Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arrese M, Karpen SJ. 1.  2010. Nuclear receptors, inflammation, and liver disease: insights for cholestatic and fatty liver diseases. Clin. Pharmacol. Ther. 87:4473–78 [Google Scholar]
  2. Sladek FM. 2.  2003. Nuclear receptors as drug targets: new developments in coregulators, orphan receptors and major therapeutic areas. Expert Opin. Ther. Targets 7:5679–84 [Google Scholar]
  3. Evans R. 3.  2004. A transcriptional basis for physiology. Nat. Med. 10:101022–26 [Google Scholar]
  4. Trauner M, Halilbasic E. 4.  2011. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 140:41120–1125.e1–12 [Google Scholar]
  5. Wagner M, Zollner G, Trauner M. 5.  2011. Nuclear receptors in liver disease. Hepatology 53:31023–34 [Google Scholar]
  6. Zhang Y, Hagedorn CH, Wang L. 6.  2011. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812:8893–908 [Google Scholar]
  7. Sonoda J, Pei L, Evans RM. 7.  2008. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582:12–9 [Google Scholar]
  8. Knight BL, Hebbachi A, Hauton D, Brown AM, Wiggins D. 8.  et al. 2005. A role for PPARα in the control of SREBP activity and lipid synthesis in the liver. Biochem. J. 389:Pt. 2413–21 [Google Scholar]
  9. Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. 9.  2005. PPARγ2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am. J. Physiol. Endocrinol. Metab. 288:6E1195–205 [Google Scholar]
  10. Shen LL, Liu H, Peng J, Gan L, Zhang Q. 10.  et al. 2011. Effects of farnesoid X receptor on the expression of the fatty acid synthetase and hepatic lipase. Mol. Biol. Rep. 38:1553–59 [Google Scholar]
  11. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC. 11.  et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14:222831–38 [Google Scholar]
  12. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. 12.  2012. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 56:4952–64 [Google Scholar]
  13. Wierzbicki M, Chabowski A, Zendzian-Piotrowska M, Gorski J. 13.  2009. Differential effects of in vivo PPARα and γ activation on fatty acid transport proteins expression and lipid content in rat liver. J. Physiol. Pharmacol. 60:199–106 [Google Scholar]
  14. Ge F, Zhou S, Hu C, Lobdell H 4th, Berk PD. 14.  2010. Insulin- and leptin-regulated fatty acid uptake plays a key causal role in hepatic steatosis in mice with intact leptin signaling but not in ob/ob or db/db mice. Am. J. Physiol. Gastrointest. Liver Physiol. 299:4G855–66 [Google Scholar]
  15. Huang J, Iqbal J, Saha PK, Liu J, Chan L. 15.  et al. 2007. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 46:1147–57 [Google Scholar]
  16. Zhang Y, Wang L. 16.  2011. Nuclear receptor small heterodimer partner in apoptosis signaling and liver cancer. Cancers 3:1198–212 [Google Scholar]
  17. Leturque A, Brot-Laroche E, Le Gall M. 17.  2009. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiol. Endocrinol. Metab. 296:5E985–92 [Google Scholar]
  18. Agius L. 18.  2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414:11–18 [Google Scholar]
  19. Oosterveer MH, Schoonjans K. 19.  2014. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol. Life Sci. 71:81453–67 [Google Scholar]
  20. Wang L, Liu J, Saha P, Huang J, Chan L. 20.  et al. 2005. The orphan nuclear receptor SHP regulates PGC-1α expression and energy production in brown adipocytes. Cell Metab. 2:4227–38 [Google Scholar]
  21. Stayrook KR, Bramlett KS, Savkur RS, Ficorilli J, Cook T. 21.  et al. 2005. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146:3984–91 [Google Scholar]
  22. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC. 22.  et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423:6939550–55 [Google Scholar]
