My chemical training provided a somewhat different perspective of biolo-gical problems, in the problem itself and approaches to its solution. I was fortunate to have in my laboratory postdocs and students who shared this perspective and used appropriate tools to address problems in amphetamine pharmacology and air pollution toxicology. These apparently disparate areas of research shared two chemical reactions: prooxidant-based generation of reactive oxygen and formation of covalent bonds between electrophiles and biological nucleophiles. This article is an attempt to summarize that research and to identify those individuals who made the contributions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Cho AK, Haslett WL, Jenden DJ. 1.  1961. The identification of an active metabolite of tremorine. Biochem. Biophys. Res. Commun. 5:276–79 [Google Scholar]
  2. Brodie BB, Cho AK, Stefano FJ, Gessa GL. 2.  1969. On mechanisms of norepinephrine release by amphetamine and tyramine and tolerance to their effects. Adv. Biochem. Psychopharmacol. 1:219–38 [Google Scholar]
  3. Brodie BB, Reid WD, Cho AK, Sipes G, Krishna G, Gillette JR. 3.  1971. Possible mechanism of liver necrosis caused by aromatic organic compounds. PNAS 68:160–64 [Google Scholar]
  4. Lindeke B, Cho AK. 4.  1972. Specifically deuterated 1-phenylisopropylamines. Synthesis of deuterium labelled (+)-amphetamine, (+)-p-methoxyamphetamine and (+)-alpha-methyltyramine. Acta Pharm. Suec. 9:363–72 [Google Scholar]
  5. Cho AK, Hodshon BJ, Lindeke B, Miwa GT. 5.  1973. Application of quantitative GC-mass spectrometry to study of pharmacokinetics of amphetamine and phentermine. J. Pharm. Sci. 62:1491–94 [Google Scholar]
  6. Cho AK, Lindeke B, Hodshon BJ, Jenden DJ. 6.  1973. Deuterium substituted amphetamine as an internal standard in a gas chromatographic-mass spectrometric (GC-MS) assay for amphetamine. Anal. Chem. 45:570–74 [Google Scholar]
  7. Lindeke B, Cho AK. 7.  1973. Specifically deuterated 1-phenylisopropylamines. 3. A mass spectrometric investigation of the N-trifluoroacetamides of (plus or minus)-amphetamine, phentermine and (plus or minus)-p-methoxyamphetamine. Acta Pharm. Suec. 10:171–86 [Google Scholar]
  8. Cho AK, Lindeke B, Hodshon BJ. 8.  1972. The N-hydroxylation of phentermine (2-methyl-1-phenylisopropylamine) by rabbit liver microsomes. Res. Commun. Chem. Pathol. Pharmacol. 4:519–28 [Google Scholar]
  9. Lindeke B, Cho AK, Fedorchuk M. 9.  1972. Specifically deuterated 1-phenylisopropylamines. II. Synthesis of deuterium labelled phentermine. Acta Pharm. Suec. 9:605–8 [Google Scholar]
  10. Lindeke B, Cho AK, Thomas TL, Michelson L. 10.  1973. Microsomal N-hydroxylation of phenyl-alkylamines. Identification of N-hydroxylated phenylalkylamines as their trimethylsilyl derivatives by GC-MS. Acta Pharm. Suec. 10:493–506 [Google Scholar]
  11. Sum CY, Cho AK. 11.  1976. Properties of microsomal enzyme systems that reduce N-hydroxyphentermine. Drug Metab. Dispos. 4:436–41 [Google Scholar]
  12. Sum CY, Cho AK. 12.  1977. The N-hydroxylation of phentermine by rat liver microsomes. Drug Metab. Dispos. 5:464–68 [Google Scholar]
  13. Sum CY, Cho AK. 13.  1977. The effect of phenobarbital and 3-methylcholanthrene pretreatment on the N-hydroxylation of phentermine. Proc. West Pharmacol. Soc. 20:85–90 [Google Scholar]
  14. Sum CY, Cho AK. 14.  1979. The metabolism of N-hydroxyphentermine by rat liver microsomes. Drug Metab. Dispos. 7:65–69 [Google Scholar]
  15. Cho AK, Miwa GT. 15.  1974. The role of ionization in the N-demethylation of some N,N-dimethylamines. Drug Metab. Dispos. 2:477–83 [Google Scholar]
  16. Duncan JD, Cho AK. 16.  1982. N-oxidation of phentermine to N-hydroxyphentermine by a reconstituted cytochrome P-450 oxidase system from rabbit liver. Mol. Pharmacol. 22:235–38 [Google Scholar]
