Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Holtzman E. 1.  1989. Lysosomes. New York: Plenum Press
  2. Saftig P, Schröder B, Blanz J. 2.  2010. Lysosomal membrane proteins: life between acid and neutral conditions. Biochem. Soc. Trans. 38:1420–23 [Google Scholar]
  3. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F. 3.  et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33 [Google Scholar]
  4. Settembre C, Fraldi A, Medina DL, Ballabio A. 4.  2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14:283–96 [Google Scholar]
  5. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S. 5.  et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–108 [Google Scholar]
  6. Scriver CR. 6.  2001. The Metabolic & Molecular Bases of Inherited Disease. New York/Montreal: McGraw-Hill
  7. Levine B, Kroemer G. 7.  2008. Autophagy in the pathogenesis of disease. Cell 132:27–42 [Google Scholar]
  8. Kimmelman AC. 8.  2011. The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010 [Google Scholar]
  9. White E. 9.  2015. The role for autophagy in cancer. J. Clin. Investig. 125:42–46 [Google Scholar]
  10. Kirkegaard T, Jäättelä M. 10.  2009. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 1793:746–54 [Google Scholar]
  11. Hanahan D, Weinberg RA. 11.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  12. Raff MC. 12.  1996. Size control: the regulation of cell numbers in animal development. Cell 86:173–75 [Google Scholar]
  13. Cairns RA, Harris IS, Mak TW. 13.  2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95 [Google Scholar]
  14. Boroughs LK, DeBerardinis RJ. 14.  2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17:351–59 [Google Scholar]
  15. Goh LK, Sorkin A. 15.  2013. Endocytosis of receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 5:a017459 [Google Scholar]
  16. Gschwind A, Fischer OM, Ullrich A. 16.  2004. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer 4:361–70 [Google Scholar]
  17. Mellman I, Yarden Y. 17.  2013. Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5:a016949 [Google Scholar]
  18. Sorkin A, Fortian A. 18.  2014. Endocytosis and endosomal sorting of receptor tyrosine kinases. Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease DL Wheeler, Y Yarden 133–61. New York: Springer [Google Scholar]
  19. Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. 19.  2002. Role of Grb2 in EGF-stimulated EGFR internalization. J. Cell. Sci. 115:1791–802 [Google Scholar]
  20. Kowanetz K, Crosetto N, Haglund K, Schmidt MHH, Heldin C-H, Dikic I. 20.  2004. Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J. Biol. Chem. 279:32786–95 [Google Scholar]
  21. Elfenbein A, Lanahan A, Zhou TX, Yamasaki A, Tkachenko E. 21.  et al. 2012. Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. Sci. Signal. 5:ra36 [Google Scholar]
  22. Schmees C, Villaseñor R, Zheng W, Ma H, Zerial M. 22.  et al. 2012. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol. Biol. Cell 23:2571–82 [Google Scholar]
  23. Goldsmith J, Levine B, Debnath J. 23.  2014. Autophagy and cancer metabolism. Methods Enzymol 542:25–57 [Google Scholar]
  24. Mah LY, Ryan KM. 24.  2012. Autophagy and cancer. Cold Spring Harb. Perspect. Biol. 4:a008821This review highlights the role of autophagy in immune cells. [Google Scholar]
  25. Bergeron JJM, Di Guglielmo GM, Dahan S, Dominguez M, Posner BI. 25.  2016. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu. Rev. Biochem. 85:573–97 [Google Scholar]
  26. Goldenring JR. 26.  2013. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13:813–20 [Google Scholar]
  27. Cuervo AM, Wong E. 27.  2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104 [Google Scholar]
  28. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B. 28.  et al. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–76 [Google Scholar]
  29. Feng Y, He D, Yao Z, Klionsky DJ. 29.  2014. The machinery of macroautophagy. Cell Res 24:24–41This paper reviews the approximately 40 genes involved in autophagy and their functions. [Google Scholar]
  30. Mathew R, Karantza-Wadsworth V, White E. 30.  2007. Role of autophagy in cancer. Nat. Rev. Cancer 7:961–67 [Google Scholar]
  31. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH. 31.  et al. 2015. Autophagy in malignant transformation and cancer progression. EMBO J 34:856–80 [Google Scholar]
  32. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K. 32.  et al. 2007. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–81 [Google Scholar]
