1932

Abstract

K7 channels are voltage-gated potassium channels encoded by genes that have a considerable physiological impact in many cell types. This reliance upon K7 channels for normal cellular function, as well as the existence of hereditary disorders caused by mutations to genes, means that pharmacological targeting of these channels has broad appeal. Consequently, a plethora of chemical entities that modulate K7 channel activity have been developed. Moreover, K7 channels are influenced by many disparate intracellular mediators and trafficking processes, making upstream targeting an appealing prospect for therapeutic development. This review covers the main characteristics of these multifunctional and versatile channels with the aim of providing insight into the therapeutic value of targeting these channels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-052912
2018-01-06
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010617-052912.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-052912&mimeType=html&fmt=ahah

Literature Cited

  1. Schwake M, Jentsch TJ, Friedrich T. 1.  2003. A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep 4:76–81 [Google Scholar]
  2. Wiener R, Haitin Y, Shamgar L, Fernández-Alonso MC, Martos A. 2.  et al. 2008. The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. J. Biol. Chem. 283:5815–30 [Google Scholar]
  3. Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C. 3.  et al. 2006. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J. Neurosci. 26:3757–66 [Google Scholar]
  4. Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H. 4.  2003. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels. J. Physiol. 548:353–60 [Google Scholar]
  5. Soldovieri MV, Castaldo P, Iodice L, Miceli F, Barrese V. 5.  et al. 2006. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J. Biol. Chem. 281:418–28 [Google Scholar]
  6. Bal M, Zhang J, Zaika O, Hernandez CC, Shapiro MS. 6.  2008. Homomeric and heteromeric assembly of KCNQ (Kv7) K+ channels assayed by total internal reflection fluorescence/fluorescence resonance energy transfer and patch clamp analysis. J. Biol. Chem. 283:30668–76 [Google Scholar]
  7. Jentsch TJ. 7.  2000. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1:21–30 [Google Scholar]
  8. Haitin Y, Attali B. 8.  2008. The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. 586:1803–10 [Google Scholar]
  9. Soldovieri MV, Miceli F, Taglialatela M. 9.  2011. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology 26:365–76 [Google Scholar]
  10. Delmas P, Brown DA. 10.  2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–62 [Google Scholar]
  11. Zhang J, Shapiro MS. 11.  2016. Mechanisms and dynamics of AKAP79/150-orchestrated multi-protein signalling complexes in brain and peripheral nerve. J. Physiol. 594:31–37 [Google Scholar]
  12. Brown DA, Hughes SA, Marsh SJ, Tinker A. 12.  2007. Regulation of M(Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2 hydrolysis: significance for receptor-mediated inhibition. J. Physiol. 582:917–25 [Google Scholar]
  13. Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS. 13.  2008. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J. Physiol. 586:1811–21 [Google Scholar]
  14. Taylor KC, Sanders CR. 14.  2017. Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim. Biophys. Acta 1859:586–97 [Google Scholar]
  15. Li Y, Gamper N, Hilgemann DW, Shapiro MS. 15.  2005. Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25:9825–35 [Google Scholar]
  16. Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H. 16.  et al. 2013. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. PNAS 110:13180–85 [Google Scholar]
  17. Hernandez CC, Falkenburger B, Shapiro MS. 17.  2009. Affinity for phosphatidylinositol 4,5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels. J. Gen. Physiol. 134:437–48 [Google Scholar]
  18. Liu W, Devaux JJ. 18.  2014. Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol. Cell Neurosci. 58:40–52 [Google Scholar]
  19. Alaimo A, Alberdi A, Gomis-Perez C, Fernández-Orth J, Bernardo-Seisdedos G. 19.  et al. 2014. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex. PLOS ONE 9:e86711 [Google Scholar]
  20. Xu Q, Chang A, Tolia A, Minor DL Jr.. 20.  2013. Structure of a Ca2+/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J. Mol. Biol. 425:378–94 [Google Scholar]
  21. Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W. 21.  et al. 2014. Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular C-terminal domain in complex with calmodulin. Structure 22:1582–94 [Google Scholar]
  22. Gamper N, Li Y, Shapiro MS. 22.  2005. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol. Biol. Cell 16:3538–51 [Google Scholar]
