Alzheimer's and vascular dementia. Chin. Med. 6:15 [Google Scholar]
  126. Aggarwal BB, Prasad S, Reuter S, Kannappan R, Yadev VR. 126.  et al. 2011. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 12:111595–653 [Google Scholar]
  127. Min SW, Kim NJ, Baek NI, Kim DH. 127.  2009. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J. Ethnopharmacol. 125:3497–500 [Google Scholar]
  128. Hatcher H, Planalp R, Cho J, Torti F, Torti S. 128.  2008. Curcumin: from ancient medicine to current clinical trials. Cell Mol. Life Sci. 65:111631–52 [Google Scholar]
  129. Ali AMMT, Agrawal A, Lulu SS, Priya AM, Vino S. 129.  2017. RAACFDb: rheumatoid arthritis ayurvedic classical formulations database. J. Ethnopharmacol. 197:87–91 [Google Scholar]
  130. Lee JH, Park KM, Han DJ, Bang NY, Kim DH. 130.  et al. 2015. PharmDB-K: integrated bio-pharmacological network database for traditional Korean medicine. PLOS ONE 10:11e0142624 [Google Scholar]
  131. Thakar SB, Ghorpade PN, Kale MV, Sonawane KD. 131.  2015. FERN Ethnomedicinal Plant Database: exploring fern ethnomedicinal plants knowledge for computational drug discovery. Curr. Comput.-Aided Drug Des. 11:3266–71 [Google Scholar]
  132. Hu R, Ren G, Sun G, Sun X. 132.  2016. TarNet: an evidence-based database for natural medicine research. PLOS ONE 11:6e0157222 [Google Scholar]
  133. Ru J, Li P, Wang J, Zhou W, Li B. 133.  et al. 2014. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics 6:13 [Google Scholar]
  134. Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M. 134.  et al. 2013. AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLOS ONE 8:10e78085 [Google Scholar]
  135. Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I. 135.  et al. 2013. Development of a natural products database from the biodiversity of Brazil. J. Nat. Prod. 76:3439–44 [Google Scholar]
  136. Ntie-Kang F, Mbah JA, Mbaze LM, Lifongo LL, Scharfe M. 136.  et al. 2013. CamMedNP: building the Cameroonian 3D structural natural products database for virtual screening. BMC Complement. Altern. Med. 13:88 [Google Scholar]
  137. Ntie-Kang F, Lifongo LL, Mbah JA, Owono Owono LC, Megnassan E. 137.  et al. 2013. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacol 1:12 [Google Scholar]
  138. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. 138.  2013. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 41:D1089–95 [Google Scholar]
  139. Petersen RK, Christensen KB, Assimopoulou AN, Frette X, Papageorgiou VP. 139.  et al. 2011. Pharmacophore-driven identification of PPARγ agonists from natural sources. J. Comput.-Aided Mol. Des. 25:2107–16 [Google Scholar]
  140. Harris ES, Erickson SD, Tolopko AN, Cao S, Craycroft JA. 140.  et al. 2011. Traditional Medicine Collection Tracking System (TM-CTS): a database for ethnobotanically driven drug-discovery programs. J. Ethnopharmacol. 135:2590–93 [Google Scholar]
  141. Chen CYC. 141.  2011. TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLOS ONE 6:1e15939 [Google Scholar]
  142. Ye H, Ye L, Kang H, Zhang D, Tao L. 142.  et al. 2011. HIT: linking herbal active ingredients to targets. Nucleic Acids Res 39:D1055–59 [Google Scholar]
  143. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C. 143.  et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33:81582–614 [Google Scholar]
  144. Fang YC, Huang HC, Chen HH, Juan HF. 144.  2008. TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining. BMC Complement. Altern. Med. 8:58 [Google Scholar]
  145. Chen X, Zhou H, Liu YB, Wang JF, Li H. 145.  et al. 2006. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol. 149:81092–103 [Google Scholar]
  146. Qiao X, Hou T, Zhang W, Guo S, Xu X. 146.  2002. A 3D structure database of components from Chinese traditional medicinal herbs. J. Chem. Inf. Comput. Sci. 42:3481–89 [Google Scholar]
  147. He M, Yan X, Zhou J, Xie G. 147.  2001. Traditional Chinese medicine database and application on the Web. J. Chem. Inf. Comput. Sci. 41:2273–77 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error