Neurodegenerative diseases are a leading cause of death. No disease-modifying therapies are available, and preclinical animal model data have routinely failed to translate into success for therapeutics. Induced pluripotent stem cell (iPSC) biology holds great promise for human in vitro disease modeling because these cells can give rise to any cell in the human brain and display phenotypes specific to neurodegenerative diseases previously identified in postmortem and clinical samples. Here, we explore the potential and caveats of iPSC technology as a platform for drug development and screening, and the future potential to use large cohorts of disease-bearing iPSCs to perform clinical trials in a dish.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kochanek KD, Murphy SL, Xu J, Arias E. 1.  2014. Mortality in the United States, 2013 Data Brief 178, Natl. Cent. Health Stat., Hyattsville, MD
  2. Jucker M. 2.  2010. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 16:111210–14 [Google Scholar]
  3. Mitsumoto H, Brooks BR, Silani V. 3.  2014. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved?. Lancet Neurol. 13:111127–38 [Google Scholar]
  4. Finkbeiner S. 4.  2010. Bridging the Valley of Death of therapeutics for neurodegeneration. Nat. Med. 16:111227–32 [Google Scholar]
  5. Mason AR, Ziemann A, Finkbeiner S. 5.  2014. Targeting the low-hanging fruit of neurodegeneration. Neurology 83:161470–73 [Google Scholar]
  6. Mattson MP, Magnus T. 6.  2006. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7:4278–94 [Google Scholar]
  7. Brown GC, Neher JJ. 7.  2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 41:2–3242–47 [Google Scholar]
  8. Gusella JF, Macdonald ME, Lee J-M. 8.  2014. Genetic modifiers of Huntington's disease. Mov. Disord. 29:111359–65 [Google Scholar]
  9. Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE. 9.  2014. Improving and accelerating drug development for nervous system disorders. Neuron 84:3546–53 [Google Scholar]
  10. Mattson MP, Rychlik B, You JS, Sisken JE. 10.  1991. Sensitivity of cultured human embryonic cerebral cortical neurons to excitatory amino acid–induced calcium influx and neurotoxicity. Brain Res. 542:197–106 [Google Scholar]
  11. Mertens J, Stüber K, Wunderlich P, Ladewig J, Kesavan JC. 11.  et al. 2013. APP processing in human pluripotent stem cell–derived neurons is resistant to NSAID-based γ-secretase modulation. Stem Cell Rep. 1:6491–98 [Google Scholar]
  12. Matus S, Medinas DB, Hetz C. 12.  2014. Common ground: stem cell approaches find shared pathways underlying ALS. Cell Stem Cell 14:6697–99 [Google Scholar]
  13. Gurney ME. 13.  1994. Transgenic-mouse model of amyotrophic lateral sclerosis. N. Engl. J. Med. 331:251721–22 [Google Scholar]
  14. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A. 14.  et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:3493–506 [Google Scholar]
  15. Li J-Y, Popovic N, Brundin P. 15.  2005. The use of the R6 transgenic mouse models of Huntington's disease in attempts to develop novel therapeutic strategies. NeuroRx 2:3447–64 [Google Scholar]
  16. McGonigle P. 16.  2014. Animal models of CNS disorders. Biochem. Pharmacol. 87:1140–49 [Google Scholar]
  17. Perrin S. 17.  2014. Preclinical research: make mouse studies work. Nature 507:7493423–25 [Google Scholar]
  18. Clabough EBD. 18.  2013. Huntington's disease: the past, present, and future search for disease modifiers. Yale J. Biol. Med. 86:2217–33 [Google Scholar]
  19. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. 19.  2012. Gene expression profiling in human neurodegenerative disease. Nat. Rev. Neurol. 8:9518–30 [Google Scholar]
  20. Winner B, Marchetto MC, Winkler J, Gage FH. 20.  2014. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease. Hum. Mol. Genet. 23:R1R27–34 [Google Scholar]
  21. Jack CR Jr, Holtzman DM. 21.  2013. Biomarker modeling of Alzheimer's disease. Neuron 80:61347–58 [Google Scholar]
  22. Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E. 22.  et al. 2013. Designing drug trials for Alzheimer's disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimer's Dement. 9:4438–44 [Google Scholar]
  23. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ. 23.  et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:53911145–47 [Google Scholar]
  24. Ben-Yosef D, Malcov M, Eiges R. 24.  2008. PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Mol. Cell. Endocrinol. 282:1–2153–58 [Google Scholar]
  25. Frumkin T, Malcov M, Telias M, Gold V, Schwartz T. 25.  et al. 2010. Human embryonic stem cells carrying mutations for severe genetic disorders. In Vitro Cell. Dev. Biol. Anim. 46:3–4327–36 [Google Scholar]
  26. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T. 26.  et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:5861–72 [Google Scholar]
  27. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A. 27.  et al. 2011. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8:5409–12 [Google Scholar]