  23. Gamper N, Shapiro MS. 23.  2003. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J. Gen. Physiol. 122:17–31 [Google Scholar]
  24. Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A. 24.  et al. 2006. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ. Res. 98:1055–63 [Google Scholar]
  25. Tobelaim WS, Dvir M, Lebel G, Cui M, Buki T. 25.  et al. 2017. Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel. PNAS 114:E869–78 [Google Scholar]
  26. Povstyan OV, Barrese V, Stott JB, Greenwood IA. 26.  2017. Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity. Pflüg. Arch. 469:213–23 [Google Scholar]
  27. Miceli F, Soldovieri MV, Joshi N, Weckhuysen S, Cooper E, Taglialatela M. 27.  2010. KCNQ2-related disorders. GeneReviews RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya et al. Seattle: Univ. Wash. [Google Scholar]
  28. Gómez-Posada JC, Etxeberria A, Roura-Ferrer M, Areso P, Masin M. 28.  et al. 2010. A pore residue of the KCNQ3 potassium M-channel subunit controls surface expression. J. Neurosci. 30:9316–23 [Google Scholar]
  29. Panaghie G, Tai KK, Abbott GW. 29.  2006. Interaction of KCNE subunits with the KCNQ1 K+ channel pore. J. Physiol. 570:455–67 [Google Scholar]
  30. Lundby A, Tseng GN, Schmitt N. 30.  2010. Structural basis for KV7.1-KCNEx interactions in the IKs channel complex. Heart Rhythm 7:708–13 [Google Scholar]
  31. Wrobel E, Tapken D, Seebohm G. 31.  2012. The KCNE tango – how KCNE1 interacts with Kv7.1. Front. Pharmacol. 3:142 [Google Scholar]
  32. Kanda VA, Abbott GW. 32.  2012. KCNE regulation of K+ channel trafficking - a Sisyphean task?. Front. Physiol. 3:231 [Google Scholar]
  33. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. 33.  1996. KVLQT1 and lsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80 [Google Scholar]
  34. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS. 34.  et al. 1996. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83 [Google Scholar]
  35. Sesti F, Goldstein SAN. 35.  1998. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J. Gen. Physiol. 112:651–63 [Google Scholar]
  36. Melman YF, Um SY, Krumerman A, Kagan A, McDonald TV. 36.  2004. KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity. Neuron 42:927–37 [Google Scholar]
  37. Nakajo K, Kubo Y. 37.  2007. KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel. J. Gen. Physiol. 130:269–81 [Google Scholar]
  38. Shamgar L, Haitin Y, Yisharel I, Malka E, Schottelndreier H. 38.  et al. 2008. KCNE1 constrains the voltage sensor of Kv7.1 K+ channels. PLOS ONE 3:e1943 [Google Scholar]
  39. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R. 39.  et al. 2000. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–99 [Google Scholar]
  40. Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J. 40.  2000. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J 19:6326–30 [Google Scholar]
  41. Melman YF, Krumerman A, McDonald TV. 41.  2002. A single transmembrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 channel gating. J. Biol. Chem. 277:25187–94 [Google Scholar]
  42. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrom T, Jorgensen NK. 42.  et al. 2002. KCNE4 is an inhibitory subunit to the KCNQ1 channel. J. Physiol. 542:119–30 [Google Scholar]
  43. Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D. 43.  et al. 2011. Structural basis of slow activation gating in the cardiac IKs channel complex. Cell Physiol. Biochem. 27:443–52 [Google Scholar]
  44. Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA. 44.  2015. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J. Physiol. 593:5325–40 [Google Scholar]
  45. Abbott GW, Jepps TA. 45.  2016. Kcne4 deletion sex-dependently alters vascular reactivity. J. Vasc. Res. 53:138–48 [Google Scholar]
  46. Blunck R, Batulan Z. 46.  2012. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front. Pharmacol. 3:166 [Google Scholar]
  47. Liin SI, Barro-Soria R, Larsson HP. 47.  2015. The KCNQ1 channel – remarkable flexibility in gating allows for functional versatility. J. Physiol. 593:2605–15 [Google Scholar]
  48. Wrobel E, Rothenberg I, Krisp C, Hundt F, Fraenzel B. 48.  et al. 2016. KCNE1 induces fenestration in the Kv7.1/KCNE1 channel complex that allows for highly specific pharmacological targeting. Nat. Commun. 7:12795 [Google Scholar]
  49. Li Y, Zaydman MA, Wu D, Shi J, Guan M. 49.  et al. 2011. KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of IKs to modulate channel activity. PNAS 108:9095–100 [Google Scholar]
  50. Nakajo K, Kubo Y. 50.  2015. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain. J. Physiol. 593:2617–25 [Google Scholar]