  23. Kim TH, Kim H, Park JM, Im SS, Bae Js. 23.  et al. 2009. Interrelationship between liver X receptor α, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J. Biol. Chem. 284:2215071–83 [Google Scholar]
  24. Borgius LJ, Steffensen KR, Gustafsson JA, Treuter E. 24.  2002. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J. Biol. Chem. 277:5149761–66 [Google Scholar]
  25. Park MJ, Kong HJ, Kim HY, Kim HH, Kim JH, Cheong JH. 25.  2007. Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPα. Biochem. J. 402:3567–74 [Google Scholar]
  26. Ma Y, Huang Y, Yan L, Gao M, Liu D. 26.  2013. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm. Res. 30:51447–57 [Google Scholar]
  27. Gege C, Kinzel O, Steeneck C, Schulz A, Kremoser C. 27.  2014. Knocking on FXR's door: the “hammerhead”-structure series of FXR agonists—amphiphilic isoxazoles with potent in vitro and in vivo activities. Curr. Top. Med. Chem. 14:192143–58 [Google Scholar]
  28. Gao M, Liu D. 28.  2013. Resveratrol suppresses T0901317-induced hepatic fat accumulation in mice. AAPS J. 15:3744–52 [Google Scholar]
  29. Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK. 29.  et al. 2011. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid. Redox Signal. 15:82135–46 [Google Scholar]
  30. Gao M, Liu D. 30.  2013. The liver X receptor agonist T0901317 protects mice from high fat diet-induced obesity and insulin resistance. AAPS J. 15:1258–66 [Google Scholar]
  31. Rogue A, Anthérieu S, Vluggens A, Umbdenstock T, Claude N. 31.  et al. 2014. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells. Toxicol. Appl. Pharmacol. 276:173–81 [Google Scholar]
  32. Goto T, Kim Y-I, Funakoshi K, Teraminami A, Uemura T. 32.  et al. 2011. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. Am. J. Physiol. Endocrinol. Metab. 301:5E1022–32 [Google Scholar]
  33. Chang E, Park CY, Park SW. 33.  2013. Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease. J. Diabetes Investig. 4:6517–24 [Google Scholar]
  34. Hajiaghamohammadi AA, Ziaee A, Oveisi S, Masroor H. 34.  2012. Effects of metformin, pioglitazone, and silymarin treatment on non-alcoholic fatty liver disease: a randomized controlled pilot study. Hepat. Mon. 12:8e6099 [Google Scholar]
  35. Jin SM, Park CY, Cho YM, Ku BJ, Ahn CW. 35.  et al. 2015. Lobeglitazone and pioglitazone as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, parallel-group, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes. Metab. 17:6599–602 [Google Scholar]
  36. Smalling RL, Delker DA, Zhang Y, Nieto N, McGuiness MS. 36.  et al. 2013. Genome-wide transcriptome analysis identifies novel gene signatures implicated in human chronic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305:5G364–74 [Google Scholar]
  37. Benet M, Guzmán C, Pisonero-Vaquero S, García-Mediavilla MV, Sánchez-Campos S. 37.  et al. 2015. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease. Mol. Pharmacol. 87:4582–94 [Google Scholar]
  38. Tabbi-Anneni I, Cooksey R, Gunda V, Liu S, Mueller A. 38.  et al. 2010. Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis. Am. J. Physiol. Endocrinol. Metab. 298:5E961–70 [Google Scholar]
  39. Pan X, Zhang Y, Wang L, Hussain MM. 39.  2010. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 12:2174–86 [Google Scholar]
  40. Lee SM, Zhang Y, Tsuchiya H, Smalling R, Jetten AM, Wang L. 40.  2015. Small heterodimer partner/neuronal PAS domain protein 2 axis regulates the oscillation of liver lipid metabolism. Hepatology 61:2497–505 [Google Scholar]
  41. Tsuchiya H, da Costa KA, Lee S, Renga B, Jaeschke H. 41.  et al. 2015. Interactions between nuclear receptor SHP and FOXA1 maintain oscillatory homocysteine homeostasis in mice. Gastroenterology 148:51012–23.e14 [Google Scholar]
  42. Miyata M, Sakaida Y, Matsuzawa H, Yoshinari K, Yamazoe Y. 42.  2011. Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. Biol. Pharm. Bull. 34:121885–89 [Google Scholar]
