We review recent progress in cancer nanomedicine, including stimulus-responsive drug delivery systems and nanoparticles responding to light for phototherapy or tumor imaging. In addition, several new strategies to improve the circulation of nanoparticles in vivo, tumor penetration, and tumor targeting are discussed. The application of nanomedicine in cancer immunology, a relatively new type of cancer therapy, is also highlighted.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Moghimi SM, Hunter AC, Murray JC. 1.  2005. Nanomedicine: current status and future prospects. FASEB J. 19:311–30 [Google Scholar]
  2. Matsumura Y, Maeda H. 2.  1986. A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–92 [Google Scholar]
  3. Jain RK, Stylianopoulos T. 3.  2010. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7:653–64 [Google Scholar]
  4. Chow EK-H, Ho D. 4.  2013. Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5:216rv4 [Google Scholar]
  5. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. 5.  1994. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–3 [Google Scholar]
  6. Langer R. 6.  1998. Drug delivery and targeting. Nature 392:5–10 [Google Scholar]
  7. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A. 7.  et al. 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–70 [Google Scholar]
  8. Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J. 8.  et al. 2012. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4:128ra39 [Google Scholar]
  9. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P. 9.  et al. 2014. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6:260ra149 [Google Scholar]
  10. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. 10.  2015. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137:2140–54 [Google Scholar]
  11. Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. 11.  2014. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43:6982–7012 [Google Scholar]
  12. Timko BP, Dvir T, Kohane DS. 12.  2010. Remotely triggerable drug delivery systems. Adv. Mater. 22:4925–43 [Google Scholar]
  13. Tong R, Kohane DS. 13.  2012. Shedding light on nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4:638–62 [Google Scholar]
  14. Wong AD, DeWit MA, Gillies ER. 14.  2012. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv. Drug Deliv. Rev. 64:1031–45 [Google Scholar]
  15. Amir RJ, Pessah N, Shamis M, Shabat D. 15.  2003. Self-immolative dendrimers. Angew. Chem. Int. Ed. 42:4494–99 [Google Scholar]
  16. Sagi A, Weinstain R, Karton N, Shabat D. 16.  2008. Self-immolative polymers. J. Am. Chem. Soc. 130:5434–35 [Google Scholar]
  17. de Gracia Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E. 17.  et al. 2012. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134:15758–64 [Google Scholar]
  18. Weinstain R, Sagi A, Karton N, Shabat D. 18.  2008. Self-immolative comb-polymers: multiple-release of side-reporters by a single stimulus event. Chem. Eur. J. 14:6857–61 [Google Scholar]
  19. Dewit MA, Gillies ER. 19.  2009. A cascade biodegradable polymer based on alternating cyclization and elimination reactions. J. Am. Chem. Soc. 131:18327–34 [Google Scholar]
  20. Fan B, Trant JF, Wong AD, Gillies ER. 20.  2014. Polyglyoxylates: a versatile class of triggerable self-immolative polymers from readily accessible monomers. J. Am. Chem. Soc. 136:10116–23 [Google Scholar]
  21. Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A. 21.  2010. UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132:9540–42 [Google Scholar]
  22. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK. 22.  et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  23. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J. 23.  2012. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51:7519–22 [Google Scholar]
  24. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. 24.  2014. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53:3201–4 [Google Scholar]
  25. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F. 25.  et al. 2013. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–40 [Google Scholar]
  26. Gao W, Kagan D, Pak OS, Clawson C, Campuzano S. 26.  et al. 2012. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–67 [Google Scholar]
  27. Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J. 27.  2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5 [Google Scholar]
  28. Ntziachristos V, Ripoll J, Weissleder R. 28.  2002. Would near-infrared fluorescence signals propagate through large human organs for clinical studies?. Opt. Lett. 27:333–35 [Google Scholar]
  29. Ntziachristos V, Ripoll J, Wang LV, Weissleder R. 29.  2005. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23:313–20 [Google Scholar]