  51. Jepps TA, Olesen SP, Greenwood IA. 51.  2013. One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders. Br. J. Pharmacol. 168:19–27 [Google Scholar]
  52. Stott JB, Jepps TA, Greenwood IA. 52.  2014. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov. Today 19:413–24 [Google Scholar]
  53. Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT. 53.  et al. 2012. Pharmacological dissection of Kv7.1 channels in systemic and pulmonary arteries. Br. J. Pharmacol. 166:1377–87 [Google Scholar]
  54. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ. 54.  et al. 1997. The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br. J. Pharmacol. 122:187–89 [Google Scholar]
  55. Bett GC, Morales MJ, Beahm DL, Duffey ME, Rasmusson RL. 55.  2006. Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. J. Physiol. 576:755–67 [Google Scholar]
  56. Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC. 56.  2003. Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol. Pharmacol. 64:70–77 [Google Scholar]
  57. Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA. 57.  2000. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol. Pharmacol. 58:253–62 [Google Scholar]
  58. Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. 58.  2000. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol. 58:591–600 [Google Scholar]
  59. Tatulian L, Brown DA. 59.  2003. Effect of the KCNQ potassium channel opener retigabine on single KCNQ2/3 channels expressed in CHO cells. J. Physiol. 549:57–63 [Google Scholar]
  60. Lange W, Geissendorfer J, Schenzer A, Grotzinger J, Seebohm G. 60.  et al. 2009. Refinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels. Mol. Pharmacol. 75:272–80 [Google Scholar]
  61. Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ. 61.  et al. 2005. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J. Neurosci. 25:5051–60 [Google Scholar]
  62. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. 62.  2005. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol. Pharmacol. 67:1009–17 [Google Scholar]
  63. Tatulian L, Delmas P, Abogadie FC, Brown DA. 63.  2001. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J. Neurosci. 21:5535–45 [Google Scholar]
  64. Xiong Q, Sun H, Zhang Y, Nan F, Li M. 64.  2008. Combinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers. PNAS 105:3128–33 [Google Scholar]
  65. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM. 65.  et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17–23 [Google Scholar]
  66. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C. 66.  et al. 1997. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15:186–89 [Google Scholar]
  67. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K. 67.  et al. 2005. KCNQ1-dependent transport in renal and gastrointestinal epithelia. PNAS 102:17864–69 [Google Scholar]
  68. Dedek K, Waldegger S. 68.  2001. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflüg. Arch. 442:896–902 [Google Scholar]
  69. Kunzelmann K, Bleich M, Warth R, Levy-Holzman R, Garty H, Schreiber R. 69.  2001. Expression and function of colonic epithelial KvLQT1 K+ channels. Clin. Exp. Pharmacol. Physiol. 28:79–83 [Google Scholar]
  70. Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH. 70.  et al. 2001. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120:1363–71 [Google Scholar]
  71. Grahammer F, Warth R, Barhanin J, Bleich M, Hug MJ. 71.  2001. The small conductance K+ channel, KCNQ1: expression, function, and subunit composition in murine trachea. J. Biol. Chem. 276:42268–75 [Google Scholar]
  72. Fröhlich H, Boini KM, Seebohm G, Strutz-Seebohm N, Ureche ON. 72.  et al. 2011. Hypothyroidism of gene-targeted mice lacking Kcnq1. Pflüg. Arch. 461:45–52 [Google Scholar]
  73. Purtell K, Paroder-Belenitsky M, Reyna-Neyra A, Nicola JP, Koba W. 73.  et al. 2012. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I uptake. FASEB J 26:3252–59 [Google Scholar]
  74. Iannotti FA, Panza E, Barrese V, Viggiano D, Soldovieri MV, Taglialatela M. 74.  2010. Expression, localization, and pharmacological role of Kv7 potassium channels in skeletal muscle proliferation, differentiation, and survival after myotoxic insults. J. Pharmacol. Exp. Ther. 332:811–20 [Google Scholar]
  75. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A. 75.  et al. 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–46 [Google Scholar]
  76. Iannotti FA, Barrese V, Formisano L, Miceli F, Taglialatela M. 76.  2013. Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels. Mol. Biol. Cell 24:274–84 [Google Scholar]
  77. Testai L, Barrese V, Soldovieri MV, Ambrosino P, Martelli A. 77.  et al. 2016. Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection. Cardiovasc. Res. 110:40–50 [Google Scholar]
