In most biological systems, second messengers and their key regulatory and effector proteins form links between multiple cellular signaling pathways. Such signaling nodes can integrate the deleterious effects of genetic aberrations, environmental stressors, or both in complex diseases, leading to cell death by various mechanisms. Here we present a systems (network) pharmacology approach that, together with transcriptomics analyses, was used to identify different G protein–coupled receptors that experimentally protected against cellular stress and death caused by linked signaling mechanisms. We describe the application of this concept to degenerative and diabetic retinopathies in appropriate mouse models as an example. Systems pharmacology also provides an attractive framework for devising strategies to combat complex diseases by using (repurposing) US Food and Drug Administration–approved pharmacological agents.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Zhao S, Iyengar R. 1.  2012. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52:505–21 [Google Scholar]
  2. Xie L, Xie L, Kinnings SL, Bourne PE. 2.  2012. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol. 52:361–79 [Google Scholar]
  3. Boran AD, Iyengar R. 3.  2010. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Devel. 13:297–309 [Google Scholar]
  4. Franci G, Miceli M, Altucci L. 4.  2010. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics 2:731–42 [Google Scholar]
  5. Morrow JK, Tian L, Zhang S. 5.  2010. Molecular networks in drug discovery. Crit. Rev. Biomed. Eng. 38:143–56 [Google Scholar]
  6. Hopkins AL. 6.  2008. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4:682–90 [Google Scholar]
  7. Gujral TS, Peshkin L, Kirschner MW. 7.  2014. Exploiting polypharmacology for drug target deconvolution. PNAS 111:5048–53 [Google Scholar]
  8. Xie XQ, Wang L, Liu H, Ouyang Q, Fang C, Su W. 8.  2014. Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands. Front. Pharmacol. 5:3 [Google Scholar]
  9. Reddy AS, Zhang S. 9.  2013. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol. 6:41–47 [Google Scholar]
  10. Brown JB, Okuno Y. 10.  2012. Systems biology and systems chemistry: new directions for drug discovery. Chem. Biol. 19:23–28 [Google Scholar]
  11. Zhao S, Nishimura T, Chen Y, Azeloglu EU, Gottesman O. 11.  et al. 2013. Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med. 5:206ra140 [Google Scholar]
  12. Colinge J, Rix U, Bennett KL, Superti-Furga G. 12.  2012. Systems biology analysis of protein-drug interactions. Proteomics Clin. Appl. 6:102–16 [Google Scholar]
  13. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ. 13.  et al. 2012. Predicting new indications for approved drugs using a proteochemometric method. J. Med. Chem. 55:6832–48 [Google Scholar]
  14. Orth AP, Batalov S, Perrone M, Chanda SK. 14.  2004. The promise of genomics to identify novel therapeutic targets. Expert Opin. Ther. Targets 8:587–96 [Google Scholar]
  15. Chua HN, Roth FP. 15.  2011. Discovering the targets of drugs via computational systems biology. J. Biol. Chem. 286:23653–58 [Google Scholar]
  16. Iskar M, Zeller G, Zhao XM, van Noort V, Bork P. 16.  2012. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr. Opin. Biotechnol. 23:609–16 [Google Scholar]
  17. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM. 17.  et al. 2012. Automated design of ligands to polypharmacological profiles. Nature 492:215–20 [Google Scholar]
  18. Hansen J, Zhao S, Iyengar R. 18.  2011. Systems pharmacology of complex diseases. Ann. N.Y. Acad. Sci. 1245:E1–5 [Google Scholar]
  19. Berger SI, Iyengar R. 19.  2009. Network analyses in systems pharmacology. Bioinformatics 25:2466–72 [Google Scholar]
  20. Wist AD, Berger SI, Iyengar R. 20.  2009. Systems pharmacology and genome medicine: a future perspective. Genome Med. 1:11 [Google Scholar]
  21. Margineanu DG. 21.  2014. Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy Behav. 38:131–42 [Google Scholar]