  30. Weissleder R. 30.  2001. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–17 [Google Scholar]
  31. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z. 31.  et al. 2009. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4:773–80 [Google Scholar]
  32. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C. 32.  et al. 2003. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography. PNAS 100:12349–54 [Google Scholar]
  33. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG. 33.  et al. 2011. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17:1315–19 [Google Scholar]
  34. Urano Y, Sakabe M, Kosaka N, Ogawa M, Mitsunaga M. 34.  et al. 2011. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase–activated fluorescent probe. Sci. Transl. Med. 3:110ra9 [Google Scholar]
  35. Weissleder R, Pittet MJ. 35.  2008. Imaging in the era of molecular oncology. Nature 452:580–89 [Google Scholar]
  36. Hong G, Lee JC, Robinson JT, Raaz U, Xie L. 36.  et al. 2012. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18:1841–46 [Google Scholar]
  37. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. 37.  2014. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. PNAS 111:13948–53 [Google Scholar]
  38. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL. 38.  et al. 2012. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 51:9818–21 [Google Scholar]
  39. Ntziachristos V, Bremer C, Weissleder R. 39.  2003. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13:195–208 [Google Scholar]
  40. Sevick-Muraca EM, Houston JP, Gurfinkel M. 40.  2002. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 6:642–50 [Google Scholar]
  41. Song CW. 41.  1984. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 44:4721s–30s [Google Scholar]
  42. Manzoor AA, Lindner LH, Landon CD, Park J-Y, Simnick AJ. 42.  et al. 2012. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 72:5566–75 [Google Scholar]
  43. Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F. 43.  et al. 2014. Two Phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int. J. Hyperthermia 30:285–94 [Google Scholar]
  44. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B. 44.  et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–54 [Google Scholar]
  45. Huang X, Jain P, El-Sayed I, El-Sayed M. 45.  2008. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23:217–28 [Google Scholar]
  46. Melancon MP, Zhou M, Li C. 46.  2011. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44:947–56 [Google Scholar]
  47. von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C. 47.  et al. 2011. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10:545–52 [Google Scholar]
  48. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. 48.  2009. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8:331–36 [Google Scholar]
  49. Lovell JF, Jin CS, Huynh E, Jin H, Kim C. 49.  et al. 2011. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10:324–32 [Google Scholar]
  50. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B. 50.  et al. 2014. Porphyrin–phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5:3546 [Google Scholar]
  51. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q. 51.  et al. 2009. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8:935–39 [Google Scholar]
  52. Tong R, Hemmati HD, Langer R, Kohane DS. 52.  2012. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134:8848–55 [Google Scholar]
  53. Tong R, Chiang HH, Kohane DS. 53.  2013. Photoswitchable nanoparticles for in vivo cancer chemotherapy. PNAS 110:19048–53 [Google Scholar]
  54. Auzel F. 54.  2003. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104:139–74 [Google Scholar]
  55. Bloembergen N. 55.  1959. Solid state infrared quantum counters. Phys. Rev. Lett. 2:84–85 [Google Scholar]
  56. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F. 56.  2011. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133:17122–25 [Google Scholar]
  57. Wang F, Liu X. 57.  2008. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130:5642–43 [Google Scholar]
  58. Wang F, Liu X. 58.  2009. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38:4976–89 [Google Scholar]
  59. Wang Y-F, Liu G-Y, Sun L-D, Xiao J-W, Zhou J-C, Yan C-H. 59.  2013. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7:7200–6 [Google Scholar]
  60. Xie X, Gao N, Deng R, Sun Q, Xu Q-H, Liu X. 60.  2013. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J. Am. Chem. Soc. 135:12608–11 [Google Scholar]
  61. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. 61.  2012. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6:560–64 [Google Scholar]
  62. Liu Q, Yin B, Yang T, Yang Y, Shen Z. 62.  et al. 2013. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J. Am. Chem. Soc. 135:5029–37 [Google Scholar]