  78. Tzingounis AV, Heidenreich M, Kharkovets T, Spitzmaul G, Jensen HS. 78.  et al. 2010. The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. PNAS 107:10232–37 [Google Scholar]
  79. Roura-Ferrer M, Solé L, Martinez-Mármol R, Villalonga N, Felipe A. 79.  2008. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochem. Biophys. Res. Commun. 369:1094–97 [Google Scholar]
  80. Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL. 80.  et al. 2014. Contribution of Kv7.4/Kv7.5 heteromers to intrinsic and calcitonin gene-related peptide–induced cerebral reactivity. Arterioscler. Thromb Vasc. Biol. 34:887–93 [Google Scholar]
  81. Mani BK, Robakowski C, Brueggemann LI, Cribbs LL, Tripathi A. 81.  et al. 2016. Kv7.5 potassium channel subunits are the primary targets for PKA-dependent enhancement of vascular smooth muscle Kv7 currents. Mol. Pharmacol. 89:323–34 [Google Scholar]
  82. Dvir M, Strulovich R, Sachyani D, Ben-Tal Cohen I, Haitin Y. 82.  et al. 2014. Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt IKS regulation by PKA and PIP2. J. Cell Sci. 127:3943–55 [Google Scholar]
  83. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J. 83.  et al. 2002. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–99 [Google Scholar]
  84. Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS. 84.  2005. Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ. Res. 96:e25–34 [Google Scholar]
  85. Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V. 85.  et al. 2017. Molecular pathophysiology of congenital long QT syndrome. Physiol. Rev. 97:89–134 [Google Scholar]
  86. Kato S, Honjo H, Takemoto Y, Takanari H, Suzuki T. 86.  et al. 2012. Pharmacological blockade of IKs destabilizes spiral-wave reentry under β-adrenergic stimulation in favor of its early termination. J. Pharmacol. Sci. 119:52–63 [Google Scholar]
  87. Virag L, Iost N, Opincariu M, Szolnoky J, Szecsi J. 87.  et al. 2001. The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc. Res. 49:790–97 [Google Scholar]
  88. Cheng J, Kamiya K, Liu W, Tsuji Y, Toyama J, Kodama I. 88.  1999. Heterogeneous distribution of the two components of delayed rectifier K+ current: a potential mechanism of the proarrhythmic effects of methanesulfonanilide class III agents. Cardiovasc. Res. 43:135–47 [Google Scholar]
  89. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S. 89.  et al. 2000. Spectrum of mutations in long-QT syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–85 [Google Scholar]
  90. Peroz D, Rodriguez N, Choveau F, Baró I, Merót J, Loussouarn G. 90.  2008. Kv7.1 (KCNQ1) properties and channelopathies. J. Physiol. 586:1785–89 [Google Scholar]
  91. Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O. 91.  2000. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19:332–40 [Google Scholar]
  92. Harmer SC, Tinker A. 92.  2007. The role of abnormal trafficking of KCNE1 in long QT syndrome 5. Biochem. Soc. Trans. 35:1074–76 [Google Scholar]
  93. Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R. 93.  et al. 2008. Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ. Res. 103:1451–57 [Google Scholar]
  94. Krumerman A, Gao X, Bian JS, Melman YF, Kagan A, McDonald TV. 94.  2004. An LQT mutant minK alters KvLQT1 trafficking. Am. J. Physiol. Cell Physiol. 286:C1453–63 [Google Scholar]
  95. Chen Q, Zhang D, Gingell RL, Moss AJ, Napolitano C. 95.  et al. 1999. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation 99:1344–47 [Google Scholar]
  96. Restier L, Cheng L, Sanguinetti MC. 96.  2008. Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels. J. Physiol. 586:4179–91 [Google Scholar]
  97. Lundby A, Ravn LS, Svendsen JH, Olesen SP, Schmitt N. 97.  2007. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm 4:1532–41 [Google Scholar]
  98. Campbell CM, Campbell JD, Thompson CH, Galimberti ES, Darbar D. 98.  et al. 2013. Selective targeting of gain-of-function KCNQ1 mutations predisposing to atrial fibrillation. Circ. Arrhythm. Electrophysiol. 6:960–66 [Google Scholar]
  99. Towart R, Linders JTM, Hermans AN, Rohrbacher J, van der Linde HJ. 99.  et al. 2009. Blockade of the IKs potassium channel: an overlooked cardiovascular liability in drug safety screening?. J. Pharmacol. Toxicol Methods 60:1–10 [Google Scholar]
  100. Khanamiri S, Soltysinska E, Jepps TA, Bentzen BH, Chadha PS. 100.  et al. 2013. Contribution of Kv7 channels to basal coronary flow and active response to ischemia. Hypertension 62:1090–97 [Google Scholar]
  101. Morales-Cano D, Moreno L, Barreira B, Pandolfi R, Chamorro V. 101.  et al. 2015. Kv7 channels critically determine coronary artery reactivity: left–right differences and down-regulation by hyperglycaemia. Cardiovasc. Res. 106:98–108 [Google Scholar]