  17. Duncan JD, Di Stefano EW, Miwa GT, Cho AK. 17.  1985. Role of superoxide in the N-oxidation of N-(2-methyl-1-phenyl-2-propyl) hydroxylamine by the rat liver cytochrome P-450 system. Biochemistry 24:4155–61 [Google Scholar]
  18. Maynard MS, Cho AK. 18.  1981. Oxidation of N-hydroxyphentermine to 2-methyl-2-nitro-1-phenylpropane by liver microsomes. Biochem. Pharmacol. 30:1115–19 [Google Scholar]
  19. Matsumoto RM, Cho AK. 19.  1982. Conversion of N-hydroxyamphetamine to phenylacetone oxime by rat liver microsomes. Biochem. Pharmacol. 31:105–8 [Google Scholar]
  20. Lindeke B, Paulsen-Sörman U, Hallström G, Khuthier AH, Cho AK, Kammerer RC. 20.  1982. Cytochrome P-455-nm complex formation in the metabolism of phenylalkylamines. VI. Structure–activity relationships in metabolic intermediary complex formation with a series of alpha-substituted 2-phenylethylamines and corresponding N-hydroxylamines. Drug Metab. Dispos. 10:700–5 [Google Scholar]
  21. Cho AK, Maynard MS, Matsumoto RM, Lindeke B, Paulsen U, Miwa GT. 21.  1982. The opposing effects of N-hydroxyamphetamine and N-hydroxyphentermine on the H2O2 generated by hepatic cytochrome P-450. Mol. Pharmacol. 22:465–70 [Google Scholar]
  22. Fukuto JM, Di Stefano EW, Burstyn JN, Valentine JS, Cho AK. 22.  1985. Mechanism of oxidation of N-hydroxyphentermine by superoxide. Biochemistry 24:4161–67 [Google Scholar]
  23. Dring LG, Smith RL, Williams RT. 23.  1970. The metabolic fate of amphetamine in man and other species. Biochem. J. 116:425–35 [Google Scholar]
  24. Lindeke B, Cho AK, Jonsson U, Paulsen U. 24.  1978. On the chemical stability of β-hydroxyphenylalkylhydroxylamines and its relevance to the metabolism of amphetamines and ephedrines. Life Sci 23:921–26 [Google Scholar]
  25. Kammerer RC, Cho AK, Jonsson J. 25.  1978. In vitro metabolism of phenylacetone, phenyl-2-butanone, and 3-methyl-1-phenyl-2-butanone by rabbit liver preparations. Drug Metab. Dispos. 6:396–402 [Google Scholar]
  26. Kammerer RC, Jonsson J, Gal J, Cho AK. 26.  1978. Use of stable isotopes in studies on the metabolism of amphetamine. Life Sci 23:283–90 [Google Scholar]
  27. Hiratsuka A, Chu TY, Distefano EW, Lin LY, Schmitz DA, Cho AK. 27.  1995. Inactivation of constitutive hepatic cytochromes P450 by phencyclidine in the rat. Drug Metab. Dispos. 23:201–6 [Google Scholar]
  28. Lin LY, Kumagai Y, Hiratsuka A, Narimatsu S, Suzuki T. 28.  et al. 1995. Cytochrome P4502D isozymes catalyze the 4-hydroxylation of methamphetamine enantiomers. Drug Metab. Dispos. 23:610–14 [Google Scholar]
  29. Kumagai Y, Lin LY, Hiratsuka A, Narimatsu S, Suzuki T. 29.  et al. 1994. Participation of cytochrome P450-2B and -2D isozymes in the demethylenation of methylenedioxymethamphetamine enantiomers by rats. Mol. Pharmacol. 45:359–65 [Google Scholar]
  30. Kumagai Y, Lin LY, Philpot RM, Yamada H, Oguri K. 30.  et al. 1992. Regiochemical differences in cytochrome P450 isozymes responsible for the oxidation of methylenedioxyphenyl groups by rabbit liver. Mol. Pharmacol. 42:695–702 [Google Scholar]
  31. Tucker GT, Lennard MS, Ellis SW, Woods HF, Cho AK. 31.  et al. 1994. The demethylenation of methylenedioxymethamphetamine (“ecstasy”) by debrisoquine hydroxylase (CYP2D6). Biochem. Pharmacol. 47:1151–56 [Google Scholar]
  32. Fukuto JM, Kumagai Y, Cho AK. 32.  1991. Determination of the mechanism of demethylenation of (methylenedioxy)phenyl compounds by cytochrome P450 using deuterium isotope effects. J. Med. Chem 342871–76 [Google Scholar]
  33. Kumagai Y, Fukuto JM, Cho AK. 33.  1994. The biochemical disposition of methylenedioxyphenyl compounds. Curr. Med. Chem 4254–61 [Google Scholar]
  34. Fischer JF, Cho AK. 34.  1979. Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharmacol. Exp. Ther. 208:203–9 [Google Scholar]
  35. Cho AK, Hiramatsu M, Kumagai Y, Patel N. 35.  1993. Pharmacokinetic approaches to the study of drug action and toxicity. NIDA Res. Monogr. 136:213–25 [Google Scholar]