  33. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R. 33.  et al. 2013. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154:1269–84 [Google Scholar]
  34. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T. 34.  et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:385–96 [Google Scholar]
  35. Manning BD, Cantley LC. 35.  2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–74 [Google Scholar]
  36. Shanware NP, Bray K, Abraham RT. 36.  2013. The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease. Annu. Rev. Pharmacol. Toxicol. 53:89–106 [Google Scholar]
  37. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. 37.  2015. Identification of an oncogenic RAB protein. Science 350:211–17 [Google Scholar]
  38. Mousavi SA, Brech A, Berg T, Kjeken R. 38.  2003. Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes. Biochem. J. 372:861–69 [Google Scholar]
  39. Luzio JP, Poupon V, Lindsay MR, Mullock BM, Piper RC, Pryor PR. 39.  2003. Membrane dynamics and the biogenesis of lysosomes. Mol. Membr. Biol. 20:141–54 [Google Scholar]
  40. Liu K, Jian Y, Sun X, Yang C, Gao Z. 40.  et al. 2016. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J. Cell Biol. 212:181–98 [Google Scholar]
  41. Dibble CC, Cantley LC. 41.  2015. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545–55 [Google Scholar]
  42. Hales EC, Taub JW, Matherly LH. 42.  2014. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell. Signal. 26:149–61 [Google Scholar]
  43. Laplante M, Sabatini DM. 43.  2012. mTOR signaling in growth control and disease. Cell 149:274–93 [Google Scholar]
  44. Wang Y, Gao J, Guo X, Tong T, Shi X. 44.  et al. 2014. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24:959–76 [Google Scholar]
  45. Valley CC, Lidke KA, Lidke DS. 45.  2014. The spatiotemporal organization of ErbB receptors: insights from microscopy. Cold Spring Harb. Perspect. Biol. 6:a020735 [Google Scholar]
  46. Wang C, Wang Y, Li Y, Bodemann B, Zhao T. 46.  et al. 2015. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat. Commun. 6:8524 [Google Scholar]
  47. Yang ZJ, Chee CE, Huang S, Sinicrope FA. 47.  2011. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10:1533–41This review discusses autophagy vulnerabilities with respect to some hallmarks of cancer. [Google Scholar]
  48. Vander Heiden MG, Cantley LC, Thompson CB. 48.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  49. Son J, Lyssiotis CA, Ying H, Wang X, Hua S. 49.  et al. 2013. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–5 [Google Scholar]
  50. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 50.  2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20 [Google Scholar]
  51. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC. 51.  et al. 2016. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36:540–49 [Google Scholar]
  52. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ. 52.  et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–37This paper demonstrated macropinocytosis can provide amino acids to cancer cells. [Google Scholar]
  53. Haigler HT, McKanna JA, Cohen S. 53.  1979. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83:82–90 [Google Scholar]
  54. Lewis WH. 54.  1937. Pinocytosis by malignant cells. Cancer Res 29:666–79This is a classic description of pinocytosis in cancer cells. [Google Scholar]
  55. Mosesson Y, Mills GB, Yarden Y. 55.  2008. Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 8:835–50 [Google Scholar]
  56. Bar-Sagi D, Feramisco JR. 56.  1986. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233:1061–68 [Google Scholar]
  57. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W. 57.  et al. 2015. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 75:544–53 [Google Scholar]
  58. Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M. 58.  et al. 2013. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev 27:1115–31 [Google Scholar]
  59. Kamphorst JJ, Cross JR, Fan J. 59.  2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110:8882–87This paper demonstrated macropinocytosis can provide lipids to cancer cells. [Google Scholar]
  60. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. 60.  2015. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:259–70 [Google Scholar]
  61. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY. 61.  et al. 2006. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11:859–71 [Google Scholar]
  62. Lum JJ, Bauer DE, Kong M, Harris MH, Li C. 62.  et al. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–48 [Google Scholar]