  102. Wladyka CL, Kunze DL. 102.  2006. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons. J. Physiol. 575:175–89 [Google Scholar]
  103. Hansen HH, Waroux O, Seutin V, Jentsch TJ, Aznar S, Mikkelsen JD. 103.  2008. Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J. Physiol. 586:1823–32 [Google Scholar]
  104. Pan Z, Kao T, Horvath Z, Lemos J, Sul JY. 104.  et al. 2006. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J. Neurosci. 26:2599–613 [Google Scholar]
  105. Chung HJ, Jan YN, Jan LY. 105.  2006. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. PNAS 103:8870–75 [Google Scholar]
  106. Xu M, Cooper EC. 106.  2015. An ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J. Biol. Chem. 290:16619–32 [Google Scholar]
  107. Benned-Jensen T, Christensen RK, Denti F, Perrier JF, Rasmussen HB, Olesen SP. 107.  2016. Live imaging of Kv7.2/7.3 cell surface dynamics at the axon initial segment: high steady-state stability and calpain-dependent excitotoxic downregulation revealed. J. Neurosci. 36:2261–66 [Google Scholar]
  108. Pablo JL, Pitt GS. 108.  2017. FGF14 is a regulator of KCNQ2/3 channels. PNAS 114:154–59 [Google Scholar]
  109. Yue C, Yaari Y. 109.  2004. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J. Neurosci. 24:4614–24 [Google Scholar]
  110. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P. 110.  et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279:403–6 [Google Scholar]
  111. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE. 111.  et al. 1998. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18:53–55 [Google Scholar]
  112. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ. 112.  et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18:25–29 [Google Scholar]
  113. Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ. 113.  et al. 2003. KCNQ/M currents in sensory neurons: significance for pain therapy. J. Neurosci. 23:7227–36 [Google Scholar]
  114. Shah M, Mistry M, Marsh SJ, Brown DA, Delmas P. 114.  2002. Molecular correlates of the M-current in cultured rat hippocampal neurons. J. Physiol. 544:29–37 [Google Scholar]
  115. Gu N, Vervaeke K, Hu H, Storm JF. 115.  2005. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol. 566:689–715 [Google Scholar]
  116. Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS. 116.  2006. A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. J. Neurosci. 26:2053–59 [Google Scholar]
  117. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D. 117.  2005. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat. Neurosci. 8:51–60 [Google Scholar]
  118. Hu H, Vervaeke K, Storm JF. 118.  2002. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. 545:783–805 [Google Scholar]
  119. Martire M, Castaldo P, D'Amico M, Preziosi P, Annunziato L, Taglialatela M. 119.  2004. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J. Neurosci. 24:592–97 [Google Scholar]
  120. Battefeld A, Tran BT, Gavrilis J, Cooper EC, Kole MHP. 120.  2014. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J. Neurosci. 34:3719–32 [Google Scholar]
  121. Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M. 121.  et al. 2013. Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:4386–91 [Google Scholar]
  122. Soldovieri MV, Ambrosino P, Mosca I, De Maria M Moretto E. 122.  et al. 2016. Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate. Sci. Rep. 6:38167 [Google Scholar]
  123. Abidi A, Devaux JJ, Molinari F, Alcaraz G, Michon FX. 123.  et al. 2015. A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. Neurobiol. Dis. 80:80–92 [Google Scholar]
  124. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H. 124.  2007. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69:2045–53 [Google Scholar]
  125. Bierbower SM, Choveau FS, Lechleiter JD, Shapiro MS. 125.  2015. Augmentation of M-type (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. J. Neurosci. 35:2101–11 [Google Scholar]
  126. Cavaliere S, Malik BR, Hodge JJ. 126.  2013. KCNQ channels regulate age-related memory impairment. PLOS ONE 8:e62445 [Google Scholar]
  127. Zhou JJ, Gao Y, Kosten TA, Zhao Z, Li DP. 127.  2017. Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology 114:67–76 [Google Scholar]
  128. McGuier NS, Griffin WC III, Gass JT, Padula AE, Chesler EJ, Mulholland PJ. 128.  2016. Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 21:1097–112 [Google Scholar]
  129. Zhou N, Huang S, Li L, Huang D, Yan Y. 129.  et al. 2016. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells. Neuroscience 333:356–67 [Google Scholar]
