1932

Abstract

A resurgence in clinical trials using RNA interference (RNAi) occurred in 2012. Although there were initial difficulties in achieving efficacious results with RNAi without toxic side effects, advances in delivery and improved chemistry made this resurgence possible. More than 20 RNAi-based therapeutics are currently in clinical trials, and several of these are Phase III trials. Continued positive results from these trials have helped bolster further attempts to develop clinically relevant RNAi therapies. With a wide variety of disease targets to choose from, the first RNAi therapeutic to be clinically approved is not far off. This review covers recently established and completed clinical trials.

Keyword(s): clinical trialsdsiRNAmiRNAshRNAsiRNA
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010715-103633
2016-01-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010715-103633.html?itemId=/content/journals/10.1146/annurev-pharmtox-010715-103633&mimeType=html&fmt=ahah

Literature Cited

  1. Samaranayake H, Wirth T, Schenkwein D, Raty JK, Yla-Herttuala S. 1.  2009. Challenges in monoclonal antibody-based therapies. Ann. Med. 41:322–31 [Google Scholar]
  2. Zamore PD, Tuschl T, Sharp PA, Bartel DP. 2.  2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33 [Google Scholar]
  3. Hannon GJ. 3.  2002. RNA interference. Nature 418:244–51 [Google Scholar]
  4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 4.  1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11 [Google Scholar]
  5. Rettig GR, Behlke MA. 5.  2012. Progress toward in vivo use of siRNAs-II. Mol. Ther. 20:483–512 [Google Scholar]
  6. Foged C. 6.  2012. siRNA delivery with lipid-based systems: promises and pitfalls. Curr. Top. Med. Chem. 12:97–107 [Google Scholar]
  7. Noland CL, Doudna JA. 7.  2013. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19:639–48 [Google Scholar]
  8. Snead NM, Rossi JJ. 8.  2012. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic Acid Ther. 22:139–46 [Google Scholar]
  9. Karlsen TA, Brinchmann JE. 9.  2013. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol. Ther. 21:1169–81 [Google Scholar]
  10. Sui H, Zhou M, Chen Q, Lane HC, Imamichi T. 10.  2014. siRNA enhances DNA-mediated interferon λ-1 response through crosstalk between RIG-I and IFI16 signalling pathway. Nucleic Acids Res. 42:583–98 [Google Scholar]
  11. Christensen J, Litherland K, Faller T, van de Kerkhof E, Natt F. 11.  et al. 2014. Biodistribution and metabolism studies of lipid nanoparticle-formulated internally [3H]-labeled siRNA in mice. Drug Metab. Dispos. 42:431–40 [Google Scholar]
  12. Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR. 12.  et al. 2014. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136:16958–61 [Google Scholar]
  13. Kanasty R, Dorkin JR, Vegas A, Anderson D. 13.  2013. Delivery materials for siRNA therapeutics. Nat. Mater. 12:967–77 [Google Scholar]
  14. Wu SY, Lopez-Berestein G, Calin GA, Sood AK. 14.  2014. RNAi therapies: drugging the undruggable. Sci. Trans. Med. 6:240ps7 [Google Scholar]
  15. 15. Arrowhead Res. Corp 2015. ARC-AAT http://www.arrowheadresearch.com/programs/arc-aat [Google Scholar]
  16. Morjaria R, Chong NV. 16.  2014. Pharmacokinetic evaluation of pegaptanib octasodium for the treatment of diabetic edema. Expert Opin. Drug Metab. Toxicol. 10:1185–92 [Google Scholar]
  17. Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B. 17.  et al. 2012. Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers. J. Biol. Eng. 6:7 [Google Scholar]
  18. Garba AO, Mousa SA. 18.  2010. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis. 2:75–83 [Google Scholar]
