1932

Abstract

Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change—often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell–like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-052954
2018-01-06
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010617-052954.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-052954&mimeType=html&fmt=ahah

Literature Cited

  1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 1.  2002. The protein kinase complement of the human genome. Science 298:56001912–34 [Google Scholar]
  2. Fedorov O, Müller S, Knapp S. 2.  2010. The (un)targeted cancer kinome. Nat. Chem. Biol. 6:3166–69 [Google Scholar]
  3. Hanahan D, Weinberg RA. 3.  2011. Hallmarks of cancer: the next generation. Cell 144:5646–74 [Google Scholar]
  4. Fleuren EDG, Zhang L, Wu J, Daly RJ. 4.  2016. The kinome “at large” in cancer. Nat. Rev. Cancer 16:283–98 [Google Scholar]
  5. Buffery D. 5.  2016. Innovation tops current trends in the 2016 oncology drug pipeline. Am. Health Drug Benefits 9:4233–38 [Google Scholar]
  6. Müller S, Chaikuad A, Gray NS, Knapp S. 6.  2015. The ins and outs of selective kinase inhibitor development. Nat. Chem. Biol. 11:11818–21 [Google Scholar]
  7. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. 7.  2007. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7:5345–56 [Google Scholar]
  8. Whittaker S, Kirk R, Hayward R, Zambon A, Viros A. 8.  et al. 2010. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci. Transl. Med. 2:3535ra41 [Google Scholar]
  9. Zhou W, Ercan D, Chen L, Yun C-H, Li D. 9.  et al. 2009. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:72761070–74 [Google Scholar]
  10. O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM. 10.  et al. 2009. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:5401–12 [Google Scholar]
  11. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. 11.  2010. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal. 3:149ra84 [Google Scholar]
  12. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C. 12.  et al. 2007. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:58271039–43 [Google Scholar]
  13. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L. 13.  et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:7326968–72 [Google Scholar]
  14. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C. 14.  et al. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:7377387–90 [Google Scholar]
  15. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF. 15.  et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:181694–703 [Google Scholar]
  16. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM. 16.  et al. 2014. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4:194–109 [Google Scholar]
  17. Welsh SJ, Rizos H, Scolyer RA, Long GV. 17.  2016. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: Where to next?. Eur. J. Cancer 62:76–85 [Google Scholar]
  18. Shi H, Moriceau G, Kong X, Lee M-K, Lee H. 18.  et al. 2012. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3:724 [Google Scholar]
  19. Villanueva J, Infante JR, Krepler C, Reyes-Uribe P, Samanta M. 19.  et al. 2013. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep 4:61090–99 [Google Scholar]
  20. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L. 20.  et al. 2009. MEK1 mutations confer resistance to MEK and B-RAF inhibition. PNAS 106:4820411–16 [Google Scholar]
  21. Whittaker SR, Theurillat J-P, Van Allen E, Wagle N, Hsiao J. 21.  et al. 2013. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:3350–62 [Google Scholar]
  22. Maertens O, Johnson B, Hollstein P, Frederick DT, Cooper ZA. 22.  et al. 2013. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov 3:3338–49 [Google Scholar]
  23. D'Amato V, Raimondo L, Formisano L, Giuliano M, De Placido S. 23.  et al. 2015. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat. Rev. 41:10877–83 [Google Scholar]
  24. Paraiso KHT, Xiang Y, Rebecca VW, Abel EV, Chen YA. 24.  et al. 2011. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:72750–60 [Google Scholar]
  25. Nazarian R, Shi H, Wang Q, Kong X, Koya RC. 25.  et al. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:7326973–77 [Google Scholar]
  26. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA. 26.  et al. 2012. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149:2307–21 [Google Scholar]
  27. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E. 27.  et al. 2012. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22:5668–82 [Google Scholar]
  28. Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS. 28.  et al. 2015. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep 11:3390–404 [Google Scholar]