  63. Wang LV. 63.  2009. Multiscale photoacoustic microscopy and computed tomography. Nat. Photon 3:503–9 [Google Scholar]
  64. Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV. 64.  2009. In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J. Biomed. Opt. 14:010507–3 [Google Scholar]
  65. Kim C, Cho EC, Chen J, Song KH, Au L. 65.  et al. 2010. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4:4559–64 [Google Scholar]
  66. Lu W, Melancon MP, Xiong C, Huang Q, Elliott A. 66.  et al. 2011. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 71:6116–21 [Google Scholar]
  67. Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP. 67.  2009. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4:688–94 [Google Scholar]
  68. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ. 68.  et al. 2012. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18:829–34 [Google Scholar]
  69. Choi HS, Liu W, Liu F, Nasr K, Misra P. 69.  et al. 2010. Design considerations for tumour-targeted nanoparticles. Nat. Nano 5:42–47 [Google Scholar]
  70. Allen TM. 70.  1988. Toxicity of drug carriers to the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 2:55–67 [Google Scholar]
  71. Derfus AM, Chan WCW, Bhatia SN. 71.  2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:11–18 [Google Scholar]
  72. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW. 72.  2010. In vivo quantum-dot toxicity assessment. Small 6:138–44 [Google Scholar]
  73. Balasubramanian SK, Jittiwat J, Manikandan J, Ong C-N, Yu LE, Ong W-Y. 73.  2010. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–42 [Google Scholar]
  74. Yang RH, Chang LW, Wu JP, Tsai MH, Wang HJ. 74.  et al. 2007. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115:1339–43 [Google Scholar]
  75. Allen TM, Hansen C, Martin F, Redemann C, Yauyoung A. 75.  1991. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1066:29–36 [Google Scholar]
  76. Allen TM. 76.  1994. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 13:285–309 [Google Scholar]
  77. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K. 77.  et al. 1991. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. PNAS 88:11460–64 [Google Scholar]
  78. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. 78.  2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134:2139–47 [Google Scholar]
  79. Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M. 79.  et al. 2007. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2:249–55 [Google Scholar]
  80. Oldenborg P-A, Zheleznyak A, Fang Y-F, Lagenaur CF, Gresham HD, Lindberg FP. 80.  2000. Role of CD47 as a marker of self on red blood cells. Science 288:2051–54 [Google Scholar]
  81. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. 81.  2013. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–75 [Google Scholar]
  82. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. 82.  2009. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9:1909–15 [Google Scholar]
  83. Jain RK. 83.  1998. Delivery of molecular and cellular medicine to solid tumors. J. Control. Release 53:49–67 [Google Scholar]
  84. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N. 84.  et al. 2006. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 66:2509–13 [Google Scholar]
  85. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. 85.  2000. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–503 [Google Scholar]
  86. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. 86.  1994. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposome in a human tumor xenograft. Cancer Res. 54:3352–56 [Google Scholar]
  87. Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y. 87.  et al. 2002. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–36 [Google Scholar]
  88. Smith NR, Baker D, Farren M, Pommier A, Swann R. 88.  et al. 2013. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin. Cancer Res. 19:6943–56 [Google Scholar]
  89. Wong C, Stylianopoulos T, Cui JA, Martin J, Chauhan VP. 89.  et al. 2011. Multistage nanoparticle delivery system for deep penetration into tumor tissue. PNAS 108:2426–31 [Google Scholar]
  90. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M. 90.  et al. 2011. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6:815–23 [Google Scholar]
  91. Tang L, Yang X, Yin Q, Cai K, Wang H. 91.  et al. 2014. Investigating the optimal size of anticancer nanomedicine. PNAS 111:15344–49 [Google Scholar]
  92. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP. 92.  et al. 2013. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5:209ra152 [Google Scholar]
  93. Jain RK. 93.  2001. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–89 [Google Scholar]