  19. 19. Sylentis 2013. Zeltia announces that subsidiary Sylentis has commenced Phase II clinical trials with its compound SYL1001 for treating eye discomfort associated with dry eye syndrome News Release, Febr. 27. http://www.sylentis.com/index.php/en/healthcare-professional-news/54-zeltia-informa-que-su-filial-sylentis-inicia-la-fase-ii-de-ensayos-clinicos-con-su-compuesto-syl1001-para-el-tratamie-nto-del-dolor-ocular-asociado-al-sindrome-del-ojo-seco.html [Google Scholar]
  20. Colligris B, Alkozi HA, Pintor J. 20.  2014. Recent developments on dry eye disease treatment compounds. Saudi J. Ophthalmol. 28:19–30 [Google Scholar]
  21. Gonzalez V, Moreno-Montañés J, Sádaba B, Ruz V, Jímenez AI. 21.  SYL1001 for treatment of ocular discomfort in dry eye: safety and tolerance (Phase I study). Investig. Ophthalmol. Vis. Sci. 53:575 (Abstr.) [Google Scholar]
  22. Martinez T, Gonzalez MV, Roehl I, Wright N, Paneda C, Jimenez AI. 22.  2014. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol. Ther. 22:81–91 [Google Scholar]
  23. 23. Quark 2015. PF-655 http://quarkpharma.com/?page_id=28 [Google Scholar]
  24. 24. PR Newswire 2011. In a Phase 2 Study PF-04523655 (RTP801I-14) showed improved vision over standard of care in patients with diabetic macular edema at 12 months News Release, Mar. 18. http://www.prnewswire.com/news-releases/in-a-phase-2-study-pf-04523655-rtp801i-14-showed-improved-vision-over-standard-of-care-in-patients-with-diabetic-macular-edema-at-12-months-118269674.html [Google Scholar]
  25. 25. Quark 2015. QPI-1007 http://quarkpharma.com/?page_id=23 [Google Scholar]
  26. 26. Quark 2014. Quark announces first patient dosed in a Phase IIa trial evaluating QPI-1007 for neuroprotection in patients with acute primary angle closure glaucoma News Release, June 25. http://globenewswire.com/news-release/2014/06/25/646585/10087108/en/Quark-Announces-First-Patient-Dosed-in-a-Phase-IIa-Trial-Evaluating-QPI-1007-for-Neuroprotection-in-Patients-With-Acute-Primary-Angle-Closure-Glaucoma.html [Google Scholar]
  27. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR. 27.  et al. 2014. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, Phase 1 trial. Lancet 383:60–68 [Google Scholar]
  28. 28. Alnylam 2015. Hemophilia http://www.alnylam.com/product-pipeline/hemophilia/ [Google Scholar]
  29. 29. Alnylam 2015. Alnylam reports initial evidence for potential correction of the hemophilia phenotype in Phase 1 study of ALN-AT3, a subcutaneously administered, investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia News Release, Jan. 11. http://investors.alnylam.com/releasedetail.cfm?ReleaseID=890625 [Google Scholar]
  30. Yasuda M, Gan L, Chen B, Kadirvel S, Yu C. 30.  et al. 2014. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. PNAS 111:7777–82 [Google Scholar]
  31. 31. Alnylam 2015. Porphyria http://www.alnylam.com/product-pipeline/porphyria/ [Google Scholar]
  32. 32. Alnylam 2015. Complement-mediated disease http://www.alnylam.com/product-pipeline/complem-ent-mediated-disease/ [Google Scholar]
  33. Borodovsky A, Yuclus K, Sprague A, Banda NK, Holers VM. 33.  et al. 2014. ALN-CC5, an investigational RNAi therapeutic targeting C5 for complement inhibition. Proc. Am. Soc. Hematol., San Francisco, CA, 2014 http://www.alnylam.com/web/assets/ALN-CC5_ASH_Dec2014_panel-by-panel.pdf [Google Scholar]
  34. 34. Alnylam 2015. TTR amyloidosis (FAP) http://www.alnylam.com/product-pipeline/ttr-amyloidosis-fap/ [Google Scholar]
  35. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN. 35.  et al. 2013. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369:819–29 [Google Scholar]
