Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence—from in vitro and in vivo animal studies and environmental toxicology studies—demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fang JL, Stingley RL, Beland FA, Harrouk W, Lumpkins DL, Howard P. 1.  2010. Occurrence, efficacy, metabolism, and toxicity of triclosan. J. Environ. Sci. Health C: Environ. Carcinog. Ecotoxicol. Rev. 28:147–71 [Google Scholar]
  2. Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM. 2.  2010. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 40:422–84 [Google Scholar]
  3. Dann AB, Hontela A. 3.  2011. Triclosan: environmental exposure, toxicity and mechanisms of action. J. Appl. Toxicol. 31:285–311 [Google Scholar]
  4. Wilcox MH, Hall J, Pike H, Templeton PA, Fawley WN. 4.  et al. 2003. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J. Hosp. Infect. 54:196–201 [Google Scholar]
  5. Aiello AE, Larson EL, Levy SB. 5.  2007. Consumer antibacterial soaps: effective or just risky?. Clin. Infect. Dis. 45:Suppl. 2S137–47 [Google Scholar]
  6. Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO. 6.  1998. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem. 273:30316–20 [Google Scholar]
  7. McMurry LM, Oethinger M, Levy SB. 7.  1998. Triclosan targets lipid synthesis. Nature 394:531–32 [Google Scholar]
  8. Kampf G, Kramer A. 8.  2004. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin. Microbiol. Rev. 17:863–93 [Google Scholar]
  9. Escalada MG, Russell AD, Maillard JY, Ochs D. 9.  2005. Triclosan-bacteria interactions: single or multiple target sites?. Lett. Appl. Microbiol. 41:476–81 [Google Scholar]
  10. Crofton KM, Paul KB, DeVito MJ, Hedge JM. 10.  2007. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ. Toxicol. Pharmacol. 24:194–97 [Google Scholar]
  11. McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS. 11.  2002. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 21:1323–29 [Google Scholar]
  12. Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J. 12.  2002. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–89 [Google Scholar]
  13. Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A. 13.  2007. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002 [Google Scholar]
  14. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD. 14.  et al. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36:1202–11 [Google Scholar]
  15. Bedoux G, Roig B, Thomas O, Dupont V, Le BB. 15.  2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. Int. 19:1044–65 [Google Scholar]
  16. Singer H, Muller S, Tixier C, Pillonel L. 16.  2002. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 36:4998–5004 [Google Scholar]
  17. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V. 17.  2002. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 21:1338–49 [Google Scholar]
  18. Hanioka N, Jinno H, Nishimura T, Ando M. 18.  1997. Effect of 2,4,4′-trichloro-2′-hydroxydiphenyl ether on cytochrome P450 enzymes in the rat liver. Chemosphere 34:719–30 [Google Scholar]
  19. Jacobs MN, Nolan GT, Hood SR. 19.  2005. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 209:123–33 [Google Scholar]
  20. Wang LQ, Falany CN, James MO. 20.  2004. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. 32:1162–69 [Google Scholar]
  21. Yueh MF, Taniguchi K, Chen S, Evans RM, Hammock BD. 21.  et al. 2014. The commonly used antimicrobial additive triclosan is a liver tumor promoter. PNAS 111:17200–5 [Google Scholar]
  22. Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA. 22.  et al. 2004. Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ. Sci. Technol. 38:390–95 [Google Scholar]
  23. Kanetoshi A, Katsura E, Ogawa H, Ohyama T, Kaneshima H, Miura T. 23.  1992. Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4′-trichloro-2′-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 23:91–98 [Google Scholar]
  24. Fiss EM, Rule KL, Vikesland PJ. 24.  2007. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ. Sci. Technol. 41:2387–94 [Google Scholar]
  25. Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA. 25.  2009. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 28:2555–63 [Google Scholar]
  26. McMillan BJ, Bradfield CA. 26.  2007. The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol. Pharmacol. 72:487–98 [Google Scholar]
  27. Reiss R, Mackay N, Habig C, Griffin J. 27.  2002. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 21:2483–92 [Google Scholar]
  28. Halden RU, Paull DH. 28.  2005. Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ. Sci. Technol. 39:1420–26 [Google Scholar]
  29. Anger CT, Sueper C, Blumentritt DJ, McNeill K, Engstrom DR, Arnold WA. 29.  2013. Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores. Environ. Sci. Technol. 47:1833–43 [Google Scholar]
  30. Heidler J, Halden RU. 30.  2007. Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–69 [Google Scholar]