  28. Coatti GC, Beccari MS, Olávio TR, Mitne-Neto M, Okamoto OK, Zatz M. 28.  2015. Stem cells for amyotrophic lateral sclerosis modeling and therapy: myth or fact?. Cytometry 87:3197–211 [Google Scholar]
  29. Zhang S-C, Wernig M, Duncan ID, Brustle O, Thomson JA. 29.  2001. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19:121129–33 [Google Scholar]
  30. Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C. 30.  2011. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29:6528–34 [Google Scholar]
  31. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y. 31.  et al. 2012. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11:1100–9 [Google Scholar]
  32. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. 32.  2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:72841035–41 [Google Scholar]
  33. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S. 33.  et al. 2011. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:2113–18 [Google Scholar]
  34. Meyer K, Ferraiuolo L, Miranda CJ, Likhite S, McElroy S. 34.  et al. 2014. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. PNAS 111:2829–32 [Google Scholar]
  35. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F. 35.  et al. 2005. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25:194694–705 [Google Scholar]
  36. Hu B-Y, Du Z-W, Zhang S-C. 36.  2009. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat. Protoc. 4:111614–22 [Google Scholar]
  37. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF. 37.  et al. 2013. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 126:3385–99 [Google Scholar]
  38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D. 38.  et al. 2013. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Stem Cell 12:2252–64 [Google Scholar]
  39. Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F. 39.  et al. 2014. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep. 3:4539–47 [Google Scholar]
  40. Shi Y, Kirwan P, Smith J, Robinson HPC, Livesey FJ. 40.  2012. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15:3477–86 [Google Scholar]
  41. Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J. 41.  et al. 2012. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. Sci. Transl. Med. 4:141141ra90 [Google Scholar]
  42. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR. 42.  et al. 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480:7378547–51 [Google Scholar]
  43. Wichterle H, Lieberam I, Porter JA, Jessell TM. 43.  2002. Directed differentiation of embryonic stem cells into motor neurons. Cell 110:3385–97 [Google Scholar]
  44. Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA. 44.  2005. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. 196:2224–34 [Google Scholar]
  45. Giorgio FPD, Boulting GL, Bobrowicz S, Eggan KC. 45.  2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:6637–48 [Google Scholar]
  46. Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL. 46.  2008. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. PNAS 105:4316707–12 [Google Scholar]
  47. Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N. 47.  et al. 2013. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:5573–86 [Google Scholar]
  48. Hu B-Y, Zhang S-C. 48.  2009. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4:91295–304 [Google Scholar]
  49. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. 49.  2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27:3275–80 [Google Scholar]
  50. Qu Q, Li D, Louis KR, Li X, Yang H. 50.  et al. 2014. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat. Commun. 5:3449 [Google Scholar]
  51. Maury Y, Côme J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V. 51.  et al. 2014. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33:186–93 [Google Scholar]
  52. Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M. 52.  et al. 2013. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi myopathy in vitro. PLOS ONE 8:4e61540 [Google Scholar]
  53. Abujarour R, Bennett M, Valamehr B, Lee TT, Robinson M. 53.  et al. 2014. Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl. Med. 3:2149–60 [Google Scholar]
  54. Yasuno T, Osafune K, Sakurai H, Asaka I, Tanaka A. 54.  et al. 2014. Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem. Biophys. Res. Commun. 448:2175–81 [Google Scholar]
  55. Dupuis L, Loeffler JP. 55.  2009. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr. Opin. Pharmacol. 9:3341–46 [Google Scholar]
  56. Dadon-Nachum M, Ben-Yaacov K, Ben-Zur T, Barhum Y, Yaffe D. 56.  et al. 2014. Transplanted modified muscle progenitor cells expressing a mixture of neurotrophic factors delay disease onset and enhance survival in the SOD1 mouse model of ALS. J. Mol. Neurosci. 55:3788–97 [Google Scholar]