  130. Wulff H, Castle NA, Pardo LA. 130.  2009. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8:982–1001 [Google Scholar]
  131. Barrese V, Taglialatela M, Greenwood IA, Davidson C. 131.  2015. Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices. J. Cereb. Blood Flow Metab. 35:1593–600 [Google Scholar]
  132. Mani BK, Brueggemann LI, Cribbs LL, Byron KL. 132.  2011. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br. J. Pharmacol. 164:237–49 [Google Scholar]
  133. Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD. 133.  et al. 2010. Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. J. Physiol. 588:3277–93 [Google Scholar]
  134. Rivera-Arconada I, Roza C, Lopez-Garcia JA. 134.  2009. Enhancing m currents: a way out for neuropathic pain?. Front. Mol. Neurosci. 2:10 [Google Scholar]
  135. Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. 135.  2011. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain 152:742–54 [Google Scholar]
  136. Fontán-Lozano A, Suárez-Pereira I, Delgado-Garcia JM, Carrión AM. 136.  2011. The M-current inhibitor XE991 decreases the stimulation threshold for long-term synaptic plasticity in healthy mice and in models of cognitive disease. Hippocampus 21:22–32 [Google Scholar]
  137. Li C, Huang P, Lu Q, Zhou M, Guo L, Xu X. 137.  2014. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats. Neuroscience 280:19–30 [Google Scholar]
  138. Hessler S, Zheng F, Hartmann S, Rittger A, Lehnert S. 138.  et al. 2015. β-Secretase BACE1 regulates hippocampal and reconstituted M-currents in a β-subunit-like fashion. J. Neurosci. 35:3298–311 [Google Scholar]
  139. Gilling M, Rasmussen HB, Calloe K, Sequeira AF, Baretto M. 139.  et al. 2013. Dysfunction of the heteromeric KV7.3/KV7.5 potassium channel is associated with autism spectrum disorders. Front. Genet. 4:54 [Google Scholar]
  140. Dencker D, Husum H. 140.  2010. Antimanic efficacy of retigabine in a proposed mouse model of bipolar disorder. Behav. Brain Res. 207:78–83 [Google Scholar]
  141. Korsgaard MP, Hartz BP, Brown WD, Ahring PK, Strobaek D, Mirza NR. 141.  2005. Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J. Pharmacol. Exp. Ther. 314:282–92 [Google Scholar]
  142. Friedman AK, Juarez B, Ku SM, Zhang H, Calizo RC. 142.  et al. 2016. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat. Commun. 7:11671 [Google Scholar]
  143. Haick JM, Byron KL. 143.  2016. Novel treatment strategies for smooth muscle disorders: targeting Kv7 potassium channels. Pharmacol. Ther. 165:14–25 [Google Scholar]
  144. Stott JB, Greenwood IA. 144.  2015. Complex role of Kv7 channels in cGMP and cAMP-mediated relaxations. Channels 9:117–18 [Google Scholar]
  145. Anderson UA, Carson C, Johnston L, Joshi S, Gurney AM, McCloskey KD. 145.  2013. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity. Br. J. Pharmacol. 169:1290–304 [Google Scholar]
  146. Ipavec V, Martire M, Barrese V, Taglialatela M, Currò D. 146.  2011. KV7 channels regulate muscle tone and nonadrenergic noncholinergic relaxation of the rat gastric fundus. Pharmacol. Res. 64:397–409 [Google Scholar]
  147. Jepps TA, Greenwood IA, Moffatt JD, Sanders KM, Ohya S. 147.  2009. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G107–15 [Google Scholar]
  148. McCallum LA, Greenwood IA, Tribe RM. 148.  2009. Expression and function of Kv7 channels in murine myometrium throughout oestrous cycle. Pflüg. Arch. 457:1111–20 [Google Scholar]
  149. McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM. 149.  2011. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J. Cell Mol. Med. 15:577–86 [Google Scholar]
  150. Svalo J, Sheykhzade M, Nordling J, Matras C, Bouchelouche P. 150.  2015. Functional and molecular evidence for Kv7 channel subtypes in human detrusor from patients with and without bladder outflow obstruction. PLOS ONE 10:e0117350 [Google Scholar]
  151. Brueggemann LI, Kakad PP, Love RB, Solway J, Dowell ML. 151.  et al. 2012. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy. Am. J. Physiol. Lung Cell Mol. Physiol. 302:L120–32 [Google Scholar]
  152. Evseev AI, Semenov I, Archer CR, Medina JL, Dube PH. 152.  et al. 2013. Functional effects of KCNQ K+ channels in airway smooth muscle. Front. Physiol. 4:277 [Google Scholar]
  153. Jepps TA, Olesen SP, Greenwood IA, Dalsgaard T. 153.  2016. Molecular and functional characterization of Kv7 channels in penile arteries and corpus cavernosum of healthy and metabolic syndrome rats. Br. J. Pharmacol. 173:1478–90 [Google Scholar]
  154. Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW. 154.  et al. 2011. Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 124:602–11 [Google Scholar]