  31. Chalew TE, Halden RU. 31.  2009. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J. Am. Water Works Assoc. 45:4–13 [Google Scholar]
  32. Coogan MA, La Point TW. 32.  2008. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a North Texas, USA, stream affected by wastewater treatment plant runoff. Environ. Toxicol. Chem. 27:1788–93 [Google Scholar]
  33. Houtman CJ, Van Oostveen AM, Brouwer A, Lamoree MH, Legler J. 33.  2004. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ. Sci. Technol. 38:6415–23 [Google Scholar]
  34. Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G. 34.  et al. 2009. Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ. Pollut. 157:2248–54 [Google Scholar]
  35. Wilson BA, Smith VH, deNoyelles F Jr, Larive CK. 35.  2003. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ. Sci. Technol. 37:1713–19 [Google Scholar]
  36. Oliveira R, Domingues I, Koppe GC, Soares AM. 36.  2009. Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. Int. 16:679–88 [Google Scholar]
  37. Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT. 37.  2008. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 27:1201–8 [Google Scholar]
  38. Bester K. 38.  2005. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch. Environ. Contam. Toxicol. 49:9–17 [Google Scholar]
  39. Ying GG, Yu XY, Kookana RS. 39.  2007. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ. Pollut. 150:300–5 [Google Scholar]
  40. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC. 40.  2013. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23:2388–92 [Google Scholar]
  41. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. 41.  2008. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ. Health Perspect. 116:303–7 [Google Scholar]
  42. Queckenberg C, Meins J, Wachall B, Doroshyenko O, Tomalik-Scharte D. 42.  et al. 2010. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob. Agents Chemother. 54:570–72 [Google Scholar]
  43. Lin YJ. 43.  2000. Buccal absorption of triclosan following topical mouthrinse application. Am. J. Dent. 13:215–17 [Google Scholar]
  44. Black JG, Howes D, Rutherford T. 44.  1975. Percutaneous absorption and metabolism of Irgasan DP300. Toxicology 3:33–47 [Google Scholar]
  45. Moss T, Howes D, Williams FM. 45.  2000. Percutaneous penetration and dermal metabolism of triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether). Food Chem. Toxicol. 38:361–70 [Google Scholar]
  46. Fang JL, Vanlandingham M, da Costa GG, Beland FA. 46.  2014. Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. Environ. Toxicol. In press. doi: 10.1002/tox.22074
  47. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. 47.  2006. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 69:1861–73 [Google Scholar]
  48. Tukey RH, Strassburg CP. 48.  2000. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40:581–616 [Google Scholar]
  49. Long J, Zhang S, Fang X, Luo Y, Liu J. 49.  2011. Association of neonatal hyperbilirubinemia with uridine diphosphate-glucuronosyltransferase 1A1 gene polymorphisms: meta-analysis. Pediatr. Int. 53:530–40 [Google Scholar]
  50. Nagar S, Remmel RP. 50.  2006. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene 25:1659–72 [Google Scholar]
  51. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T. 51.  et al. 2002. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol. 61:1–6 [Google Scholar]
  52. Sonoda J, Pei L, Evans RM. 52.  2008. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582:2–9 [Google Scholar]
  53. Johnson EF, Hsu MH, Savas U, Griffin KJ. 53.  2002. Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology 181–82:203–6 [Google Scholar]
  54. Jinno H, Hanioka N, Onodera S, Nishimura T, Ando M. 54.  1997. Irgasan®DP 300 (5-chloro-2-(2,4-dichlorophenoxy)-phenol) induces cytochrome P450s and inhibits haem biosynthesis in rat hepatocytes cultured on Matrigel. Xenobiotica 27:681–92 [Google Scholar]
  55. Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP, Crofton KM. 55.  2013. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol. In Vitro 27:2049–60 [Google Scholar]
  56. Paul KB, Hedge JM, DeVito MJ, Crofton KM. 56.  2010. Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans rats. Toxicol. Sci. 113:367–79 [Google Scholar]
  57. Pollock T, Tang B, deCatanzaro D. 57.  2014. Triclosan exacerbates the presence of 14C-bisphenol A in tissues of female and male mice. Toxicol. Appl. Pharmacol. 278:116–23 [Google Scholar]
  58. Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S. 58.  et al. 2002. Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch. Environ. Contam. Toxicol. 42:105–17 [Google Scholar]
  59. Dayan AD. 59.  2007. Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem. Toxicol. 45:125–29 [Google Scholar]
  60. Arbuckle TE, Marro L, Davis K, Fisher M, Ayotte P. 60.  et al. 2014. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ. Health Perspect. 123:277–84 [Google Scholar]