  63. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H. 63.  et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032–36 [Google Scholar]
  64. Hecht VC, Sullivan LB, Kimmerling RJ, Kim D-H, Hosios AM. 64.  et al. 2016. Biophysical changes reduce energetic demand in growth factor–deprived lymphocytes. J. Cell Biol. 212:439–47 [Google Scholar]
  65. Chourasia AH, Boland ML, Macleod KF. 65.  2015. Mitophagy and cancer. Cancer Metab 3:4 [Google Scholar]
  66. Youle RJ, Narendra DP. 66.  2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14 [Google Scholar]
  67. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ. 67.  et al. 2013. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–61 [Google Scholar]
  68. Hughes AL, Gottschling DE. 68.  2012. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–65 [Google Scholar]
  69. Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE. 69.  2013. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 36:65–71 [Google Scholar]
  70. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H. 70.  et al. 2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:359–62 [Google Scholar]
  71. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK. 71.  et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–58 [Google Scholar]
  72. Sumpter R Jr, Sirasanagandla S, Fernández ÁF, Wei Y, Dong X. 72.  et al. 2016. Fanconi anemia proteins function in mitophagy and immunity. Cell 165:867–81 [Google Scholar]
  73. Wang S, Tsun Z-Y, Wolfson RL, Shen K, Wyant GA. 73.  et al. 2015. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94 [Google Scholar]
  74. Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M. 74.  et al. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–81 [Google Scholar]
  75. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM. 75.  et al. 2016. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48 [Google Scholar]
  76. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K. 76.  et al. 2016. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–64 [Google Scholar]
  77. Settembre C, Ballabio A. 77.  2014. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 24:743–50 [Google Scholar]
  78. Efeyan A, Comb WC, Sabatini DM. 78.  2015. Nutrient-sensing mechanisms and pathways. Nature 517:302–10 [Google Scholar]
  79. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. 79.  2014. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14:754–62 [Google Scholar]
  80. Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME. 80.  et al. 2014. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20:1193–98 [Google Scholar]
  81. Covini D, Tardito S, Bussolati O, Chiarelli LR, Pasquetto MV. 81.  et al. 2012. Expanding targets for a metabolic therapy of cancer: l-asparaginase. Recent Pat. Anticancer Drug Discov. 7:4–13 [Google Scholar]
  82. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M. 82.  et al. 2010. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188:547–63 [Google Scholar]
  83. Vander Heiden MG. 83.  2013. Exploiting tumor metabolism: challenges for clinical translation. J. Clin. Investig. 123:3648–51 [Google Scholar]
  84. Piao S, Amaravadi RK. 84.  2015. Targeting the lysosome in cancer. Ann. N. Y. Acad. Sci. 1371:45–54 [Google Scholar]
  85. McDuff FKE, Turner SD. 85.  2011. Jailbreak: oncogene-induced senescence and its evasion. Cell. Signal. 23:6–13 [Google Scholar]
  86. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM. 86.  et al. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–65 [Google Scholar]
  87. Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA. 87.  et al. 2005. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–30 [Google Scholar]
  88. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ. 88.  et al. 2005. Tumour biology: senescence in premalignant tumours. Nature 436:642 [Google Scholar]
  89. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT. 89.  et al. 2006. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–72 [Google Scholar]
  90. Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M. 90.  2007. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21:379–84 [Google Scholar]
  91. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T. 91.  et al. 2005. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–24 [Google Scholar]
  92. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. 92.  2007. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9:493–505 [Google Scholar]