  22. Margineanu DG. 22.  2012. Systems biology impact on antiepileptic drug discovery. Epilepsy Res. 98:104–15 [Google Scholar]
  23. Roth BL, Sheffler DJ, Kroeze WK. 23.  2004. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3:353–59 [Google Scholar]
  24. Piatigorsky J, Wistow GJ. 24.  1989. Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57:197–99 [Google Scholar]
  25. Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A. 25.  et al. 2014. αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin. Cancer Res. 20:56–67 [Google Scholar]
  26. Slingsby C, Wistow GJ. 26.  2014. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. Prog. Biophys. Mol. Biol. 115:52–67 [Google Scholar]
  27. Schomburg D, Michal G. 27.  2012. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology Hoboken, NJ: Wiley
  28. Lehar J, Krueger AS, Zimmermann GR, Borisy AA. 28.  2009. Therapeutic selectivity and the multi-node drug target. Discov. Med. 8:185–90 [Google Scholar]
  29. Mason JS, Bortolato A, Congreve M, Marshall FH. 29.  2012. New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol. Sci. 33:249–60 [Google Scholar]
  30. George AJ, Hannan RD, Thomas WG. 30.  2013. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J. 280:5258–68 [Google Scholar]
  31. Liu W, Chun E, Thompson AA, Chubukov P, Xu F. 31.  et al. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–36 [Google Scholar]
  32. Katritch V, Cherezov V, Stevens RC. 32.  2013. Structure-function of the G protein–coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53:531–56 [Google Scholar]
  33. Brugarolas M, Navarro G, Martínez-Pinilla E, Angelats E, Casadó V. 33.  et al. 2014. G-protein-coupled receptor heteromers as key players in the molecular architecture of the central nervous system. CNS Neurosci. Ther. 20:703–9 [Google Scholar]
  34. Dudley JT, Schadt E, Sirota M, Butte AJ, Ashley E. 34.  2010. Drug discovery in a multidimensional world: systems, patterns, and networks. J. Cardiovasc. Transl. Res. 3:438–47 [Google Scholar]
  35. Iyengar R. 35.  2013. Complex diseases require complex therapies. EMBO Rep. 14:1039–42 [Google Scholar]
  36. Mustafi D, Kevany BM, Genoud C, Okano K, Cideciyan AV. 36.  et al. 2011. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. FASEB J. 25:3157–76 [Google Scholar]
  37. Mustafi D, Maeda T, Kohno H, Nadeau JH, Palczewski K. 37.  2012. Inflammatory priming predisposes mice to age-related retinal degeneration. J. Clin. Investig. 122:2989–3001 [Google Scholar]
  38. 38. AstraZeneca 2004. Gefitinib (IRESSA™) lung cancer ISEL trial shows no overall survival advantage in a highly refractory population. News Release, Dec 17. http://www.astrazeneca.com/Media/Press-releases/Article/20041217–GEFITINIB-IRESSA-LUNG-CANCER-ISEL-TRIAL-SHOWS-NO-O
  39. Rask-Andersen M, Masuram S, Schiöth HB. 39.  2014. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 54:9–26 [Google Scholar]
  40. Russ AP, Lampel S. 40.  2005. The druggable genome: an update. Drug Discov. Today 10:1607–10 [Google Scholar]
  41. Hopkins AL, Groom CR. 41.  2002. The druggable genome. Nat. Rev. Drug Discov. 1:727–30 [Google Scholar]
  42. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL. 42.  et al. 2002. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:1690–98 [Google Scholar]
  43. Lindh JD, Holm L, Andersson ML, Rane A. 43.  2009. Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 65:365–75 [Google Scholar]
  44. Taylor JS, Ellis GR. 44.  2002. Racial differences in responses to drug treatment: implications for pharmacotherapy of heart failure. Am. J. Cardiovasc. Drugs 2:389–99 [Google Scholar]
  45. Exner DV, Dries DL, Domanski MJ, Cohn JN. 45.  2001. Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N. Engl. J. Med. 344:1351–57 [Google Scholar]
  46. Wikoff WR, Frye RF, Zhu H, Gong Y, Boyle S. 46.  et al. 2013. Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLOS ONE 8:e57639 [Google Scholar]