  43. Tilg H, Moschen AR. 43.  2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:51836–46 [Google Scholar]
  44. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. 44.  2008. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48:51632–43 [Google Scholar]
  45. Wagner M, Zollner G, Trauner M. 45.  2008. Nuclear bile acid receptor farnesoid X receptor meets nuclear factor-κB: new insights into hepatic inflammation. Hepatology 48:51383–86 [Google Scholar]
  46. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK. 46.  et al. 2005. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122:5707–21 [Google Scholar]
  47. Pawlak M, Baugé E, Bourguet W, De Bosscher K, Lalloyer F. 47.  et al. 2014. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60:51593–606 [Google Scholar]
  48. Huang W, Glass CK. 48.  2010. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler. Thromb. Vasc. Biol. 30:81542–49 [Google Scholar]
  49. Zelcer N, Tontonoz P. 49.  2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Investig. 116:3607–14 [Google Scholar]
  50. Lee YA, Wallace MC, Friedman SL. 50.  2015. Pathobiology of liver fibrosis: a translational success story. Gut 64:5830–41 [Google Scholar]
  51. Fickert P, Fuchsbichler A, Moustafa T, Wagner M, Zollner G. 51.  et al. 2009. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175:62392–405 [Google Scholar]
  52. Sharvit E, Abramovitch S, Reif S, Bruck R. 52.  2013. Amplified inhibition of stellate cell activation pathways by PPAR-γ, RAR and RXR agonists. PLOS ONE 8:10e76541 [Google Scholar]
  53. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C. 53.  et al. 2013. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153:3601–13 [Google Scholar]
  54. Li T, Eheim AL, Klein S, Uschner FE, Smith AC. 54.  et al. 2014. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology 59:62383–96 [Google Scholar]
  55. Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S. 55.  et al. 2011. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 140:31052–62 [Google Scholar]
  56. Zhang S, Wang J, Liu Q, Harnish DC. 56.  2009. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51:2380–88 [Google Scholar]
  57. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU. 57.  et al. 2013. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:3574–82.e1 [Google Scholar]
  58. Fiorucci S, Cipriani S, Mencaarelli A, Baldelli F, Bifulco G, Zampella A. 58.  2011. Farnesoid X receptor agonist for the treatment of liver and metabolic disorders: focus on 6-ethyl-CDCA. Mini Rev. Med. Chem. 11:9753–62 [Google Scholar]
  59. Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC. 59.  et al. 2014. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148:4751–61.e8 [Google Scholar]
  60. Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ. 60.  2014. Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig. Dis. Sci. 59:122975–82 [Google Scholar]
  61. Liu Q, Wang CY, Liu Z, Ma XS, He YH. 61.  et al. 2014. Hydroxysafflor yellow A suppresses liver fibrosis induced by carbon tetrachloride with high-fat diet by regulating PPAR-γ/p38 MAPK signaling. Pharm. Biol. 52:91085–93 [Google Scholar]
  62. Attia YM, Elalkamy EF, Hammam OA, Mahmoud SS, El-Khatib AS. 62.  2013. Telmisartan, an AT1 receptor blocker and a PPARγ activator, alleviates liver fibrosis induced experimentally by Schistosoma mansoni infection. Parasites Vectors 6:199 [Google Scholar]
  63. Baghdasaryan A, Claudel T, Kosters A, Gumhold J, Silbert D. 63.  et al. 2010. Curcumin improves sclerosing cholangitis in Mdr2−/− mice by inhibition of cholangiocyte inflammatory response and portal myofibroblast proliferation. Gut 59:4521–30 [Google Scholar]