  93. Lee BY, Han JA, Im JS, Morrone A, Johung K. 93.  et al. 2006. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5:187–95 [Google Scholar]
  94. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. 94.  2000. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell. Sci. 113:Pt 203613–22 [Google Scholar]
  95. Pérez-Mancera PA, Young ARJ, Narita M. 95.  2014. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14:547–58 [Google Scholar]
  96. Ros S, Schulze A. 96.  2012. Linking glycogen and senescence in cancer cells. Cell Metab 16:687–88 [Google Scholar]
  97. Gey C, Seeger K. 97.  2013. Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy. Mech. Ageing Dev. 134:130–38 [Google Scholar]
  98. Aird KM, Zhang R. 98.  2015. Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Lett 356:204–10 [Google Scholar]
  99. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM. 99.  et al. 2013. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202:129–43 [Google Scholar]
  100. Allison AC. 100.  1974. Lysosomes in cancer cells. J. Clin. Pathol. Suppl. 7:43–50 [Google Scholar]
  101. Kroemer G, Jäättelä M. 101.  2005. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5:886–97 [Google Scholar]
  102. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J. 102.  et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5:ra42 [Google Scholar]
  103. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J. 103.  et al. 2015. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism.. Nature 524:361–65 [Google Scholar]
  104. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M. 104.  et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473–77 [Google Scholar]
  105. Andrews NW, Almeida PE, Corrotte M. 105.  2014. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24:734–42 [Google Scholar]
  106. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. 106.  2011. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11:503–11 [Google Scholar]
  107. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. 107.  2001. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. PNAS 98:12072–77 [Google Scholar]
  108. Parrinello S, Coppe J-P, Krtolica A, Campisi J. 108.  2005. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell. Sci. 118:485–96 [Google Scholar]
  109. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. 109.  2010. The essence of senescence. Genes Dev 24:2463–79 [Google Scholar]
  110. De Souza AT, Hankins GR, Washington MK, Fine RL, Orton TC, Jirtle RL. 110.  1995. Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene 10:1725–29 [Google Scholar]
  111. De Souza AT, Hankins GR, Washington MK, Orton TC. 111.  1995. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat. Genet. 11:447–49 [Google Scholar]
  112. Mills JJ, Falls JG, De Souza AT, Jirtle RL. 112.  1998. Imprinted M6p/Igf2 receptor is mutated in rat liver tumors. Oncogene 16:2797–802 [Google Scholar]
  113. Kornfeld S. 113.  1992. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61:307–30 [Google Scholar]
  114. Kreiling JL, Montgomery MA, Wheeler JR, Kopanic JL, Connelly CM. 114.  et al. 2012. Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer. FEBS J 279:2695–713 [Google Scholar]
  115. Hoyo C, Murphy SK, Schildkraut JM, Vidal AC, Skaar D. 115.  et al. 2012. IGF2R genetic variants, circulating IGF2 concentrations and colon cancer risk in African Americans and Whites. Dis. Markers 32:133–41 [Google Scholar]
  116. Cheng I, Stram DO, Burtt NP, Gianniny L, Garcia RR. 116.  et al. 2009. IGF2R missense single-nucleotide polymorphisms and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol. Biomark. Prev. 18:1922–24 [Google Scholar]
  117. Tian Z, Yao G, Song H, Zhou Y, Geng J. 117.  2014. IGF2R expression is associated with the chemotherapy response and prognosis of patients with advanced NSCLC. Cell. Physiol. Biochem. 34:1578–88 [Google Scholar]
  118. Tasdemir E, Maiuri MC, Morselli E, Criollo A. 118.  2008. A dual role of p53 in the control of autophagy. Autophagy 4:1–5 [Google Scholar]
  119. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G. 119.  et al. 2013. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504:296–300 [Google Scholar]
  120. Yang S, Wang X, Contino G, Liesa M, Sahin E. 120.  et al. 2011. Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–29 [Google Scholar]
  121. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM. 121.  et al. 2014. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4:905–13 [Google Scholar]
  122. Liang C, Jung JU. 122.  2010. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol. 22:226–33 [Google Scholar]