  61. Geens T, Neels H, Covaci A. 61.  2012. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87:796–802 [Google Scholar]
  62. Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA. 62.  et al. 2007. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ. Health Perspect. 115:116–21 [Google Scholar]
  63. Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G. 63.  2006. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 372:87–93 [Google Scholar]
  64. Allmyr M, Panagiotidis G, Sparve E, Diczfalusy U, Sandborgh-Englund G. 64.  2009. Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones. Basic Clin. Pharmacol. Toxicol. 105:339–44 [Google Scholar]
  65. Philippat C, Botton J, Calafat AM, Ye X, Charles MA, Slama R. 65.  2014. Prenatal exposure to phenols and growth in boys. Epidemiology 25:625–35 [Google Scholar]
  66. Rotroff DM, Wetmore BA, Dix DJ, Ferguson SS, Clewell HJ. 66.  et al. 2010. Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol. Sci. 117:348–58 [Google Scholar]
  67. Aylward LL, Hays SM. 67.  2011. Consideration of dosimetry in evaluation of ToxCast data. J. Appl. Toxicol. 31:741–51 [Google Scholar]
  68. DeSalva SJ, Kong BM, Lin YJ. 68.  1989. Triclosan: a safety profile. Am. J. Dent. 2:Spec. No.185–96 [Google Scholar]
  69. Ciniglia C, Cascone C, Giudice RL, Pinto G, Pollio A. 69.  2005. Application of methods for assessing the geno- and cytotoxicity of triclosan to C. ehrenbergii. J. Hazard. Mater. 122:227–32 [Google Scholar]
  70. Binelli A, Cogni D, Parolini M, Riva C, Provini A. 70.  2009. In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in zebra mussel hemocytes. Aquat. Toxicol. 91:238–44 [Google Scholar]
  71. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W. 71.  et al. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93:223–41 [Google Scholar]
  72. Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K. 72.  2005. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Chem. 24:517–25 [Google Scholar]
  73. Jaiswal AK. 73.  2000. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic. Biol. Med. 29:254–62 [Google Scholar]
  74. Ma H, Zheng L, Li Y, Pan S, Hu J. 74.  et al. 2013. Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere 90:1023–29 [Google Scholar]
  75. Gou N, Yuan S, Lan J, Gao C, Alshawabkeh AN, Gu AZ. 75.  2014. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants. Environ. Sci. Technol. 48:8855–63 [Google Scholar]
  76. Lin D, Zhou Q, Xie X, Liu Y. 76.  2010. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 81:1328–33 [Google Scholar]
  77. Wang X, Liu Z, Wang W, Yan Z, Zhang C. 77.  et al. 2014. Assessment of toxic effects of triclosan on the terrestrial snail (Achatina fulica). Chemosphere 108:225–30 [Google Scholar]
  78. Lin D, Xie X, Zhou Q, Liu Y. 78.  2012. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests. Environ. Toxicol. 27:385–92 [Google Scholar]
  79. Wilson AS, Power BE, Molloy PL. 79.  2007. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 1775:138–62 [Google Scholar]
  80. Winitthana T, Lawanprasert S, Chanvorachote P. 80.  2014. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLOS ONE 9:e110851 [Google Scholar]
  81. Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC. 81.  2014. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 27:834–42 [Google Scholar]
  82. Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC. 82.  2014. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. Environ. Toxicol. Pharmacol. 37:1264–74 [Google Scholar]
  83. Grivennikov SI, Greten FR, Karin M. 83.  2010. Immunity, inflammation, and cancer. Cell 140:883–99 [Google Scholar]
  84. Clayton EM, Todd M, Dowd JB, Aiello AE. 84.  2011. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003–2006. Environ. Health Perspect. 119:390–96 [Google Scholar]
  85. Tamura I, Kanbara Y, Saito M, Horimoto K, Satoh M. 85.  et al. 2012. Triclosan, an antibacterial agent, increases intracellular Zn2+ concentration in rat thymocytes: its relation to oxidative stress. Chemosphere 86:70–75 [Google Scholar]
  86. Udoji F, Martin T, Etherton R, Whalen MM. 86.  2010. Immunosuppressive effects of triclosan, nonylphenol, and DDT on human natural killer cells in vitro. J. Immunotoxicol. 7:205–12 [Google Scholar]
  87. Foran CM, Bennett ER, Benson WH. 87.  2000. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res. 50:153–56 [Google Scholar]
  88. Kumar V, Chakraborty A, Kural MR, Roy P. 88.  2009. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 27:177–85 [Google Scholar]
  89. Gee RH, Charles A, Taylor N, Darbre PD. 89.  2008. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 28:78–91 [Google Scholar]
  90. Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E. 90.  et al. 2008. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ. Health Perspect. 116:1203–10 [Google Scholar]
  91. Honkisz E, Zieba-Przybylska D, Wojtowicz AK. 91.  2012. The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells. Reprod. Toxicol. 34:385–92 [Google Scholar]