  36. 36. Alnylam 2014. Alnylam reports six-month clinical data from patisiran Phase 2 open-label extension (OLE) study in patients with familial amyloidotic polyneuropathy (FAP). News Release, Oct. 13. http://investors.alnylam.com/releasedetail.cfm?ReleaseID=875724 [Google Scholar]
  37. 37. Alnylam 2015. TTR amyloidosis (FAC) http://www.alnylam.com/product-pipeline/ttr-amyloidosis-fac/ [Google Scholar]
  38. Snead NM, Escamilla-Powers JR, Rossi JJ, McCaffrey AP. 38.  2013. 5′ unlocked nucleic acid modification improves siRNA targeting. Mol. Ther. Nucleic Acids 2:e103 [Google Scholar]
  39. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR. 39.  et al. 2010. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6:862–70 [Google Scholar]
  40. 40. Nitto Denko 2013. Leadership in fibrosis http://www.ndtcorp.com/page/leadership-in-fibrosis [Google Scholar]
  41. 41. Nitto Denko 2014. New anti-fibrosis drug with molecular targeting DDS completed Phase-1a dose escalation News Release, Apr. 22. http://www.nitto.com/jp/en/press/2014/0422.jsp [Google Scholar]
  42. Aihara H, Kumar N, Thompson CC. 42.  2014. Diagnosis, surveillance, and treatment strategies for familial adenomatous polyposis: rationale and update. Eur. J. Gastroenterol. Hepatol. 26:255–62 [Google Scholar]
  43. Steinbach G, Courvalin P, Fruehauf J, Silva A. 43.  2014. Phase I protocol: CEQ508 in FAP CEQ508.FAP.01. http://osp.od.nih.gov/sites/default/files/989_Steinbach_cln.pdf
  44. Marina Biotech. 44.  2015. Marina Biotech provides 2014 year-end financials and update. News Release, Febr. 25. http://www.marinabio.com/files/2414/2483/8505/15-02-25_-_Marina_Biotech_Provides_2014_Year-End_Financials_and_Update.pdf [Google Scholar]
  45. Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL. 45.  et al. 2010. First-in-human mutation-targeted siRNA Phase Ib trial of an inherited skin disorder. Mol. Ther. 18:442–46 [Google Scholar]
  46. 46. Pachyonychia Congenita Project 2013. Clinical trials and studies http://www.pachyonychia.org/clinical_trials_studies.php [Google Scholar]
  47. 47. RXi Pharmaceuticals 2015. RXI-109. http://www.rxipharma.com/rxi-109/
  48. 48. RXi 2014. RXi Pharmaceuticals announces sustained effect of RXI-109 at three months post scar revision surgery and the completion of enrollment for its Phase 2a trial RXI-109–1301 News Release, Dec. 17. http://www.prnewswire.com/news-releases/rxi-pharmaceuticals-announces-sustained-effect-of-rxi-109-at-three-months-post-scar-revision-surgery-and-the-completion-of-enrollment-for-its-phase-2a-trial-rxi-109-1301-300010991.html [Google Scholar]
  49. 49. Apeiron Biologics 2014. APN401 (Cbl-b) http://www.apeiron-biologics.com/index.php/projects/apn401-cbl-b.html [Google Scholar]
  50. Salzberg MO, Lametschwandtner G, Schuster M, Loibner H, Sachet M. 50.  et al. 2014. Development of a personalized cellular ex-vivo CBL-b silencing cancer immune therapy. Proc. 2014 ASCO Annu. Meet., Chicago, IL [Google Scholar]
  51. 51. Apeiron 2015. Apeiron announces start of a Phase I trial with a unique cellular anti cancer therapy triggering immunological checkpoint blockade News Release, Febr. 26. http://prd.at/en/newsroom-clients/apeiron-announces-start-of-a-phase-i-trial-with-a-unique-cellular-anti-cancer-therapy-triggering-immunological-checkpoint-blockade/ [Google Scholar]
  52. Nemunaitis J, Barve M, Orr D, Kuhn J, Magee M. 52.  et al. 2014. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG) in advanced cancer of the liver. Oncology 87:21–29 [Google Scholar]
  53. 53. Gradalis, Inc 2013. FANG™ personalized tumor vaccine stimulates immune response and more than doubles time to recurrence in patients with advanced stage ovarian cancer News Release, May 15. http://www.prnewswire.com/news-releases/fang-personalized-tumor-vaccine-stimulates-immune-response-and-more-than-doubles-time-to-recurrence-in-patients-with-advanced-stage-ovarian-cancer-207530021.html [Google Scholar]