  57. Thomson SR, Wishart TM, Patani R, Chandran S, Gillingwater TH. 57.  2012. Using induced pluripotent stem cells (iPSC) to model human neuromuscular connectivity: promise or reality?. J. Anat. 220:2122–30 [Google Scholar]
  58. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y. 58.  et al. 2012. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482:7384216–20 [Google Scholar]
  59. 59. HD iPSC Consortium 2012. Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:2264–78 [Google Scholar]
  60. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J. 60.  et al. 2011. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:3267–80 [Google Scholar]
  61. Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. 61.  2014. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J. Neurosci. 34:2418–33 [Google Scholar]
  62. Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D. 62.  et al. 2013. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56:C355–64 [Google Scholar]
  63. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC. 63.  et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:5796130–33 [Google Scholar]
  64. Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C. 64.  et al. 2013. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. PNAS 110:124697–702 [Google Scholar]
  65. Juopperi TA, Kim W, Chiang C-H, Yu H, Margolis RL. 65.  et al. 2012. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Mol. Brain 5:117 [Google Scholar]
  66. Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL. 66.  et al. 2009. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:7227277–80 [Google Scholar]
  67. Corti S, Nizzardo M, Simone C, Falcone M, Nardini M. 67.  et al. 2012. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl. Med. 4:165165ra162 [Google Scholar]
  68. Sareen D, Ebert AD, Heins BM, McGivern JV, Ornelas L, Svendsen CN. 68.  2012. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLOS ONE 7:6e39113 [Google Scholar]
  69. Chen H, Qian K, Du Z, Cao J, Petersen A. 69.  et al. 2014. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14:6796–809 [Google Scholar]
  70. Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SSW. 70.  et al. 2014. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7:11–11 [Google Scholar]
  71. Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K. 71.  et al. 2012. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4:145145ra104 [Google Scholar]
  72. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS. 72.  et al. 2014. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:3536–43 [Google Scholar]
  73. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 73.  2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:7010805–10 [Google Scholar]
  74. Arrasate M, Finkbeiner S. 74.  2005. Automated microscope system for determining factors that predict neuronal fate. PNAS 102:103840–45 [Google Scholar]
  75. Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ. 75.  et al. 2012. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. PNAS 109:155803–8 [Google Scholar]
  76. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A. 76.  et al. 2014. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10:8677–85 [Google Scholar]
  77. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL. 77.  et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:58581917–20 [Google Scholar]
  78. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y. 78.  et al. 2011. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem. 286:64760–71 [Google Scholar]
  79. Yamanaka S. 79.  2012. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:6678–84 [Google Scholar]
  80. Gore A, Li Z, Fung H-L, Young JE, Agarwal S. 80.  et al. 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature 471:733663–67 [Google Scholar]
  81. Kim K, Doi A, Wen B, Ng K, Zhao R. 81.  et al. 2010. Epigenetic memory in induced pluripotent stem cells. Nature 467:7313285–90 [Google Scholar]
  82. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR. 82.  et al.2104 Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 470:733668–73 [Google Scholar]
  83. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G. 83.  et al. 2011. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:3439–52 [Google Scholar]
  84. Inoue H, Nagata N, Kurokawa H, Yamanaka S. 84.  2014. IPS cells: a game changer for future medicine. EMBO J. 33:5409–17 [Google Scholar]
  85. Sareen D, O'Rourke JG, Meera P, Muhammad AKMG, Grant S. 85.  et al. 2013. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5:208208ra149 [Google Scholar]
  86. Grunseich C, Zukosky K, Kats IR, Ghosh L, Harmison GG. 86.  et al. 2014. Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol. Dis. 70:C12–20 [Google Scholar]
  87. Santostefano KE, Hamazaki T, Biel NM, Jin S, Umezawa A, Terada N. 87.  2014. A practical guide to induced pluripotent stem cell research using patient samples. Lab. Investig. 95:14–13 [Google Scholar]