  64. Honda A, Ikegami T, Nakamuta M, Miyazaki T, Iwamoto J. 64.  et al. 2013. Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology 57:51931–41 [Google Scholar]
  65. Galli A, Crabb DW, Ceni E, Salzano R, Mello T. 65.  et al. 2002. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122:71924–40 [Google Scholar]
  66. Cariou B, Zaïr Y, Staels B, Bruckert E. 66.  2011. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 34:92008–14 [Google Scholar]
  67. Hellemans K, Grinko I, Rombouts K, Schuppan D, Geerts A. 67.  1999. All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially. Gut 45:1134–42 [Google Scholar]
  68. Bruck R, Weiss S, Aeed H, Pines M, Halpern Z, Zvibel I. 68.  2009. Additive inhibitory effect of experimentally induced hepatic cirrhosis by agonists of peroxisome proliferator activator receptor γ and retinoic acid receptor. Dig. Dis. Sci. 54:2292–99 [Google Scholar]
  69. Hellemans K, Verbuyst P, Quartier E, Schuit F, Rombouts K. 69.  et al. 2004. Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids. Hepatology 39:197–108 [Google Scholar]
  70. Ogura M, Nishida S, Ishizawa M, Sakurai K, Shimizu M. 70.  et al. 2009. Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharmacol. Exp. Ther. 328:2564–70 [Google Scholar]
  71. Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A. 71.  et al. 2011. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut 60:121728–37 [Google Scholar]
  72. Bjornsson E, Angulo P. 72.  2007. Hepatitis C and steatosis. Arch. Med. Res. 38:6621–27 [Google Scholar]
  73. Kim K, Kim KH, Kim HH, Cheong J. 73.  2008. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRα. Biochem. J. 416:2219–30 [Google Scholar]
  74. Garcia-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL. 74.  et al. 2012. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab. Investig. 92:81191–202 [Google Scholar]
  75. Shlomai A, Paran N, Shaul Y. 75.  2006. PGC-1α controls hepatitis B virus through nutritional signals. PNAS 103:4316003–8 [Google Scholar]
  76. Chhatwal P, Bankwitz D, Gentzsch J, Frentzen A, Schult P. 76.  et al. 2012. Bile acids specifically increase hepatitis C virus RNA-replication. PLOS ONE 7:4e36029 [Google Scholar]
  77. Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. 77.  2010. Bile acids increase hepatitis B virus gene expression and inhibit interferon-α activity. FEBS J. 277:132791–802 [Google Scholar]
  78. Wakui Y, Inoue J, Ueno Y, Fukushima K, Kondo Y. 78.  et al. 2010. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-γ ligand, rosiglitazone. Biochem. Biophys. Res. Commun. 396:2508–14 [Google Scholar]
  79. Khattab M, Emad M, Abdelaleem A, Eslam M, Atef R. 79.  et al. 2010. Pioglitazone improves virological response to peginterferon α-2b/ribavirin combination therapy in hepatitis C genotype 4 patients with insulin resistance. Liver Int. 30:3447–54 [Google Scholar]
  80. Knop V, Bergk A, Schlosser B, Thieringer J, van Bömmel F. 80.  et al. 2013. Bezafibrate maintenance therapy in patients with advanced chronic hepatitis C. Eur. J. Gastroenterol. Hepatol. 25:5594–600 [Google Scholar]
  81. Halilbasic E, Baghdasaryan A, Trauner M. 81.  2013. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 17:2161–89 [Google Scholar]
  82. Baghdasaryan A, Chiba P, Trauner M. 82.  2014. Clinical application of transcriptional activators of bile salt transporters. Mol. Aspects Med. 37:57–76 [Google Scholar]
  83. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N. 83.  et al. 1998. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat. Genet. 20:3233–38 [Google Scholar]
  84. Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL. 84.  et al. 2007. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 133:2507–16 [Google Scholar]