  94. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O. 94.  et al. 2012. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7:383–88 [Google Scholar]
  95. Mok W, Boucher Y, Jain RK. 95.  2007. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 67:10664–68 [Google Scholar]
  96. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. 96.  2012. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–29 [Google Scholar]
  97. Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B. 97.  et al. 2007. Relaxin promotes prostate cancer progression. Clin. Cancer Res. 13:1695–702 [Google Scholar]
  98. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. 98.  2011. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. PNAS 108:2909–14 [Google Scholar]
  99. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR. 99.  et al. 2013. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4:2516 [Google Scholar]
  100. Nakai Y, Isayama H, Ijichi H, Sasaki T, Takahara N. 100.  et al. 2013. A multicenter Phase II trial of gemcitabine and candesartan combination therapy in patients with advanced pancreatic cancer: GECA2. Investig. New Drugs 31:1294–99 [Google Scholar]
  101. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L. 101.  et al. 2010. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–35 [Google Scholar]
  102. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E. 102.  2009. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. PNAS 106:16157–62 [Google Scholar]
  103. Pang H-B, Braun GB, Friman T, Aza-Blanc P, Ruidiaz ME. 103.  et al. 2014. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun. 5:4904 [Google Scholar]
  104. Bertozzi CR. 104.  2011. A decade of bioorthogonal chemistry. Acc. Chem. Res. 44:651–53 [Google Scholar]
  105. Jewett JC, Bertozzi CR. 105.  2010. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39:1272–79 [Google Scholar]
  106. Devaraj NK, Weissleder R. 106.  2011. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44:816–27 [Google Scholar]
  107. Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. 107.  2008. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320:664–67 [Google Scholar]
  108. Koo H, Lee S, Na JH, Kim SH, Hahn SK. 108.  et al. 2012. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem. Int. Ed. 51:11836–40 [Google Scholar]
  109. Zlitni A, Janzen N, Foster FS, Valliant JF. 109.  2014. Catching bubbles: targeting ultrasound microbubbles using bioorthogonal inverse-electron-demand Diels–Alder reactions. Angew. Chem. Int. Ed. 53:6459–63 [Google Scholar]
  110. Emmetiere F, Irwin C, Viola-Villegas NT, Longo V, Cheal SM. 110.  et al. 2013. 18F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjug. Chem. 24:1784–89 [Google Scholar]
  111. Perrault SD, Chan WCW. 111.  2010. In vivo assembly of nanoparticle components to improve targeted cancer imaging. PNAS 107:11194–99 [Google Scholar]
  112. Mellman I, Coukos G, Dranoff G. 112.  2011. Cancer immunotherapy comes of age. Nature 480:480–89 [Google Scholar]
  113. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. 113.  2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38:1404–13 [Google Scholar]
  114. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ. 114.  et al. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25:1159–64 [Google Scholar]
  115. Cho N-H, Cheong T-C, Min JH, Wu JH, Lee SJ. 115.  et al. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6:675–82 [Google Scholar]
  116. de Titta A, Ballester M, Julier Z, Nembrini C, Jeanbart L. 116.  et al. 2013. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. PNAS 110:19902–7 [Google Scholar]
  117. Nembrini C, Stano A, Dane KY, Ballester M, van der Vlies AJ. 117.  et al. 2011. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. PNAS 108:E989–E97 [Google Scholar]
  118. Li AV, Moon JJ, Abraham W, Suh H, Elkhader J. 118.  et al. 2013. Generation of effector memory T cell–based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5:204ra130 [Google Scholar]
  119. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. 119.  2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8:299–308 [Google Scholar]
  120. Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. 120.  2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16:1035–41 [Google Scholar]
  121. Weldon C, Tian B, Kohane DS. 121.  2011. Nanotechnology for surgeons. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3:223–28 [Google Scholar]
  122. Mehlen P, Puisieux A. 122.  2006. Metastasis: a question of life or death. Nat. Rev. Cancer 6:449–58 [Google Scholar]
  123. Kohane DS, Langer R. 123.  2010. Biocompatibility and drug delivery systems. Chem. Sci. 1:441–46 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error