  123. Liu EY, Xu N, O'Prey J, Lao LY, Joshi S. 123.  et al. 2015. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. PNAS 112:773–78 [Google Scholar]
  124. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY. 124.  et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57:95–107 [Google Scholar]
  125. Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. 125.  2014. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157:1088–103 [Google Scholar]
  126. Webb BA, Chimenti M, Jacobson MP, Barber DL. 126.  2011. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11:671–77 [Google Scholar]
  127. Santaguida S, Amon A. 127.  2015. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16:473–85 [Google Scholar]
  128. Santaguida S, Amon A. 128.  2015. Aneuploidy triggers a TFEB-mediated lysosomal stress response. Autophagy 11:2383–84 [Google Scholar]
  129. Santaguida S, Vasile E, White E, Amon A. 129.  2015. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev 29:2010–21 [Google Scholar]
  130. Aits S, Jäättelä M. 130.  2013. Lysosomal cell death at a glance. J. Cell. Sci. 126:1905–12 [Google Scholar]
  131. Repnik U, Česen MH, Turk B. 131.  2013. The endolysosomal system in cell death and survival. Cold Spring Harb. Perspect. Biol. 5:a008755 [Google Scholar]
  132. Liu Y, Levine B. 132.  2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–76 [Google Scholar]
  133. Huang S, Jia K, Wang Y, Zhou Z, Levine B. 133.  2013. Autophagy genes function in apoptotic cell corpse clearance during C. elegans embryonic development. Autophagy 9:138–49 [Google Scholar]
  134. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH. 134.  et al. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–39 [Google Scholar]
  135. Fehrenbacher N, Gyrd-Hansen M, Poulsen B, Felbor U, Kallunki T. 135.  et al. 2004. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res 64:5301–10 [Google Scholar]
  136. Wu YC, Horvitz HR. 136.  1998. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392:501–4 [Google Scholar]
  137. Hengartner MO. 137.  2001. Apoptosis: corralling the corpses. Cell 104:325–28 [Google Scholar]
  138. Hochreiter-Hufford A, Ravichandran KS. 138.  2013. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5:a008748 [Google Scholar]
  139. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM. 139.  et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72 [Google Scholar]
  140. Kurz T, Terman A, Gustafsson B, Brunk UT. 140.  2008. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 129:389–406 [Google Scholar]
  141. Wiggins HL, Wymant JM, Solfa F, Hiscox SE, Taylor KM. 141.  et al. 2015. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem. Pharmacol. 93:332–42 [Google Scholar]
  142. Yamasaki T, Terai S, Sakaida I. 142.  2011. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med. 365:576–78 [Google Scholar]
  143. Westermarck J, Kähäri VM. 143.  1999. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–92 [Google Scholar]
  144. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E. 144.  et al. 2004. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–53 [Google Scholar]
  145. Machado E, White-Gilbertson S, van de Vlekkert D, Janke L, Moshiach S. 145.  et al. 2015. Regulated lysosomal exocytosis mediates cancer progression. Sci. Adv. 1:e1500603 [Google Scholar]
  146. Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I. 146.  2011. The heparanase system and tumor metastasis: Is heparanase the seed and soil?. Cancer Metastasis Rev 30:253–68 [Google Scholar]
  147. Mohamed MM, Sloane BF. 147.  2006. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6:764–75This is an extensive review on the role of cathepsins in cancer. [Google Scholar]
  148. Carmeliet P. 148.  2003. Angiogenesis in health and disease. Nat. Med. 9:653–60 [Google Scholar]
  149. Folkman J, Watson K, Ingber D, Hanahan D. 149.  1989. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61 [Google Scholar]
  150. Kallunki T, Olsen OD, Jäättelä M. 150.  2013. Cancer-associated lysosomal changes: friends or foes?. Oncogene 32:1995–2004 [Google Scholar]
  151. Jiang H, Cheng XW, Shi G-P, Hu L, Inoue A. 151.  et al. 2014. Cathepsin K-mediated notch1 activation contributes to neovascularization in response to hypoxia. Nat. Commun. 5:3838 [Google Scholar]
  152. Im E, Venkatakrishnan A, Kazlauskas A. 152.  2005. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol. Biol. Cell 16:3488–500 [Google Scholar]