  155. Stott JB, Barrese V, Jepps TA, Leighton EV, Greenwood IA. 155.  2015. Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats. Hypertension 65:676–82 [Google Scholar]
  156. Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL. 156.  et al. 2008. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J. Pharmacol. Exp. Ther. 325:475–83 [Google Scholar]
  157. Tsvetkov D, Kaßmann M, Tano JY, Chen L, Schleifenbaum J. 157.  et al. 2017. Do KV7.1 channels contribute to control of arterial vascular tone?. Br. J. Pharmacol. 174:150–62 [Google Scholar]
  158. Mackie AR, Byron KL. 158.  2008. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention. Mol. Pharmacol. 74:1171–79 [Google Scholar]
  159. Brueggemann LI, Haick JM, Cribbs LL, Byron KL. 159.  2014. Differential activation of vascular smooth muscle Kv7.4, Kv7.5, and Kv7.4/7.5 channels by ML213 and ICA-069673. Mol. Pharmacol. 86:330–41 [Google Scholar]
  160. Joshi S, Sedivy V, Hodyc D, Herget J, Gurney AM. 160.  2009. KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J. Pharmacol. Exp. Ther. 329:368–76 [Google Scholar]
  161. Stott JB, Barrese V, Greenwood IA. 161.  2016. Kv7 channel activation underpins EPAC-dependent relaxations of rat arteries. Arterioscler. Thromb Vasc. Biol. 36:2404–11 [Google Scholar]
  162. Brueggemann LI, Moran CJ, Barakat JA, Yeh JZ, Cribbs LL, Byron KL. 162.  2007. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292:H1352–63 [Google Scholar]
  163. Yeung SY, Pucovsky V, Moffatt JD, Saldanha L, Schwake M. 163.  et al. 2007. Molecular expression and pharmacological identification of a role for Kv7 channels in murine vascular reactivity. Br. J. Pharmacol. 151:758–70 [Google Scholar]
  164. Greenwood IA, Yeung SY, Tribe RM, Ohya S. 164.  2009. Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset. J. Physiol. 587:2313–26 [Google Scholar]
  165. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. 165.  1987. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–26 [Google Scholar]
  166. Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA. 166.  2015. G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. PNAS 112:6497–502 [Google Scholar]
  167. Carr G, Barrese V, Stott JB, Povstyan OV, Jepps TA. 167.  et al. 2016. MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc. Res. 112:581–89 [Google Scholar]
  168. Li SS, Ran YJ, Zhang DD, Li SZ, Zhu D. 168.  2014. MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K+ channel in arterial smooth muscle cells. J. Cell Biochem. 115:1196–205 [Google Scholar]
  169. Morales-Cano D, Moreno L, Barreira B, Briones AM, Pandolfi R. 169.  et al. 2016. Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin. Sci. 130:1823–36 [Google Scholar]
  170. Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Jentsch TJ, Brown DA. 170.  2000. Inhibition of KCNQ1–4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J. Physiol. 522:Pt. 3349–55 [Google Scholar]
  171. Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J. 171.  1997. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J 16:5472–79 [Google Scholar]
  172. Gamper N, Stockand JD, Shapiro MS. 172.  2003. Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase. J. Neurosci. 23:84–95 [Google Scholar]
  173. Sogaard R, Ljungstrom T, Pedersen KA, Olesen SP, Jensen BS. 173.  2001. KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. Am. J. Physiol. Cell Physiol. 280:C859–66 [Google Scholar]
  174. Tinel N, Diochot S, Lauritzen I, Barhanin J, Lazdunski M, Borsotto M. 174.  2000. M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett 480:137–41 [Google Scholar]
  175. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS. 175.  et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–93 [Google Scholar]
  176. Yang Y, Sigworth FJ. 176.  1998. Single-channel properties of IKs potassium channels. J. Gen. Physiol. 112:665–78 [Google Scholar]
  177. Chorvat RJ, Zaczek R, Brown BS. 177.  1998. Ion channel modulators that enhance acetylcholine release: potential therapies for Alzheimer's disease. Expert Opin. Investig. Drugs 7:499–518 [Google Scholar]
  178. Tam SW, Zaczek R. 178.  1995. Linopirdine: a depolarization-activated releaser of transmitters for treatment of dementia. Adv. Exp. Med. Biol. 363:47–56 [Google Scholar]
  179. Wang HS, Brown BS, McKinnon D, Cohen IS. 179.  2000. Molecular basis for differential sensitivity of KCNQ and IKs channels to the cognitive enhancer XE991. Mol. Pharmacol. 57:1218–23 [Google Scholar]
  180. Song MK, Cui YY, Zhang WW, Zhu L, Lu Y, Chen HZ. 180.  2009. The facilitating effect of systemic administration of Kv7/M channel blocker XE991 on LTP induction in the hippocampal CA1 area independent of muscarinic activation. Neurosci. Lett. 461:25–59 [Google Scholar]