  85. Bertolotti M, Gabbi C, Anzivino C, Mitro N, Godio C. 85.  et al. 2006. Decreased hepatic expression of PPAR-γ coactivator-1 in cholesterol cholelithiasis. Eur. J. Clin. Investig. 36:3170–75 [Google Scholar]
  86. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA. 86.  et al. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6:3507–15 [Google Scholar]
  87. Wang L, Lee YK, Bundman D, Han Y, Thevananther S. 87.  et al. 2002. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2:6721–31 [Google Scholar]
  88. Wang L, Han Y, Kim CS, Lee YK, Moore DD. 88.  2003. Resistance of SHP-null mice to bile acid–induced liver damage. J. Biol. Chem. 278:4544475–81 [Google Scholar]
  89. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL. 89.  et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:4217–25 [Google Scholar]
  90. Castano G, Burgueño A, Fernández GT, Pirola CJ, Sookoian S. 90.  2010. The influence of common gene variants of the xenobiotic receptor (PXR) in genetic susceptibility to intrahepatic cholestasis of pregnancy. Aliment. Pharmacol. Ther. 31:5583–92 [Google Scholar]
  91. Karlsen TH, Lie BA, Frey FK, Thorsby E, Broomé U. 91.  et al. 2006. Polymorphisms in the steroid and xenobiotic receptor gene influence survival in primary sclerosing cholangitis. Gastroenterology 131:3781–87 [Google Scholar]
  92. Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH. 92.  et al. 2008. Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia. Pediatr. Res. 63:6667–73 [Google Scholar]
  93. Zhang Y, Xu N, Xu J, Kong B, Copple B. 93.  et al. 2014. E2F1 is a novel fibrogenic gene that regulates cholestatic liver fibrosis through the Egr-1/SHP/EID1 network. Hepatology 60:3919–30 [Google Scholar]
  94. Zhang Y, Bonzo JA, Gonzalez FJ, Wang L. 94.  2011. Diurnal regulation of the early growth response 1 (Egr-1) protein expression by hepatocyte nuclear factor 4α (HNF4α) and small heterodimer partner (SHP) cross-talk in liver fibrosis. J. Biol. Chem. 286:3429635–43 [Google Scholar]
  95. Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L. 95.  et al. 2011. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary output. Hepatology 54:41303–12 [Google Scholar]
  96. Wagner M, Halibasic E, Marschall HU, Zollner G, Fickert P. 96.  et al. 2005. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42:2420–30 [Google Scholar]
  97. Stojakovic T, Putz-Bankuti C, Fauler G, Scharnagl H, Wagner M. 97.  et al. 2007. Atorvastatin in patients with primary biliary cirrhosis and incomplete biochemical response to ursodeoxycholic acid. Hepatology 46:3776–84 [Google Scholar]
  98. Huang W, Zhang J, Moore DD. 98.  2004. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J. Clin. Investig. 113:1137–43 [Google Scholar]
  99. Renga B, Migliorati M, Mencarelli A, Cipriani S, D'Amore C. 99.  et al. 2011. Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug resistance protein-4 promoter. Biochim. Biophys. Acta 1809:3157–65 [Google Scholar]
  100. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J. 100.  et al. 2006. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312:5771233–36 [Google Scholar]
  101. Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. 101.  2007. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28:5940–46 [Google Scholar]
  102. He N, Park K, Zhang Y, Huang J, Lu S, Wang L. 102.  2008. Epigenetic inhibition of nuclear receptor small heterodimer partner is associated with and regulates hepatocellular carcinoma growth. Gastroenterology 134:3793–802 [Google Scholar]
  103. Zhang Y, Soto J, Park K, Viswanath G, Kuwada S. 103.  et al. 2010. Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth. Mol. Cell. Biol. 30:61341–56 [Google Scholar]
  104. Zhang Y, Wang L. 104.  2013. Characterization of the mitochondrial localization of the nuclear receptor SHP and regulation of its subcellular distribution by interaction with Bcl2 and HNF4α. PLOS ONE 8:7e68491 [Google Scholar]