  47. Bilello JA. 47.  2005. The agony and ecstasy of “OMIC” technologies in drug development. Curr. Mol. Med. 5:39–52 [Google Scholar]
  48. Loeb JA. 48.  2011. Identifying targets for preventing epilepsy using systems biology. Neurosci. Lett. 497:205–12 [Google Scholar]
  49. Butcher EC. 49.  2005. Can cell systems biology rescue drug discovery?. Nat. Rev. Drug Discov. 4:461–67 [Google Scholar]
  50. Butcher EC, Berg EL, Kunkel EJ. 50.  2004. Systems biology in drug discovery. Nat. Biotechnol. 22:1253–59 [Google Scholar]
  51. Li JJ, Corey EJ. 51.  2013. Drug Discovery: Practices, Processes, and Perspectives Hoboken, NJ: Wiley
  52. Chanda SK, Caldwell JS. 52.  2003. Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov. Today 8:168–74 [Google Scholar]
  53. Fischer HP. 53.  2005. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev. 11:1–68 [Google Scholar]
  54. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI. 54.  et al. 2009. Predicting new molecular targets for known drugs. Nature 462:175–81 [Google Scholar]
  55. Feil R, Fraga MF. 55.  2011. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13:97–109 [Google Scholar]
  56. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP. 56.  et al. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–52 [Google Scholar]
  57. Mullins RF, Russell SR, Anderson DH, Hageman GS. 57.  2000. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14:835–46 [Google Scholar]
  58. Hopkins AL. 58.  2009. Drug discovery: predicting promiscuity. Nature 462:167–68 [Google Scholar]
  59. Barbaric I, Miller G, Dear TN. 59.  2007. Appearances can be deceiving: phenotypes of knockout mice. Brief. Funct. Genomics Proteomics 6:91–103 [Google Scholar]
  60. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J. 60.  et al. 2000. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20:3286–91 [Google Scholar]
  61. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M. 61.  et al. 2013. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. PNAS 110:E517–25 [Google Scholar]
  62. Hoppe G, Lee TJ, Yoon S, Yu M, Peachey NS. 62.  et al. 2014. Inducing a visceral organ to protect a peripheral capillary bed: Stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy. Am. J. Pathol. 184:1890–99 [Google Scholar]
  63. Higgins CF. 63.  2007. Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–57 [Google Scholar]
  64. Iyengar R, Zhao S, Chung SW, Mager DE, Gallo JM. 64.  2012. Merging systems biology with pharmacodynamics. Sci. Transl. Med. 4:126ps7 [Google Scholar]
  65. Lagerström MC, Schiöth HB. 65.  2008. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7:339–57 [Google Scholar]
  66. Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z. 66.  et al. 2013. Systems pharmacology identifies drug targets for Stargardt disease–associated retinal degeneration. J. Clin. Investig. 123:5119–34 [Google Scholar]
  67. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M. 67.  et al. 2012. Mechanism of all-trans-retinal toxicity with implications for Stargardt disease and age-related macular degeneration. J. Biol. Chem. 287:5059–69 [Google Scholar]
  68. Pierce KL, Premont RT, Lefkowitz RJ. 68.  2002. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3:639–50 [Google Scholar]
  69. Gilman AG. 69.  1984. G proteins and dual control of adenylate cyclase. Cell 36:577–79 [Google Scholar]
  70. Gilman AG. 70.  1987. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56:615–49 [Google Scholar]
  71. Oldham WM, Hamm HE. 71.  2008. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9:60–71 [Google Scholar]
  72. Ritter SL, Hall RA. 72.  2009. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10:819–30 [Google Scholar]
  73. Mujić-Delić A, de Wit RH, Verkaar F, Smit MJ. 73.  2014. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol. Sci. 35:247–55 [Google Scholar]
  74. Fredriksson R, Höglund PJ, Gloriam DEI, Lagerström MC, Schiöth HB. 74.  2003. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 554:381–88 [Google Scholar]