  181. Zaczek R, Chorvat RJ, Saye JA, Pierdomenico ME, Maciag CM. 181.  et al. 1998. Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. J. Pharmacol. Exp. Ther. 285:724–30 [Google Scholar]
  182. Liu L, Wang F, Lu H, Ren X, Zou J. 182.  2014. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets 6:e962386 [Google Scholar]
  183. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC. 183.  1998. A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol. Pharmacol. 54:220–30 [Google Scholar]
  184. Yu H, Lin Z, Mattmann ME, Zou B, Terrenoire C. 184.  et al. 2013. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels. PNAS 110:8732–37 [Google Scholar]
  185. Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ. 185.  2016. The anticonvulsant retigabine suppresses neuronal KV2-mediated currents. Sci. Rep. 6:35080 [Google Scholar]
  186. Treven M, Koenig X, Assadpour E, Gantumur E, Meyer C. 186.  et al. 2015. The anticonvulsant retigabine is a subtype selective modulator of GABAA receptors. Epilepsia 56:647–57 [Google Scholar]
  187. Fretwell LV, Woolard J. 187.  2013. Cardiovascular responses to retigabine in conscious rats – under normotensive and hypertensive conditions. Br. J. Pharmacol. 169:1279–89 [Google Scholar]
  188. Hayashi H, Iwata M, Tsuchimori N, Matsumoto T. 188.  2014. Activation of peripheral KCNQ channels attenuates inflammatory pain. Mol. Pain 10:15 [Google Scholar]
  189. Sheppard AM, Chen GD, Salvi R. 189.  2015. Potassium ion channel openers, Maxipost and Retigabine, protect against peripheral salicylate ototoxicity in rats. Hear. Res. 327:1–8 [Google Scholar]
  190. Redrobe JP, Nielsen AN. 190.  2009. Effects of neuronal Kv7 potassium channel activators on hyperactivity in a rodent model of mania. Behav. Brain Res. 198:481–85 [Google Scholar]
  191. Block F, Pergande G, Schwarz M. 191.  1997. Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res 754:279–84 [Google Scholar]
  192. Morecroft I, Murray A, Nilsen M, Gurney AM, MacLean MR. 192.  2009. Treatment with the Kv7 potassium channel activator flupirtine is beneficial in two independent mouse models of pulmonary hypertension. Br. J. Pharmacol. 157:1241–49 [Google Scholar]
  193. Sedivy V, Joshi S, Ghaly Y, Mizera R, Zaloudikova M. 193.  et al. 2015. Role of Kv7 channels in responses of the pulmonary circulation to hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 308:L48–57 [Google Scholar]
  194. Huang P, Li C, Fu T, Zhao D, Yi Z. 194.  et al. 2015. Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav. Brain Res. 288:1–10 [Google Scholar]
  195. Mooney J, Rawls SM. 195.  2017. KCNQ2/3 channel agonist flupirtine reduces cocaine place preference in rats. Behav. Pharmacol. 28:405–7 [Google Scholar]
  196. Blom SM, Schmitt N, Jensen HS. 196.  2009. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes. PLOS ONE 4:e8251 [Google Scholar]
  197. Blom SM, Rottländer M, Kehler J, Bundgaard C, Schmitt N, Jensen HS. 197.  2014. From pan-reactive KV7 channel opener to subtype selective opener/inhibitor by addition of a methyl group. PLOS ONE 9:e100209 [Google Scholar]
  198. Lobarinas E, Dalby-Brown W, Stolzberg D, Mirza NR, Allman BL, Salvi R. 198.  2011. Effects of the potassium ion channel modulators BMS-204352 Maxipost and its R-enantiomer on salicylate-induced tinnitus in rats. Physiol. Behav. 104:873–79 [Google Scholar]
  199. Sander SE, Lambrecht C, Richter A. 199.  2013. The KV7.2/3 preferring channel opener ICA 27243 attenuates L-DOPA-induced dyskinesia in hemiparkinsonian rats. Neurosci. Lett. 545:59–63 [Google Scholar]
  200. Gao Z, Xiong Q, Sun H, Li M. 200.  2008. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels. J. Biol. Chem. 283:22649–58 [Google Scholar]
  201. Landoulsi Z, Miceli F, Palmese A, Amoresano A, Marino G. 201.  et al. 2013. Subtype-selective activation of Kv7 channels by AaTXKβ(2–64), a novel toxin variant from the Androctonus australis scorpion venom. Mol. Pharmacol. 84:763–73 [Google Scholar]
  202. Mruk K, Kobertz WR. 202.  2009. Discovery of a novel activator of KCNQ1-KCNE1 K channel complexes. PLOS ONE 4:e4236 [Google Scholar]
  203. Dalby-Brown W, Jessen C, Hougaard C, Jensen ML, Jacobsen TA. 203.  et al. 2013. Characterization of a novel high-potency positive modulator of Kv7 channels. Eur. J. Pharmacol. 709:52–63 [Google Scholar]
  204. Brueggemann LI, Mackie AR, Martin JL, Cribbs LL, Byron KL. 204.  2011. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits. Mol. Pharmacol. 79:10–23 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-052912
Loading
/content/journals/10.1146/annurev-pharmtox-010617-052912
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error