Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Copeland RA. 1.  2015. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15:287–95 [Google Scholar]
  2. Russ AP, Lampel S. 2.  2005. The druggable genome: an update. Drug Discov. Today 10:23–241607–10 [Google Scholar]
  3. Conde J, Artzi N. 3.  2015. Are RNAi and miRNA therapeutics truly dead?. Trends Biotechnol 33:3141–44 [Google Scholar]
  4. Clague MJ, Heride C, Urbé S. 4.  2015. The demographics of the ubiquitin system. Trends Cell Biol 25:417–26 [Google Scholar]
  5. Deshaies RJ, Joazeiro CAP. 5.  2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78:399–434 [Google Scholar]
  6. Ciechanover A. 6.  2015. The unravelling of the ubiquitin system. Nat. Rev. Mol. Cell. Biol. 16:5322–24 [Google Scholar]
  7. He C, Klionsky DJ. 7.  2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67–93 [Google Scholar]
  8. Kaushik S, Cuervo AM. 8.  2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:8407–17 [Google Scholar]
  9. Liang J, Shang Y. 9.  2013. Estrogen and cancer. Annu. Rev. Physiol. 75:225–40 [Google Scholar]
  10. Dauvois S, Danielian PS, White R, Parker MG. 10.  1992. Antiestrogen ICI-164,384 reduces cellular estrogen receptor content by increasing its turnover. PNAS 89:94037–41 [Google Scholar]
  11. Wakeling AE, Dukes M, Bowler J. 11.  1991. A potent specific pure antiestrogen with clinical potential. Am. Assoc. Cancer Res.3867–73
  12. Lai A, Kahraman M, Govek S, Nagasawa J, Bonnefous C. 12.  et al. 2015. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem 58:124888–904 [Google Scholar]
  13. Kieser KJ, Kim DW, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA. 13.  2010. Characterization of the pharmacophore properties of novel selective estrogen receptor downregulators (SERDs). J. Med. Chem 53:83320–29 [Google Scholar]
  14. Govek SP, Nagasawa JY, Douglas KL, Lai AG, Kahraman M. 14.  et al. 2015. Optimization of an indazole series of selective estrogen receptor degraders: tumor regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett 25:225163–67 [Google Scholar]
  15. Callis R, Rabow A, Tonge M, Bradbury R, Challinor M. 15.  et al. 2015. A screening assay cascade to identify and characterize novel selective estrogen receptor downregulators (SERDs). J. Biomol. Screen. 20:6748–59 [Google Scholar]
  16. De Savi C, Bradbury RH, Rabow AA, Norman RA, de Almeida C. 16.  et al. 2015. Optimization of a novel binding motif to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregutor and antagonist. J. Med. Chem 58:208128–40 [Google Scholar]
  17. Suzuki N, Liu X, Laxmi YRS, Okamoto K, Kim HJ. 17.  et al. 2011. Anti-breast cancer potential of SS5020, a novel benzopyran antiestrogen. Int. J. Cancer 128:4974–82 [Google Scholar]
  18. Degorce SL, Bailey A, Callis R, De Savi C, Ducray R. 18.  et al. 2015. Investigation of (E)-3-[4-(2-oxo-3-aryl-chromen-4-yl)oxyphenyl]acrylic acids as oral selective estrogen receptor down-regulators. J. Med. Chem 58:83522–33 [Google Scholar]
  19. Scott JS, Bailey A, Davies R, Degorce SL, MacFaul PA. 19.  et al. 2016. Tetrahydroisoquinoline phenols: selective estrogen receptor downregulator antagonists with oral bioavailability in rat. ACS Med. Chem. Lett 7:194–99 [Google Scholar]
  20. Garner F, Shomali M, Paquin D, Lyttle CR, Hattersley G. 20.  2015. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models. Anti-Cancer Drugs 26:9948–56 [Google Scholar]
  21. Zhao Z, Wang L, James T, Jung Y, Kim I. 21.  et al. 2015. Reciprocal regulation of ERα and ERβ stability and activity by diptoindonesin G. Chem. Biol. 22:121608–21 [Google Scholar]
  22. Wu Y-L, Yang X, Ren Z, McDonnell DP, Norris JD. 22.  et al. 2005. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18:4413–24 [Google Scholar]
  23. Wittmann BM, Sherk A, McDonnell DP. 23.  2007. Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Res 67:199549–60 [Google Scholar]
  24. Bartlett JB, Dredge K, Dalgleish AG. 24.  2004. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4:4314–22 [Google Scholar]
  25. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau J. 25.  et al. 2007. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 357:212123–32 [Google Scholar]
  26. Miguel JS, Weisel K, Moreau P, Lacy M, Song K. 26.  et al. 2013. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 14:111055–66 [Google Scholar]
  27. Hagner PR, Man HW, Fontanillo C, Wang M, Couto S. 27.  et al. 2015. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126:6779–89 [Google Scholar]
  28. Ito T, Ando H, Suzuki T, Ogura T, Hotta K. 28.  et al. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327:59711345–50 [Google Scholar]