  92. Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H. 92.  et al. 2004. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 67:167–79 [Google Scholar]
  93. Stoker TE, Gibson EK, Zorrilla LM. 93.  2010. Triclosan exposure modulates estrogen-dependent responses in the female Wistar rat. Toxicol. Sci. 117:45–53 [Google Scholar]
  94. Jung EM, An BS, Choi KC, Jeung EB. 94.  2012. Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicol. Lett. 208:142–48 [Google Scholar]
  95. James MO, Li W, Summerlot DP, Rowland-Faux L, Wood CE. 95.  2010. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ. Int. 36:942–49 [Google Scholar]
  96. Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ. 96.  et al. 2006. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 80:217–27 [Google Scholar]
  97. Helbing CC, van Aggelen G, Veldhoen N. 97.  2011. Triclosan affects thyroid hormone–dependent metamorphosis in anurans. Toxicol. Sci. 119:417–18 [Google Scholar]
  98. Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR. 98.  et al. 2009. The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol. Sci. 107:56–64 [Google Scholar]
  99. Rodriguez PE, Sanchez MS. 99.  2010. Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring. J. Toxicol. Environ. Health A 73:1678–88 [Google Scholar]
  100. Paul KB, Hedge JM, Bansal R, Zoeller RT, Peter R. 100.  et al. 2012. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 300:31–45 [Google Scholar]
  101. Axelstad M, Boberg J, Vinggaard AM, Christiansen S, Hass U. 101.  2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem. Toxicol. 59:534–40 [Google Scholar]
  102. Qatanani M, Zhang J, Moore DD. 102.  2005. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology 146:995–1002 [Google Scholar]
  103. Cullinan MP, Palmer JE, Carle AD, West MJ, Seymour GJ. 103.  2012. Long term use of triclosan toothpaste and thyroid function. Sci. Total Environ. 416:75–79 [Google Scholar]
  104. Cookson BD, Farrelly H, Stapleton P, Garvey RP, Price MR. 104.  1991. Transferable resistance to triclosan in MRSA. Lancet 337:1548–49 [Google Scholar]
  105. Yazdankhah SP, Scheie AA, Høiby EA, Lunestad BT, Heir E. 105.  et al. 2006. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 12:83–90 [Google Scholar]
  106. Beier RC, Duke SE, Ziprin RL, Harvey RB, Hume ME. 106.  et al. 2008. Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bull. Environ. Contam. Toxicol. 80:188–94 [Google Scholar]
  107. Seaman PF, Ochs D, Day MJ. 107.  2007. Small-colony variants: a novel mechanism for triclosan resistance in methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 59:43–50 [Google Scholar]
  108. Bayston R, Ashraf W, Smith T. 108.  2007. Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: a novel mode of evasion of susceptibility to antiseptics. J. Antimicrob. Chemother. 59:848–53 [Google Scholar]
  109. Birošová L, Mikulášová M. 109.  2009. Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 58:436–41 [Google Scholar]
  110. Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E. 110.  2004. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob. Agents Chemother. 48:2973–79 [Google Scholar]
  111. Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD. 111.  et al. 2003. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol. 95:664–76 [Google Scholar]
  112. Braoudaki M, Hilton AC. 112.  2004. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol. 42:73–78 [Google Scholar]
  113. Brenwald NP, Fraise AP. 113.  2003. Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect. 55:141–44 [Google Scholar]
  114. Drury B, Scott J, Rosi-Marshall EJ, Kelly JJ. 114.  2013. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ. Sci. Technol. 47:8923–30 [Google Scholar]
  115. Cherednichenko G, Zhang R, Bannister RA, Timofeyev V, Li N. 115.  et al. 2012. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. PNAS 109:14158–63 [Google Scholar]
  116. Schultz MM, Bartell SE, Schoenfuss HL. 116.  2012. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas). Arch. Environ. Contam. Toxicol. 63:114–24 [Google Scholar]
  117. Pugliese G, Favero MS. 117.  1998. EPA charges illegal claim for antibacterial-impregnated consumer products. Infect. Control Hosp. Epidemiol. 19:140 [Google Scholar]
  118. Kriebel D, Tickner J, Epstein P, Lemons J, Levins R. 118.  et al. 2001. The precautionary principle in environmental science. Environ. Health Perspect. 109:871–76 [Google Scholar]
  119. Yueh MF, Nguyen N, Famourzadeh M, Strassburg CP, Oda Y. 119.  et al. 2001. The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Carcinogenesis 22:943–50 [Google Scholar]
  120. Raffensperger C, Tickner J. 120.  1999. Protecting Public Health and the Environment: Implementing the Precautionary Principle Washington, DC: Island Press

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error