  29. Abel EV, Basile KJ, Kugel CH, Witkiewicz AK, Le K. 29.  et al. 2013. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J. Clin. Investig. 123:52155–68 [Google Scholar]
  30. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT. 30.  et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:7478138–42 [Google Scholar]
  31. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F. 31.  et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:169–80 [Google Scholar]
  32. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM. 32.  et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22:3262–69 [Google Scholar]
  33. Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL. 33.  et al. 2015. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6:6377 [Google Scholar]
  34. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA. 34.  et al. 2010. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:4583–94 [Google Scholar]
  35. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM. 35.  et al. 2013. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23:6811–25 [Google Scholar]
  36. Fallahi-Sichani M, Becker V, Izar B, Baker GJ, Lin J-R. 36.  et al. 2017. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol. Syst. Biol. 13:1905 [Google Scholar]
  37. Hugo W, Shi H, Sun L, Piva M, Song C. 37.  et al. 2015. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162:61271–85 [Google Scholar]
  38. Feng Q, Zhang Z, Shea MJ, Creighton CJ, Coarfa C. 38.  et al. 2014. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res 24:7809–19 [Google Scholar]
  39. Venkatesh S, Smolle M, Li H, Gogol MM, Saint M. 39.  et al. 2012. Set2 methylation of histone H3 lysine36 suppresses histone exchange on transcribed genes. Nature 489:7416452–55 [Google Scholar]
  40. Kim J-Y, Kee HJ, Choe N-W, Kim S-M, Eom G-H. 40.  et al. 2008. Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity. Mol. Cell. Biol. 28:62023–34 [Google Scholar]
  41. Marango J, Shimoyama M, Nishio H, Meyer JA, Min D-J. 41.  et al. 2008. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111:63145–54 [Google Scholar]
  42. Pei H, Zhang L, Luo K, Qin Y, Chesi M. 42.  et al. 2011. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470:7332124–28 [Google Scholar]
  43. Yang P, Guo L, Duan ZJ, Tepper CG, Xue L. 43.  et al. 2012. Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol. Cell. Biol. 32:153121–31 [Google Scholar]
  44. Liu Y, Wang X, Zhang J, Huang H, Ding B. 44.  et al. 2008. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry 47:246403–17 [Google Scholar]
  45. Jang MK, Mochizuki K, Zhou M, Jeong H-S, Brady JN, Ozato K. 45.  2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19:4523–34 [Google Scholar]
  46. Liu W, Ma Q, Wong K, Li W, Ohgi K. 46.  et al. 2013. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155:71581–95 [Google Scholar]
  47. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB. 47.  et al. 2010. Selective inhibition of BET bromodomains. Nature 468:73271067–73 [Google Scholar]
  48. Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S. 48.  2012. Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol. Cell. Biol. 32:4840–51 [Google Scholar]
  49. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. 49.  2003. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:205323–35 [Google Scholar]
  50. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM. 50.  et al. 2010. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. PNAS 107:4920980–85 [Google Scholar]
  51. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C. 51.  et al. 2010. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42:8722–26 [Google Scholar]
  52. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein H-U. 52.  et al. 2017. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med. 23:169–78 [Google Scholar]
  53. Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR. 53.  1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:6451170–74 [Google Scholar]
  54. Hohmann AF, Vakoc CR. 54.  2014. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet 30:8356–63 [Google Scholar]
  55. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A. 55.  et al. 2013. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497:7451624–27 [Google Scholar]
  56. Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP. 56.  et al. 2015. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520:7546239–42 [Google Scholar]
  57. Hang CT, Yang J, Han P, Cheng H-L, Shang C. 57.  et al. 2010. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:730262–67 [Google Scholar]
  58. DiRenzo J, Shang Y, Phelan M, Sif S, Myers M. 58.  et al. 2000. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell. Biol. 20:207541–49 [Google Scholar]