  105. Lee J, Padhye A, Shama A, Song G, Miao J. 105.  et al. 2010. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285:1712604–11 [Google Scholar]
  106. Zhang Y, Xu P, Park K, Choi Y, Moore DD, Wang L. 106.  2008. Orphan receptor small heterodimer partner suppresses tumorigenesis by modulating cyclin D1 expression and cellular proliferation. Hepatology 48:1289–98 [Google Scholar]
  107. Zhang Y, Wang L. 107.  2011. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ. FEBS Lett. 585:91269–75 [Google Scholar]
  108. Zhang Y, Andrews GK, Wang L. 108.  2012. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP. Nucleic Acids Res. 40:114850–60 [Google Scholar]
  109. Yang Z, Zhang Y, Kemper JK, Wang L. 109.  2012. Cross-regulation of protein stability by p53 and nuclear receptor SHP. PLOS ONE 7:6e39789 [Google Scholar]
  110. Yang Z, Wang L. 110.  2012. An autoregulatory feedback loop between Mdm2 and SHP that fine tunes Mdm2 and SHP stability. FEBS Lett. 586:81135–40 [Google Scholar]
  111. Yang Z, Zhang Y, Wang L. 111.  2012. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition. Biochem. Biophys. Res. Commun. 417:2744–46 [Google Scholar]
  112. Costa RH, Kalinichenko VV, Tan Y, Wang IC. 112.  2005. The CAR nuclear receptor and hepatocyte proliferation. Hepatology 42:51004–8 [Google Scholar]
  113. Pascussi JM, Robert A, Moreau A, Ramos J, Bioulac-Sage P. 113.  et al. 2007. Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor4α isoforms. Hepatology 45:51146–53 [Google Scholar]
  114. Phillips JM, Yamamoto Y, Negishi M, Maronpot RR, Goodman JI. 114.  2007. Orphan nuclear receptor constitutive active/androstane receptor-mediated alterations in DNA methylation during phenobarbital promotion of liver tumorigenesis. Toxicol. Sci. 96:172–82 [Google Scholar]
  115. Dong B, Lee J-S, Park Y-Y, Yang F, Xu G. 115.  et al. 2015. Activating CAR and β-catenin induces uncontrolled liver growth and tumorigenesis. Nat. Commun. 6:5944 [Google Scholar]
  116. Misra P, Reddy JK. 116.  2014. Peroxisome proliferator-activated receptor-α activation and excess energy burning in hepatocarcinogenesis. Biochimie 98:63–74 [Google Scholar]
  117. Dai G, He L, Bu P, Wan YJ. 117.  2008. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology 47:41277–87 [Google Scholar]
  118. Venteclef N, Ferre P. 118.  2014. Liver X receptor: from metabolism to cancer. Biochem. J. 459:2e1–3 [Google Scholar]
  119. Vaquero J, Briz O, Herraez E, Muntané J, Marin JJ. 119.  2013. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim. Biophys. Acta 1833:102212–19 [Google Scholar]
  120. Zhang Y, Gong W, Dai S, Huang G, Shen X. 120.  et al. 2012. Downregulation of human farnesoid X receptor by miR-421 promotes proliferation and migration of hepatocellular carcinoma cells. Mol. Cancer Res. 10:4516–22 [Google Scholar]
  121. Zhong XY, Yu JH, Zhang WG, Wang ZD, Dong Q. 121.  et al. 2012. MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene 493:144–51 [Google Scholar]
  122. Zabielski P, Blachnio-Zabielska A, Baranowski M, Zendzian-Piotrowska M, Gorski J. 122.  2010. Activation of PPARα by bezafibrate negatively affects de novo synthesis of sphingolipids in regenerating rat liver. Prostaglandins Other Lipid Mediat. 93:3–4120–25 [Google Scholar]
  123. Wang F, Zhao SZ, Zhang MY, Ma YL, Zhang P, Qin HL. 123.  2013. Decreased risk of liver cancer with thiazolidinediones therapy in patients with type 2 diabetes: results from a meta-analysis. Hepatology 58:2835–36 [Google Scholar]
  124. Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. 124.  2012. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 55:51462–72 [Google Scholar]