  153. Jopling HM, Odell AF, Pellet-Many C, Latham AM, Frankel P. 153.  et al. 2014. Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells 3:363–85 [Google Scholar]
  154. Kobayashi T, Tanaka T, Toyama-Sorimachi N. 154.  2013. How do cells optimize luminal environments of endosomes/lysosomes for efficient inflammatory responses?. J. Biochem. 154:491–99 [Google Scholar]
  155. Lindkvist B, Fajardo I, Pejler G, Borgström A. 155.  2006. Cathepsin B activates human trypsinogen 1 but not proelastase 2 or procarboxypeptidase B. Pancreatology 6:224–31 [Google Scholar]
  156. Wörmann SM, Algül H. 156.  2013. Risk factors and therapeutic targets in pancreatic cancer. Front. Oncol. 3:282 [Google Scholar]
  157. Choi AJS, Ryter SW. 157.  2011. Autophagy in inflammatory diseases. Int. J. Cell Biol 2011:732798 [Google Scholar]
  158. White E, Karp C, Strohecker AM, Guo Y, Mathew R. 158.  2010. Role of autophagy in suppression of inflammation and cancer. Curr. Opin. Cell Biol. 22:212–17 [Google Scholar]
  159. He Y, Xu Y, Zhang C, Gao X, Dykema KJ. 159.  et al. 2011. Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response. Sci. Signal. 4:ra44 [Google Scholar]
  160. Kach J, Conzen SD, Szmulewitz RZ. 160.  2015. Targeting the glucocorticoid receptor in breast and prostate cancers. Sci. Transl. Med. 7:305ps19 [Google Scholar]
  161. Abduljabbar R, Negm OH, Lai C-F, Jerjees DA, Al-Kaabi M. 161.  et al. 2015. Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer. Breast Cancer Res. Treat. 150:335–46 [Google Scholar]
  162. Kassi E, Moutsatsou P. 162.  2011. Glucocorticoid receptor signaling and prostate cancer. Cancer Lett 302:1–10 [Google Scholar]
  163. Lu Y-S, Lien H-C, Yeh P-Y, Kuo S-H, Chang W-C. 163.  et al. 2006. Glucocorticoid receptor expression in advanced non-small cell lung cancer: clinicopathological correlation and in vitro effect of glucocorticoid on cell growth and chemosensitivity. Lung Cancer 53:303–10 [Google Scholar]
  164. Lyon M, Rushton G, Gallagher JT. 164.  1997. The interaction of the transforming growth factor-βs with heparin/heparan sulfate is isoform-specific. J. Biol. Chem. 272:18000–6 [Google Scholar]
  165. Akbarshahi H, Axelsson JBF, Said K, Malmström A, Fischer H, Andersson R. 165.  2011. TLR4 dependent heparan sulphate–induced pancreatic inflammatory response is IRF3-mediated. J. Transl. Med. 9:219 [Google Scholar]
  166. Nakajima M, Irimura T, Di Ferrante N, Nicolson GL. 166.  1984. Metastatic melanoma cell heparanase: characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J. Biol. Chem. 259:2283–90 [Google Scholar]
  167. Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT. 167.  et al. 2011. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br. J. Cancer 104:635–42 [Google Scholar]
  168. Winterhoff B, Freyer L, Hammond E, Giri S, Mondal S. 168.  et al. 2015. PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples. Eur. J. Cancer 51:879–92 [Google Scholar]
  169. Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N. 169.  2014. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 9:180–92 [Google Scholar]
  170. Münz C. 170.  2010. Antigen processing via autophagy—not only for MHC class II presentation anymore?. Curr. Opin. Immunol. 22:89–93 [Google Scholar]
  171. Chen H-Y, White E. 171.  2011. Role of autophagy in cancer prevention. Cancer Prev. Res. 4:973–83 [Google Scholar]
  172. Lau A, Wang X-J, Zhao F, Villeneuve NF, Wu T. 172.  et al. 2010. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell Biol. 30:3275–85 [Google Scholar]
  173. Saitoh T, Akira S. 173.  2010. Regulation of innate immune responses by autophagy-related proteins. J. Cell Biol. 189:925–35 [Google Scholar]
  174. Intlekofer AM, Thompson CB. 174.  2013. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol. 94:25–39 [Google Scholar]
  175. Walker LSK, Sansom DM. 175.  2015. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol 36:63–70 [Google Scholar]
  176. Blott EJ, Griffiths GM. 176.  2002. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3:122–31This review covers the role of the lysosome in exocytosis in different cell types. [Google Scholar]
  177. Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S. 177.  et al. 2014. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3:2516 [Google Scholar]
  178. Sakhrani NM, Padh H. 178.  2013. Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther. 7:585–99 [Google Scholar]
  179. Lim JP, Gleeson PA. 179.  2011. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89:836–43 [Google Scholar]