  59. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA. 59.  et al. 2017. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:2233–246.e7 [Google Scholar]
  60. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M. 60.  et al. 2011. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44:4609–20 [Google Scholar]
  61. Popovic R, Martinez-Garcia E, Giannopoulou EG, Zhang Q, Zhang Q. 61.  et al. 2014. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLOS Genet 10:9e1004566 [Google Scholar]
  62. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y. 62.  et al. 2005. hDOT1L links histone methylation to leukemogenesis. Cell 121:2167–78 [Google Scholar]
  63. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J. 63.  et al. 2011. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:166–78 [Google Scholar]
  64. Souroullas GP, Jeck WR, Parker JS, Simon JM, Liu J-Y. 64.  et al. 2016. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 22:6632–40 [Google Scholar]
  65. Long HK, Prescott SL, Wysocka J. 65.  2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:51170–87 [Google Scholar]
  66. Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR. 66.  et al. 2013. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. PNAS 110:4417921–26 [Google Scholar]
  67. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA. 67.  et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:2320–34 [Google Scholar]
  68. Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A. 68.  et al. 2013. Latent enhancers activated by stimulation in differentiated cells. Cell 152:1–2157–71 [Google Scholar]
  69. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA. 69.  et al. 2013. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell. 51:3310–25 [Google Scholar]
  70. Nabet B, Ó Broin P, Reyes JM, Shieh K, Lin CY. 70.  et al. 2015. Deregulation of the Ras-Erk signaling axis modulates the enhancer landscape. Cell Rep 12:81300–1313 [Google Scholar]
  71. Liu F, Hon GC, Villa GR, Turner KM, Ikegami S. 71.  et al. 2015. EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol. Cell. 60:2307–18 [Google Scholar]
  72. Krishnakumar R, Chen AF, Pantovich MG, Danial M, Parchem RJ. 72.  et al. 2016. FOXD3 regulates pluripotent stem cell potential by simultaneously initiating and repressing enhancer activity. Cell Stem Cell 18:1104–17 [Google Scholar]
  73. Respuela P, Nikolić M, Tan M, Frommolt P, Zhao Y. 73.  et al. 2016. Foxd3 promotes exit from naive pluripotency through enhancer decommissioning and inhibits germline specification. Cell Stem Cell 18:1118–33 [Google Scholar]
  74. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG. 74.  et al. 2014. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46:4364–70 [Google Scholar]
  75. Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS. 75.  et al. 2017. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacological targeting of the P-TEFb complex. Cancer Discov 7:3302–21 [Google Scholar]
  76. Prat A, Parker JS, Karginova O, Fan C, Livasy C. 76.  et al. 2010. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:5R68 [Google Scholar]
  77. Patel MC, Debrosse M, Smith M, Dey A, Huynh W. 77.  et al. 2013. BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol. Cell. Biol. 33:122497–507 [Google Scholar]
  78. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 78.  2015. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161:3555–68 [Google Scholar]
  79. Brown JD, Lin CY, Duan Q, Griffin G, Federation AJ. 79.  et al. 2014. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol. Cell 56:2219–31 [Google Scholar]
  80. Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M. 80.  et al. 2015. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521:7552366–70 [Google Scholar]
  81. Webster DE, Barajas B, Bussat RT, Yan KJ, Neela PH. 81.  et al. 2014. Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition. Genome Res 24:5751–60 [Google Scholar]
  82. Lin CY, Erkek S, Tong Y, Yin L, Federation AJ. 82.  et al. 2016. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530:758857–62 [Google Scholar]
  83. Brind'Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. 83.  2015. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat. Commun. 6:6033 [Google Scholar]
  84. Dahl JA, Klungland A. 84.  2015. Micro chromatin immunoprecipitation (μChIP) from early mammalian embryos. Methods Mol. Biol. 1222:227–45 [Google Scholar]
  85. Cejas P, Li L, O'Neill NK, Duarte M, Rao P. 85.  et al. 2016. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles. Nat. Med. 22:6685–91 [Google Scholar]
  86. Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK. 86.  et al. 2012. BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domain. PNAS 109:186927–32 [Google Scholar]