  75. Lambert AJ, Brand MD. 75.  2004. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 382:511–17 [Google Scholar]
  76. Puntarulo S, Cederbaum AI. 76.  1998. Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic. Biol. Med. 24:1324–30 [Google Scholar]
  77. Geiszt M. 77.  2006. NADPH oxidases: new kids on the block. Cardiovasc. Res. 71:289–99 [Google Scholar]
  78. Bedard K, Krause KH. 78.  2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245–313 [Google Scholar]
  79. Lambeth JD, Kawahara T, Diebold B. 79.  2007. Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43:319–31 [Google Scholar]
  80. Griendling KK, Sorescu D, Ushio-Fukai M. 80.  2000. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86:494–501 [Google Scholar]
  81. Li JM, Shah AM. 81.  2003. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J. Am. Soc. Nephrol. 14:S221–26 [Google Scholar]
  82. Holmstrom KM, Finkel T. 82.  2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15:411–21 [Google Scholar]
  83. Nauseef WM. 83.  2008. Nox enzymes in immune cells. Semin. Immunopathol. 30:195–208 [Google Scholar]
  84. Barki-Harrington L, Luttrell LM, Rockman HA. 84.  2003. Dual inhibition of β-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor–receptor interaction in vivo. Circulation 108:1611–18 [Google Scholar]
  85. Pepe S, van den Brink OWV, Lakatta EG, Xiao RP. 85.  2004. Cross-talk of opioid peptide receptor and β-adrenergic receptor signalling in the heart. Cardiovasc. Res. 63:414–22 [Google Scholar]
  86. Smith NJ, Luttrell LM. 86.  2006. Signal switching, crosstalk, and arrestin scaffolds: novel G protein–coupled receptor signaling in cardiovascular disease. Hypertension 48:173–79 [Google Scholar]
  87. Maeda A, Palczewski K. 87.  2014. Retinal degeneration in animal models with a defective visual cycle. Drug Discov. Today Dis. Models 10:e163–72 [Google Scholar]
  88. Maeda A, Maeda T, Golczak M, Chou S, Desai A. 88.  et al. 2009. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J. Biol. Chem. 284:15173–83 [Google Scholar]
  89. Du Y, Veenstra A, Palczewski K, Kern TS. 89.  2013. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. PNAS 110:16586–91 [Google Scholar]
  90. Brechard S, Tschirhart EJ. 90.  2008. Regulation of superoxide production in neutrophils: role of calcium influx. J. Leukoc. Biol. 84:1223–37 [Google Scholar]
  91. Du Y, Cramer M, Lee CA, Tang J, Muthusamy A. 91.  et al. 2015. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. FASEB J. 292194–204
  92. Wilkinson-Berka JL, Deliyanti D, Rana I, Miller AG, Agrotis A. 92.  et al. 2014. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid. Redox Signal. 20:2726–40 [Google Scholar]
  93. Pujol A, Mosca R, Farres J, Aloy P. 93.  2010. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31:115–23 [Google Scholar]
  94. Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. 94.  2010. Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 9:3137–44 [Google Scholar]
  95. Sever PS, Messerli FH. 95.  2011. Hypertension management 2011: optimal combination therapy. Eur. Heart J. 32:2499–506 [Google Scholar]
  96. Khouri AS, Realini T, Fechtner RD. 96.  2007. Use of fixed-dose combination drugs for the treatment of glaucoma. Drugs Aging 24:1007–16 [Google Scholar]
  97. Hantschel O, Superti-Furga G. 97.  2012. Cell biology: a key driver of therapeutic innovation. J. Cell Biol. 199:571–75 [Google Scholar]
  98. Civelek M, Lusis AJ. 98.  2014. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15:34–48 [Google Scholar]
  99. Katritch V, Cherezov V, Stevens RC. 99.  2012. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33:17–27 [Google Scholar]
  100. Maeda A, Palczewska G, Golczak M, Kohno H, Dong Z. 100.  et al. 2014. Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. PNAS 111:E1428–37 [Google Scholar]
  101. Palczewski K, Orban T. 101.  2013. From atomic structures to neuronal functions of G protein–coupled receptors. Annu. Rev. Neurosci. 36:139–64 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error