  36. Patel N, Kumagai Y, Unger SE, Fukuto JM, Cho AK. 36.  1991. Transformation of dopamine and α-methyldopamine by NG108-15 cells: formation of thiol adducts. Chem. Res. Toxicol. 4:421–26 [Google Scholar]
  37. Rapoport RM, Takimoto GS, Cho AK. 37.  1981. Compartmental analysis of tyramine-induced nor-epinephrine depletion. Pharmacology 22:235–42 [Google Scholar]
  38. Takimoto GS, Amiri BA, Cho AK. 38.  1981. Sympathomimetic amine-induced release of norepinephrine-3H from different intraneuronal storage compartments. Pharmacology 23:310–25 [Google Scholar]
  39. Fischer JF, Cho AK. 39.  1976. Properties of dopamine efflux from rat striatal tissue caused by amphetamine and p-hydroxyamphetamine. Proc. West Pharmacol. Soc. 19:179–82 [Google Scholar]
  40. Cho AK, Fischer JF, Schaeffer JC. 40.  1977. The accumulation of p-hydroxyamphetamine by brain homogenates and its role in the release of catecholamines. Biochem. Pharmacol. 26:1367–72 [Google Scholar]
  41. Ikeda R, Igari Y, Fuchigami Y, Wada M, Kuroda N, Nakashima K. 41.  2011. Pharmacodynamic interactions between MDMA and concomitants in MDMA tablets on extracellular dopamine and serotonin in the rat brain. Eur. J. Pharmacol. 660:318–25 [Google Scholar]
  42. Matsumoto T, Maeno Y, Kato H, Seko-Nakamura Y, Monma-Ohtaki J. 42.  et al. 2014. 5-Hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis. Eur. Neuropsychopharmacol. 24:1362–70 [Google Scholar]
  43. Hiramatsu M, Cho AK. 43.  1990. Enantiomeric differences in the effects of 3,4-methylenedioxymethamphetamine on extracellular monoamines and metabolites in the striatum of freely-moving rats: an in vivo microdialysis study. Neuropharmacology 29:269–75 [Google Scholar]
  44. Kuczenski R, Segal DS, Cho AK, Melega W. 44.  1995. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J. Neurosci. 15:1308–17 [Google Scholar]
  45. Cho AK, Melega WP, Kuczenski R, Segal DS, Schmitz DA. 45.  1999. Caudate-putamen dopamine and stereotypy response profiles after intravenous and subcutaneous amphetamine. Synapse 31:125–33 [Google Scholar]
  46. Munoz P, Huenchuguala S, Paris I, Segura-Aguilar J. 46.  2012. Dopamine oxidation and autophagy. Parkinson's Dis. 2012:920953 [Google Scholar]
  47. Kato Y, Peskin AV, Dickerhof N, Harwood DT, Kettle AJ. 47.  2012. Myeloperoxidase catalyzes the conjugation of serotonin to thiols via free radicals and tryptamine-4,5-dione. Chem. Res. Toxicol. 25:2322–32 [Google Scholar]
  48. Hiramatsu M, Cho AK, Nabeshima T. 48.  1989. Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. Eur. J. Pharmacol. 166:359–66 [Google Scholar]
  49. Hiramatsu M, Nabeshima T, Kameyama T, Maeda Y, Cho AK. 49.  1989. The effect of optical isomers of 3,4-methylenedioxymethamphetamine (MDMA) on stereotyped behavior in rats. Pharmacol. Biochem. Behav. 33:343–47 [Google Scholar]
  50. Nabeshima T, Yoshida S, Morinaka H, Kameyama T, Thurkauf A. 50.  et al. 1990. MK-801 ameliorates delayed amnesia, but potentiates acute amnesia induced by CO. Neurosci. Lett. 108:321–27 [Google Scholar]
  51. Cho AK, Hiramatsu M, Schmitz DA, Nabeshima T, Kameyama T. 51.  1991. Pharmacokinetic and pharmacodynamic properties of some phencyclidine analogs in rats. Pharmacol. Biochem. Behav. 39:947–53 [Google Scholar]
  52. Hiramatsu M, DiStefano E, Chang AS, Cho AK. 52.  1991. A pharmacokinetic analysis of 3,4-methylenedioxymethamphetamine effects on monoamine concentrations in brain dialysates. Eur. J. Pharmacol. 204:135–40 [Google Scholar]
  53. Kuczenski R, Melega WP, Cho AK, Segal DS. 53.  1997. Extracellular dopamine and amphetamine after systemic amphetamine administration: comparison to the behavioral response. J. Pharmacol. Exp. Ther. 282:591–96 [Google Scholar]
  54. Miyazaki I, Asanuma M. 54.  2009. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem. Res. 34:698–706 [Google Scholar]