  180. Chapel A, Kieffer-Jaquinod S, Sagne C, Verdon Q, Ivaldi C. 180.  et al. 2013. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell. Proteom. 12:1572–88 [Google Scholar]
  181. Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H. 181.  et al. 2011. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin. Cancer Res. 17:7337–46 [Google Scholar]
  182. Xu H, Ren D. 182.  2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57–80This up-to-date review explains lysosomal physiology and transport thoroughly. [Google Scholar]
  183. Okamoto K. 183.  2014. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205:435–45This review provides an examination of organellophagy and its current state of conservation from yeast to mammals. [Google Scholar]
  184. Razaq W. 184.  2013. Bone targeted therapies for bone metastasis in breast cancer. J. Clin. Med. 2:176–87 [Google Scholar]
  185. Kirby M, Yu DMT, Steven Gorrell M. 185.  2010. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin. Sci. 118:31–41 [Google Scholar]
  186. Pethiyagoda CL, Welch DR, Fleming TP. 186.  2000. Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin. Exp. Metastasis 18:391–400 [Google Scholar]
  187. Wesley UV, Tiwari S, Houghton AN. 187.  2004. Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int. J. Cancer 109:855–66 [Google Scholar]
  188. Halaby R. 188.  2015. Role of lysosomes in cancer therapy. Res. Rep. Biol. 6:147–49 [Google Scholar]
  189. Boya P, Kroemer G. 189.  2008. Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–51This review discusses the pharmacology of lysosomal membrane permeabilization. [Google Scholar]
  190. Groth-Pedersen L, Jäättelä M. 190.  2013. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 332:265–74 [Google Scholar]
  191. Mataga MA, Rosenthal S, Heerboth S, Devalapalli A, Kokolus S. 191.  et al. 2012. Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitor. Anticancer Res 32:2523–29 [Google Scholar]
  192. De Stefanis D, Démoz M, Dragonetti A, Houri JJ, Ogier-Denis E. 192.  et al. 1997. Differentiation-induced changes in the content, secretion, and subcellular distribution of lysosomal cathepsins in the human colon cancer HT-29 cell line. Cell Tissue Res 289:109–17 [Google Scholar]
  193. Jang J-H, Baerts L, Waumans Y, Meester I, Yamada Y. 193.  et al. 2015. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin. Exp. Metastasis 32:677–87 [Google Scholar]
  194. Turk B. 194.  2006. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5:785–99This review discusses the complexity of targeting proteases, such as cathepsins. [Google Scholar]
  195. Besouw M, Masereeuw R, van den Heuvel L, Levtchenko E. 195.  2013. Cysteamine: an old drug with new potential. Drug Discov. Today 18:785–92 [Google Scholar]
  196. Fujisawa T, Rubin B, Suzuki A, Patel PS, Gahl WA. 196.  et al. 2012. Cysteamine suppresses invasion, metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer. PLOS ONE 7:e34437 [Google Scholar]
  197. Elie BT, Gocheva V, Shree T, Dalrymple SA, Holsinger LJ, Joyce JA. 197.  2010. Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 92:1618–24 [Google Scholar]
  198. Zhou H, Roy S, Cochran E, Zouaoui R, Chu CL. 198.  et al. 2011. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLOS ONE 6:e21106 [Google Scholar]
  199. Brennan TV, Lin L, Brandstadter JD, Rendell VR, Dredge K. 199.  et al. 2016. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J. Clin. Investig. 126:207–19 [Google Scholar]
  200. Liao B-Y, Wang Z, Hu J, Liu W-F. 200.  Shen Z-Z. et al. 2015. PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge of heparanase after liver resection. Tumor Biol 37:2987–98 [Google Scholar]
  201. McKenzie EA. 201.  2007. Heparanase: a target for drug discovery in cancer and inflammation. Br. J. Pharmacol. 151:1–14 [Google Scholar]
  202. Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G. 202.  et al. 2011. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin. Cancer Res. 17:1382–93 [Google Scholar]
  203. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. 203.  2014. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 1:e29911 [Google Scholar]
  204. Amaravadi RK, Winkler JD. 204.  2012. Lys05: a new lysosomal autophagy inhibitor. Autophagy 8:1383–84 [Google Scholar]
  205. Dufour M, Dormond-Meuwly A, Demartines N, Dormond O. 205.  2011. Targeting the mammalian target of rapamycin (mTOR) in cancer therapy: lessons from past and future perspectives. Cancers 3:2478–500 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error