  125. Wang YM, Chai SC, Brewer CT, Chen T. 125.  2014. Pregnane X receptor and drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 10:111521–32 [Google Scholar]
  126. Lu W, Cheng F, Jiang J, Zhang C, Deng X. 126.  et al. 2015. FXR antagonism of NSAIDs contributes to drug-induced liver injury identified by systems pharmacology approach. Sci. Rep. 5:8114 [Google Scholar]
  127. Zhang J, Huang W, Chua SS, Wei P, Moore DD. 127.  2002. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 298:5592422–24 [Google Scholar]
  128. Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. 128.  2009. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab. Dispos 37:81611–21 [Google Scholar]
  129. Dai G, Chou N, Gyamfi MA, Mendy AJ, Slitt AL. 129.  et al. 2005. Retinoid X receptor α Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver. Mol. Pharmacol. 68:61590–96 [Google Scholar]
  130. Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y. 130.  et al. 2010. Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol. Endocrinol. 24:81626–36 [Google Scholar]
  131. Saini SP, Zhang B, Niu Y, Jiang M, Gao J. 131.  et al. 2011. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology 54:62208–17 [Google Scholar]
  132. Bataille AM, Manautou JE. 132.  2012. Nrf2: a potential target for new therapeutics in liver disease. Clin. Pharmacol. Ther. 92:3340–48 [Google Scholar]
  133. Baskin-Bey ES, Huang W, Ishimura N, Isomoto H, Bronk SF. 133.  et al. 2006. Constitutive androstane receptor (CAR) ligand, TCPOBOP, attenuates Fas-induced murine liver injury by altering Bcl-2 proteins. Hepatology 44:1252–62 [Google Scholar]
  134. Chen WD, Fu X, Dong B, Wang YD, Shiah S. 134.  et al. 2012. Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology 56:41499–509 [Google Scholar]
  135. Venkatesh M, Wang H, Cayer J, Leroux M, Salvail D. 135.  et al. 2011. In vivo and in vitro characterization of a first-in-class novel azole analog that targets pregnane X receptor activation. Mol. Pharmacol. 80:1124–35 [Google Scholar]
  136. Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE. 136.  2000. Peroxisome proliferator-activated receptor α-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol. Sci. 57:2338–44 [Google Scholar]
  137. Song G, Wang L. 137.  2009. A conserved gene structure and expression regulation of miR-433 and miR-127 in mammals. PLOS ONE 4:11e7829 [Google Scholar]
  138. Song G, Wang L. 138.  2008. MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433–127 locus. PLOS ONE 3:10e3574 [Google Scholar]
  139. Song G, Wang L. 139.  2008. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRγ. Nucleic Acids Res. 36:185727–35 [Google Scholar]
  140. Yang Z, Zhang Y, Wang L. 140.  2013. A feedback inhibition between miRNA-127 and TGFβ/c-Jun cascade in HCC cell migration via MMP13. PLOS ONE 8:6e65256 [Google Scholar]
  141. Yang Z, Tsuchiya H, Zhang Y, Hartnett ME, Wang L. 141.  2013. MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. J. Biol. Chem. 288:4028893–99 [Google Scholar]
  142. Song G, Zhang Y, Wang L. 142.  2009. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J. Biol. Chem. 284:4631921–27 [Google Scholar]
  143. Song G, Wang L. 143.  2009. Nuclear receptor SHP activates miR-206 expression via a cascade dual inhibitory mechanism. PLOS ONE 4:9e6880 [Google Scholar]
  144. Yang Z, Wang L. 144.  2011. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci. 1:131 [Google Scholar]
  145. Zhang Y, Yang Z, Whitby R, Wang L. 145.  2011. Regulation of miR-200c by nuclear receptors PPARα, LRH-1 and SHP. Biochem. Biophys. Res. Commun. 416:1–2135–39 [Google Scholar]
  146. Zhi X, Zhou XE, He Y, Zechner C, Suino-Powell KM. 146.  et al. 2014. Structural insights into gene repression by the orphan nuclear receptor SHP. PNAS 111:2839–44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error