  88. 88. 1000 Genomes Project Consortium 2010. A map of human genome variation from population-scale sequencing. Nature 467:73191061–73 [Google Scholar]
  89. Gaj T, Gersbach CA, Barbas CF III. 89.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:7397–405 [Google Scholar]
  90. Fong H, Wang C, Knoferle J, Walker D, Balestra ME. 90.  et al. 2013. Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells. Stem Cell Rep. 1:3226–34 [Google Scholar]
  91. Ding Q, Lee Y-K, Schaefer EAK, Peters DT, Veres A. 91.  et al. 2013. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:2238–51 [Google Scholar]
  92. Mandal PK, Ferreira LMR, Collins R, Meissner TB, Boutwell CL. 92.  et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Stem Cell 15:5643–52 [Google Scholar]
  93. Ebert AD, Shelley BC, Hurley AM, Onorati M, Castiglioni V. 93.  et al. 2013. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Res. 10:3417–27 [Google Scholar]
  94. Woodard CM, Campos BA, Kuo S-H, Nirenberg MJ, Nestor MW. 94.  et al. 2014. iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson's disease. Cell Rep. 9:41173–82 [Google Scholar]
  95. Muratore CR, Srikanth P, Callahan DG, Young-Pearse TL. 95.  2014. Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLOS ONE 9:8e105807 [Google Scholar]
  96. Humbert S. 96.  2010. Is Huntington disease a developmental disorder?. EMBO Rep. 11:12899 [Google Scholar]
  97. Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B. 97.  et al. 2013. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:6691–705 [Google Scholar]
  98. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y. 98.  et al. 2013. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:4487–96 [Google Scholar]
  99. Liu G-H, Barkho BZ, Ruiz S, Diep D, Qu J. 99.  et al. 2011. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:7342221–25 [Google Scholar]
  100. Nakano T, Ando S, Takata N, Kawada M, Muguruma K. 100.  et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:6771–85 [Google Scholar]
  101. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS. 101.  et al. 2014. Cerebral organoids model human brain development and microcephaly. Nature 501:7467373–79 [Google Scholar]
  102. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. 102.  2015. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol. 3:2 [Google Scholar]
  103. Solomon S, Pitossi F, Rao MS. 103.  2015. Banking on iPSC—is it doable and is it worthwhile. Stem Cell Rev. Rep. 11:11–10 [Google Scholar]
  104. Studer L, Desbordes SC. 104.  2012. Adapting human pluripotent stem cells to high-throughput and high-content screening. Nat. Protoc. 8:1111–30 [Google Scholar]
  105. Engle SJ, Puppala D. 105.  2013. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12:6669–77 [Google Scholar]
  106. Zanella F, Lorens JB, Link W. 106.  2010. High content screening: Seeing is believing. Trends Biotechnol. 28:5237–45 [Google Scholar]
  107. Rubin LL, Haston KM. 107.  2011. Stem cell biology and drug discovery. BMC Biol. 9:142 [Google Scholar]
  108. Swinney DC, Anthony J. 108.  2011. How were new medicines discovered?. Nat. Rev. Drug Discov. 10:7507–19 [Google Scholar]
  109. Daub A, Sharma P, Finkbeiner S. 109.  2009. High-content screening of primary neurons: ready for prime time. Curr. Opin. Neurobiol. 19:5537–43 [Google Scholar]
  110. Sharma P, Ando DM, Daub A, Kaye JA, Finkbeiner S. 110.  2012. High-throughput screening in primary neurons. Methods Enzymol. 506:331–60 [Google Scholar]
  111. McGivern JV, Ebert AD. 111.  2014. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv. Drug Deliv. Rev. 69–70:C170–78 [Google Scholar]
  112. Engle SJ, Vincent F. 112.  2014. Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J. Biol. Chem. 289:84562–70 [Google Scholar]
  113. Moffat J, Sabatini DM. 113.  2006. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7:3177–87 [Google Scholar]
  114. Edwards BS, Oprea T, Prossnitz ER, Sklar LA. 114.  2004. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 8:4392–98 [Google Scholar]
  115. Sklar L, Carter M, Edwards B. 115.  2007. Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr. Opin. Pharmacol. 7:5527–34 [Google Scholar]
  116. Li F, Yin Z, Jin G, Zhao H, Wong STC. 116.  2013. Chapter 17: bioimage informatics for systems pharmacology. PLOS Comp. Biol. 9:4e1003043 [Google Scholar]
  117. Meijering E, Dzyubachyk O, Smal I. 117.  2012. Methods for cell and particle tracking. Methods Enzymol. 504:183–200 [Google Scholar]
  118. Steward O, Balice-Gordon R. 118.  2014. Rigor or mortis: best practices for preclinical research in neuroscience. Neuron 84:3572–81 [Google Scholar]
  119. Galimberti D, Scarpini E. 119.  2012. Clinical phenotypes and genetic biomarkers of FTLD. J. Neural Transm. 119:7851–60 [Google Scholar]
  120. Finkbeiner S, Frumkin M, Kassner PD. 120.  2015. Cell-based screening: extracting meaning from complex data. Neuron 86:1160–74 [Google Scholar]