  29. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN. 29.  et al. 2014. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:6168301–5 [Google Scholar]
  30. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ. 30.  et al. 2014. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:6168305–9 [Google Scholar]
  31. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y. 31.  et al. 2014. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164:6811–21 [Google Scholar]
  32. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN. 32.  et al. 2015. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:7559183–88 [Google Scholar]
  33. Shaffer AL, Emre NCT, Lamy L, Ngo VN, Wright G. 33.  et al. 2008. IRF4 addiction in multiple myeloma. Nature 454:7201226–31 [Google Scholar]
  34. Yang Y, Shaffer AL, Emre NCT, Ceribelli M, Zhang M. 34.  et al. 2012. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21:6723–37 [Google Scholar]
  35. Schneider R, Ademà V, Heckl D, Järås M, Mallo M. 35.  et al. 2014. Role of casein kinase 1a1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26:4509–20 [Google Scholar]
  36. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B. 36.  et al. 2014. Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21:9803–9 [Google Scholar]
  37. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB. 37.  et al. 2014. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:751249–53 [Google Scholar]
  38. Petzold G, Fischer ES, Thomä NH. 38.  2016. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532:127–30 [Google Scholar]
  39. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. 39.  2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:158554–59 [Google Scholar]
  40. Schneekloth JS Jr., Fonseca FN, Koldobskiy M, Mandal A, Deshaies R. 40.  et al. 2004. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126:123748–54 [Google Scholar]
  41. Schneekloth AR, Pucheault M, Tae HS, Crews CM. 41.  2008. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett 18:225904–8 [Google Scholar]
  42. Itoh Y, Kitaguchi R, Ishikawa M, Naito M, Hashimoto Y. 42.  2011. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem 19:226768–78 [Google Scholar]
  43. Hines J, Gough JD, Corson TW, Crews CM. 43.  2013. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. PNAS 110:228942–47 [Google Scholar]
  44. Fan X, Jin WY, Lu J, Wang J, Wang YT. 44.  2014. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17:3471–80 [Google Scholar]
  45. Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N. 45.  et al. 2016. Molecular design, synthesis, and evaluation of SNIPER(ER) that induces proteasomal degradation of ERα.. Methods Mol. Biol. 1366:549–60 [Google Scholar]
  46. Okuhira K, Ohoka N, Sai K, Nishimaki-Mogami T, Itoh Y. 46.  et al. 2011. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett 585:81147–52 [Google Scholar]
  47. Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M. 47.  et al. 2008. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem. 283:148961–68 [Google Scholar]
  48. Zhang D, Baek SH, Ho A, Kim K. 48.  2004. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett 14:3645–48 [Google Scholar]
  49. Min J-H, Yang H, Ivan M, Gertler F, Kaelin WG, Pavletich NP. 49.  2002. Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296:55741886–89 [Google Scholar]
  50. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J. 50.  et al. 2012. Targeting the von Hippel–Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 134:104465–68 [Google Scholar]
  51. Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I. 51.  et al. 2014. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem 57:208657–63 [Google Scholar]
  52. Zengerle M, Chan K-H, Ciulli A. 52.  2015. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10:81770–77 [Google Scholar]
  53. Bondeson DP, Mares A, Smith IED, Ko E, Campos S. 53.  et al. 2015. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11:8611–17 [Google Scholar]
  54. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J. 54.  et al. 2011. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:6904–17 [Google Scholar]
  55. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB. 55.  et al. 2010. Selective inhibition of BET bromodomains. Nature 468:73271067–73 [Google Scholar]
  56. Abbott DW, Wilkins A, Asara JM, Cantley LC. 56.  2004. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14:242217–27 [Google Scholar]
  57. Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G. 57.  et al. 2002. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:6877194–99 [Google Scholar]
  58. Huss JM, Gigue V, Kelly DP. 58.  2004. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24:209079–91 [Google Scholar]