  87. Devaiah BN, Singer DS. 87.  2012. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J. Biol. Chem. 287:4638755–66 [Google Scholar]
  88. Devaiah BN, Case-Borden C, Gegonne A, Hsu CH, Chen Q. 88.  et al. 2016. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat. Struct. Mol. Biol. 23:6540–48 [Google Scholar]
  89. Shi X, Mihaylova VT, Kuruvilla L, Chen F, Viviano S. 89.  et al. 2016. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β-dependent mechanisms. PNAS 113:31E4558–66 [Google Scholar]
  90. Rathert P, Roth M, Neumann T, Muerdter F, Roe J-S. 90.  et al. 2015. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525:7570543–47 [Google Scholar]
  91. Fong CY, Gilan O, Lam EYN, Rubin AF, Ftouni S. 91.  et al. 2015. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525:7570538–42 [Google Scholar]
  92. Kumar K, Raza SS, Knab LM, Chow CR, Kwok B. 92.  et al. 2015. GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci. Rep. 5:9489 [Google Scholar]
  93. Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP. 93.  et al. 2016. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529:7586413–17 [Google Scholar]
  94. Wu S-Y, Lee A-Y, Lai H-T, Zhang H, Chiang C-M. 94.  2013. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol. Cell 49:5843–57 [Google Scholar]
  95. Kurimchak AM, Shelton C, Duncan KE, Johnson KJ, Brown J. 95.  et al. 2016. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep 16:51273–86 [Google Scholar]
  96. Dittmann A, Werner T, Chung C-W, Savitski MM, Fälth Savitski M. 96.  et al. 2014. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 9:2495–502 [Google Scholar]
  97. Andrews FH, Singh AR, Joshi S, Smith CA, Morales GA. 97.  et al. 2017. Dual-activity PI3K-BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. PNAS 114:7E1072–80 [Google Scholar]
  98. Ciceri P, Müller S, O'Mahony A, Fedorov O, Filippakopoulos P. 98.  et al. 2014. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10:4305–12 [Google Scholar]
  99. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H. 99.  et al. 2016. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48:2176–82 [Google Scholar]
  100. Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y. 100.  et al. 2017. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49:165–74 [Google Scholar]
  101. Zhao Y, Wang L, Ren S, Wang L, Blackburn PR. 101.  et al. 2016. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep 15:3599–610 [Google Scholar]
  102. Yik JHN, Chen R, Pezda AC, Zhou Q. 102.  2005. Compensatory contributions of HEXIM1 and HEXIM2 in maintaining the balance of active and inactive positive transcription elongation factor b complexes for control of transcription. J. Biol. Chem. 280:1616368–76 [Google Scholar]
  103. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ. 103.  et al. 2014. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:2374–87 [Google Scholar]
  104. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS. 104.  et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:7584110–14 [Google Scholar]
  105. Gómez-Marín C, Tena JJ, Acemel RD, López-Mayorga M, Naranjo S. 105.  et al. 2015. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. PNAS 112:247542–47 [Google Scholar]
  106. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F. 106.  et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:51012–25 [Google Scholar]
  107. Shen L, Wu H, Diep D, Yamaguchi S, D'Alessio AC. 107.  et al. 2013. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:3692–706 [Google Scholar]
  108. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K. 108.  et al. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:5510–22 [Google Scholar]
  109. French CA, Rahman S, Walsh EM, Kühnle S, Grayson AR. 109.  et al. 2014. NSD3–NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov 4:8928–41 [Google Scholar]
  110. Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT. 110.  et al. 2015. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev 29:141507–23 [Google Scholar]
  111. Wang R, You J. 111.  2015. Mechanistic analysis of the role of bromodomain-containing protein 4 (BRD4) in BRD4-NUT oncoprotein-induced transcriptional activation. J. Biol. Chem. 290:52744–58 [Google Scholar]
  112. Dubois-Chevalier J, Oger F, Dehondt H, Firmin FF, Gheeraert C. 112.  et al. 2014. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res 42:1710943–59 [Google Scholar]
  113. Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG. 113.  et al. 2016. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:112829–37 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-052954
Loading
/content/journals/10.1146/annurev-pharmtox-010617-052954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error