  121. Klein JP, Moeschberger ML. 121.  1995. Techniques for censored and truncated data. Lifetime Data Anal. 1:2195–204 [Google Scholar]
  122. Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner S. 122.  2010. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. PNAS 107:3916982–87 [Google Scholar]
  123. Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. 123.  2010. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30:2639–49 [Google Scholar]
  124. Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H. 124.  et al. 2013. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. PNAS 110:5120569–74 [Google Scholar]
  125. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S. 125.  et al. 2014. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515:7526274–78 [Google Scholar]
  126. Zhang QC, Yeh T-L, Leyva A, Frank LG, Miller J. 126.  et al. 2011. A compact model of Huntingtin toxicity. J. Biol. Chem. 286:108188–96 [Google Scholar]
  127. Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R. 127.  et al. 2014. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:6781–95 [Google Scholar]
  128. Mitne-Neto M, Machado-Costa M, Marchetto MCN, Bengtson MH, Joazeiro CA. 128.  et al. 2011. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum. Mol. Genet. 20:183642–52 [Google Scholar]
  129. Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T. 129.  et al. 2013. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and Bulbar muscular atrophy. J. Biol. Chem. 288:128043–52 [Google Scholar]
  130. Cortes CJ, Miranda HC, Frankowski H, Batlevi Y, Young JE. 130.  et al. 2014. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 17:91180–89 [Google Scholar]
  131. Saporta MA, Dang V, Volfson D, Zou B, Xie XS. 131.  et al. 2015. Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp. Neurol. 263:C190–99 [Google Scholar]
  132. Havlicek S, Kohl Z, Mishra HK, Prots I, Eberhardt E. 132.  et al. 2014. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons. Hum. Mol. Genet. 23:102527–41 [Google Scholar]
  133. Denton KR, Lei L, Grenier J, Rodionov V, Blackstone C, Li X-J. 133.  2014. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells 32:2414–23 [Google Scholar]
  134. Johnson-Kerner BL, Ahmad FS, Diaz AG, Greene JP, Gray SJ. 134.  et al. 2015. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum. Mol. Genet. 24:51420–31 [Google Scholar]
  135. Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J. 135.  et al. 2013. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:4909–21 [Google Scholar]
  136. Borchin B, Chen J, Barberi T. 136.  2013. Derivation and FACS-mediated purification of PAX3+/PAX7+skeletal muscle precursors from human pluripotent stem cells. Stem Cell Rep. 1:6620–31 [Google Scholar]
  137. Lancaster MA, Knoblich JA. 137.  2014. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9:102329–40 [Google Scholar]
  138. Carri AD, Onorati M, Lelos MJ, Castiglioni V, Faedo A. 138.  et al. 2012. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140:2301–12 [Google Scholar]
  139. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR. 139.  et al. 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480:7378547–51 [Google Scholar]
  140. Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C. 140.  2011. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29:6528–34 [Google Scholar]
  141. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T. 141.  et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:5861–72 [Google Scholar]
  142. Davis RL, Weintraub H, Lassar AB. 142.  1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:6987–1000 [Google Scholar]
  143. Li W, Jiang K, Ding S. 143.  2012. Concise review: a chemical approach to control cell fate and function. Stem Cells 30:161–68 [Google Scholar]
  144. Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL. 144.  et al. 2011. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 22:2321–32 [Google Scholar]
  145. Caiazzo M, Dell'anno MT, Dvoretskova E, Lazarevic D, Taverna S. 145.  et al. 2011. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:7359224–27 [Google Scholar]
  146. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C. 146.  et al. 2014. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:2311–23 [Google Scholar]
  147. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF. 147.  et al. 2011. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:3205–18 [Google Scholar]
  148. Caiazzo M, Giannelli S, Valente P, Lignani G, Carissimo A. 148.  et al. 2015. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Rep. 4:125–36 [Google Scholar]
  149. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH. 149.  et al. 2013. Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31:5434–39 [Google Scholar]
  150. Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC. 150.  et al. 2011. Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat. Methods 8:11957–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error