  59. Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP. 59.  et al. 2011. SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Cancer Res 71:216654–64 [Google Scholar]
  60. Patch RJ, Searle LL, Kim AJ, De D, Zhu X. 60.  et al. 2011. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem 54:3788–808 [Google Scholar]
  61. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S. 61.  et al. 2010. Suppression of inflammation by a synthetic histone mimic. Nature 468:73271119–23 [Google Scholar]
  62. Lu J, Qian Y, Altieri M, Dong H, Wang J. 62.  et al. 2015. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22:6755–63 [Google Scholar]
  63. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A. 63.  et al. 2015. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:62411376–81 [Google Scholar]
  64. Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S. 64.  et al. 2016. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. 55:2807–10 [Google Scholar]
  65. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. 65.  2011. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Investig. 121:1396–409 [Google Scholar]
  66. Zhang H, Peng C, Hu Y, Li H, Sheng Z. 66.  et al. 2012. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat. Genet. 44:8861–71 [Google Scholar]
  67. Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM. 67.  et al. 2011. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:51024–39 [Google Scholar]
  68. Mattiroli F, Sixma TK. 68.  2014. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat. Struct. Mol. Biol. 21:4308–16 [Google Scholar]
  69. Xie T, Lim SM, Westover KD, Dodge ME, Ercan D. 69.  et al. 2014. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10:121006–12 [Google Scholar]
  70. Gustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL. 70.  et al. 2015. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. 54:339659–62 [Google Scholar]
  71. Long MJC, Gollapalli DR, Hedstrom L. 71.  2012. Inhibitor mediated protein degradation. Chem. Biol. 19:5629–37 [Google Scholar]
  72. Coffey RT, Shi Y, Long MJCC, Marr MT II, Hedstrom L. 72.  2016. Ubiquilin mediated small molecule inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 291:105221–33 [Google Scholar]
  73. Lim SM, Xie T, Westover KD, Ficarro SB, Tae HS. 73.  et al. 2015. Development of small molecules targeting the pseudokinase Her3. Bioorg. Med. Chem. Lett 25:163382–89 [Google Scholar]
  74. Huggins C, Hodges CV. 74.  1941. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 168:1293–97 [Google Scholar]
  75. Bradbury RH, Hales NJ, Rabow AA, Walker GE, Acton DG. 75.  et al. 2011. Small-molecule androgen receptor downregulators as an approach to treatment of advanced prostate cancer. Bioorg. Med. Chem. Lett 21:185442–45 [Google Scholar]
  76. Omlin A, Jones RJ, van der Noll R, Satoh T, Niwakawa M. 76.  et al. 2015. AZD3514, an oral selective androgen receptor down-regulator in patients with castration-resistant prostate cancer – results of two parallel first-in-human phase I studies. Investig. New Drugs 33:3679–90 [Google Scholar]
  77. Loddick SA, Ross SJ, Thomason AG, Robinson DM, Walker GE. 77.  et al. 2013. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol. Cancer Ther. 12:1715–27 [Google Scholar]
  78. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 78.  2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:6861271–76 [Google Scholar]
  79. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV. 79.  et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:7136640–45 [Google Scholar]
  80. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. 80.  2009. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6:12917–22 [Google Scholar]
  81. Holland AJ, Fachinetti D, Han JS, Cleveland DW. 81.  2012. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. PNAS 109:49E3350–57 [Google Scholar]
  82. Morawska M, Ulrich HD. 82.  2013. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30:9341–51 [Google Scholar]
  83. McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM. 83.  2015. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol. Cell 60:6886–98 [Google Scholar]
  84. Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A. 84.  et al. 2015. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev. Cell 33:3314–27 [Google Scholar]
  85. Philip N, Waters AP. 85.  2015. Conditional degradation of Plasmodium calcineurin reveals functions in parasite colonization of both host and vector. Cell Host Microbe 18:1122–31 [Google Scholar]
  86. Zhang L, Ward JD, Cheng Z, Dernburg AF. 86.  2015. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142:4374–84 [Google Scholar]