  55. Perfeito R, Cunha-Oliveira T, Rego AC. 55.  2012. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic. Biol. Med. 53:1791–806 [Google Scholar]
  56. Baeza-Squiban A, Bonvallot V, Boland S, Marano F. 56.  1999. Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol. Toxicol. 15:375–80 [Google Scholar]
  57. Cho A, Di Stefano E, Ying Y, Rodriguez CE, Schmitz D. 57.  et al. 2004. Determination of four quinones in diesel exhaust particles, SRM 1649a, and atmospheric PM2.5. Aerosol Sci. Technol. 38:68–81 [Google Scholar]
  58. Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK. 58.  2005. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem. Biol. Interact. 155:97–110 [Google Scholar]
  59. Kikuno S, Taguchi K, Iwamoto N, Yamano S, Cho AK. 59.  et al. 2006. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea. Toxicol. Appl. Pharmacol. 210:47–54 [Google Scholar]
  60. Kumagai Y, Shinkai Y, Miura T, Cho AK. 60.  2012. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol. 52:221–47 [Google Scholar]
  61. Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA. 61.  et al. 2005. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 99:40–47 [Google Scholar]
  62. Li N, Sioutas C, Cho A, Schmitz D, Misra C. 62.  et al. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111:455–60 [Google Scholar]
  63. Delgado-Saborit JM, Alam MS, Godri Pollitt KJ, Harrison RM. 63.  2013. Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos. Environ. 77:974–82 [Google Scholar]
  64. Totlandsdal AI, Øvrevik J, Cochran RE, Herseth JI, Bolling AK. 64.  et al. 2014. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. J. Environ. Sci. Health Part A, Toxic/Hazard. Subst. Environ. Eng. 49:383–96 [Google Scholar]
  65. Eiguren-Fernandez A, Miguel A, Di Stefano E, Schmitz D, Cho A. 65.  et al. 2008. Atmospheric distribution of gas- and particle-phase quinones in Southern California. Aerosol Sci. Technol. 42:854–61 [Google Scholar]
  66. Shinyashiki M, Rodriguez CE, Di Stefano EW, Sioutas C, Delfino RJ. 66.  et al. 2008. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: evidence for electrophilic species. Atmos. Environ. 42:517–29 [Google Scholar]
  67. Shinyashiki M, Eiguren-Fernandez A, Schmitz DA, Di Stefano E, Li N. 67.  et al. 2009. Electrophilic and redox properties of diesel exhaust particles. Environ. Res. 109:239–44 [Google Scholar]
  68. Eiguren-Fernandez A, Di Stefano E, Schmitz DA, Guarieiro AL, Salinas EM. 68.  et al. 2015. Chemical reactivities of ambient air samples in three Southern California communities. J. Air Waste Manag. Assoc. 65:270–77 [Google Scholar]
  69. Eiguren-Fernandez A, Miguel AH, Lu R, Purvis K, Grant B. 69.  et al. 2008. Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. Atmos. Environ. 42:2312–19 [Google Scholar]
  70. Di Stefano E, Eiguren-Fernandez A, Delfino RJ, Sioutas C, Froines J, Cho AK. 70.  2009. Determination of metal-based hydroxyl radical generating capacity of ambient and diesel exhaust particles. Inhal. Toxicol. 21:731–38 [Google Scholar]
  71. Sies H. 71.  2015. Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–83 [Google Scholar]
  72. Schafer FQ, Buettner GR. 72.  2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30:1191–212 [Google Scholar]
  73. Yu S, Zhu L, Shen Q, Bai X, Di X. 73.  2015. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav. Neurol. 2015:103969 [Google Scholar]
  74. Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. 74.  2014. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic. Biol. Med. 71:196–207 [Google Scholar]
  75. Stocker R, Keaney JF. 75.  2004. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84:1381–478 [Google Scholar]
  76. Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. 76.  2011. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24:434–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error