  87. Tae HS, Sundberg TB, Neklesa TK, Noblin DJ, Gustafson JL. 87.  et al. 2012. Identification of hydrophobic tags for the degradation of stabilized proteins. ChemBioChem 13:4538–41 [Google Scholar]
  88. Neklesa TK, Noblin DJ, Kuzin A, Lew S, Seetharaman J. 88.  et al. 2013. A bidirectional system for the dynamic small molecule control of intracellular fusion proteins. ACS Chem. Biol. 8:102293–300 [Google Scholar]
  89. Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW. 89.  et al. 2011. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7:8538–43 [Google Scholar]
  90. Raina K, Noblin DJ, Serebrenik YV, Adams A, Zhao C, Crews CM. 90.  2014. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat. Chem. Biol. 10:11957–62 [Google Scholar]
  91. Buckley DL, Raina K, Darricarrerre N, Hines J, Gustafson JL. 91.  et al. 2015. HaloPROTACs: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem. Biol. 10:81831–37 [Google Scholar]
  92. Tomoshige S, Naito M, Hashimoto Y, Ishikawa M. 92.  2015. Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules. Org. Biomol. Chem. 13:389746–50 [Google Scholar]
  93. Chung HK, Jacobs CL, Huo Y, Yang J, Krumm SA. 93.  et al. 2015. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11:9713–20 [Google Scholar]
  94. Yan D, Weisshaar M, Lamb K, Chung HK, Lin MZ, Plemper RK. 94.  2015. Replication-competent influenza virus and respiratory syncytial virus luciferase reporter strains engineered for co-infections identify antiviral compounds in combination screens. Biochemistry 54:365589–604 [Google Scholar]
  95. Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins R. 95.  et al. 2011. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328:5980910–12 [Google Scholar]
  96. Cho U, Zimmerman SM, Chen L, Owen E, Kim JV. 96.  et al. 2013. Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule. PLOS ONE 8:8e72393 [Google Scholar]
  97. Froschauer A, Kube L, Kegler A, Rieger C, Gutzeit HO. 97.  2015. Tunable protein stabilization in vivo mediated by Shield-1 in transgenic medaka. PLOS ONE 10:7e0131252 [Google Scholar]
  98. Auffenberg E, Jurik A, Mattusch C, Stoffel R, Genewsky A. 98.  et al. 2016. Remote and reversible inhibition of neurons and circuits by small molecule induced potassium channel stabilization. Sci. Rep. 6:19293 [Google Scholar]
  99. Miyazaki Y, Chen L-C, Chu BW, Swigut T, Wandless TJ. 99.  2015. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells. eLife 4:e07687 [Google Scholar]
  100. Lau HD, Yaegashi J, Zaro BW, Pratt MR. 100.  2010. Precise control of protein concentration in living cells. Angew. Chem. Int. Ed. 49:458458–61 [Google Scholar]
  101. Lin YH, Pratt MR. 101.  2014. A dual small-molecule rheostat for precise control of protein concentration in mammalian cells. ChemBioChem 15:6805–9 [Google Scholar]
  102. Niesen FH, Berglund H, Vedadi M. 102.  2007. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2:92212–21 [Google Scholar]
  103. Van Molle I, Thomann A, Buckley DL, So EC, Lang S. 103.  et al. 2012. Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein-protein interface. Chem. Biol. 19:101300–12 [Google Scholar]
  104. Comess KM, Sun C, Abad-Zapatero C, Goedken ER, Gum RJ. 104.  et al. 2011. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. ACS Chem. Biol. 6:3234–44 [Google Scholar]
  105. Ludlow RF, Verdonk ML, Saini HK, Tickle IJ, Jhoti H. 105.  2015. Detection of secondary binding sites in proteins using fragment screening. PNAS 112:5215910–15 [Google Scholar]
  106. Cimermancic P, Weinkam P, Rettenmaier TJ, Bichmann L, Keedy DA. 106.  et al. 2016. CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J. Mol. Biol. 428:4709–19 [Google Scholar]
  107. Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. 107.  2014. Modulators of protein-protein interactions. Chem. Rev. 114:94695–748 [Google Scholar]
  108. Aghajan M, Jonai N, Flick K, Fu F, Luo M. 108.  et al. 2010. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat. Biotechnol. 28:7738–42 [Google Scholar]
  109. Park S, Ntai I, Thomas P, Konishcheva E, Kelleher NL, Statsuk AV. 109.  2012. Mechanism-based small molecule cross-linkers of HECT E3 ubiquitin ligase-substrate pairs. Biochemistry 51:428327–29 [Google Scholar]
  110. Landré V, Rotblat B, Melino S, Bernassola F, Melino G. 110.  2014. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 5:187988–8013 [Google Scholar]
  111. Hirota T, Lee JW, St. John PC, Sawa M, Iwaisako K. 111.  et al. 2012. Identification of small molecule activators of cryptochrome. Science 337:60981094–97 [Google Scholar]
  112. Orlicky S, Tang X, Neduva V, Elowe N, Brown ED. 112.  et al. 2010. An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nat. Biotechnol. 28:7733–37 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error