  54. Agostini M, Knight RA. 54.  2014. miR-34: from bench to bedside. Oncotarget 5:872–81 [Google Scholar]
  55. 55. Arbutus 2015. TKM-PLK1 http://arbutusbio.com/portfolio/tkm-plk1.php [Google Scholar]
  56. 56. Arbutus 2014. Tekmira provides update on TKM-PLK1 Phase I/II clinical study in patients with advanced gastrointestinal neuroendocrine tumors and adrenocortical carcinoma News Release, Dec. 31. http://globenewswire.com/news-release/2014/12/31/694562/10113745/en/Tekmira-Provides-Update-on-TKM-PLK1-Phase-I-II-Clinical-Study-in-Patients-With-Advanced-Gastrointes-tinal-Neuroendocrine-Tumors-and-Adrenocortical-Carcinoma.html [Google Scholar]
  57. Rao DD, Maples PB, Senzer N, Kumar P, Wang Z. 57.  et al. 2010. Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther. 17:780–91 [Google Scholar]
  58. Gorovets D, Saif MW, Huber K. 58.  2014. Novel treatment approaches for locally advanced pancreatic cancer. J. Pancreas 15:95–98 [Google Scholar]
  59. Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z. 59.  et al. 2013. Mutant KRAS is a druggable target for pancreatic cancer. PNAS 110:20723–28 [Google Scholar]
  60. Golan T, Hubert A, Shemi A, Segal A, Dancour A. 60.  et al. 2013. A Phase I trial of a local delivery of siRNA against k-ras in combination with chemotherapy for locally advanced pancreatic adenocarcinoma. J. Clin. Oncol. 31:Suppl.4037 (Abstr.) [Google Scholar]
  61. 61. Silenseed 2015. Pipeline: pancreatic cancer http://silenseed.com/?page_id=2539 [Google Scholar]
  62. Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT. 62.  et al. 2005. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65:6910–18 [Google Scholar]
  63. Shen H, Rodriguez-Aguayo C, Xu R, Gonzalez-Villasana V, Mai J. 63.  et al. 2013. Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin. Cancer Res. 19:1806–15 [Google Scholar]
  64. Macron D. 64.  2013. MD Anderson team preps for Phase I testing of RNAi cancer drug. Genome Web. https://www.genomeweb.com/rnai/md-anderson-team-preps-phase-i-testing-rnai-cancer-drug [Google Scholar]
  65. 65. Dicerna 2015. Dicerna Pharmaceuticals announces first patient dosed in Phase 1b/2 clinical trial of DCR-MYC, an investigational RNAi therapeutic targeting the MYC oncogene, in patients with advanced hepatocellular carcinoma News Release, Febr. 2. http://investors.dicerna.com/releasedetail.cfm?releaseid=893991 [Google Scholar]
  66. 66. Dicerna 2014. DCR-MYC and the MYC oncogene http://dicerna.com/pipeline/genetic-oncology/dcr-myc-and-the-myc-oncogene/ [Google Scholar]
  67. Crema A, Ponzetto A, Clementi M, Carloni G. 67.  2015. Steps and routes of HCV infection: the great promise of new anti-viral targets. Curr. Drug Targets 16:7757–70 [Google Scholar]
  68. 68. Benitec Biopharma 2015. In-house programs detail: 1. Hepatitis C. http://www.benitec.com/pipeline/in-house-programs-detail#hepc [Google Scholar]
  69. Gebbing M, Bergmann T, Schulz E, Ehrhardt A. 69.  2015. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J. Hepatol. 7:150–64 [Google Scholar]
  70. 70. Arbutus 2015. TKM-HBV http://arbutusbio.com/portfolio/tkm-hbv.php [Google Scholar]
  71. Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL. 71.  et al. 2013. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 21:973–85 [Google Scholar]
  72. 72. Arrowhead Research 2015. ARC-520 http://www.arrowheadresearch.com/programs/ARC-520 [Google Scholar]
  73. Pol S, Lampertico P. 73.  2012. First-line treatment of chronic hepatitis B with entecavir or tenofovir in ‘real-life’ settings: from clinical trials to clinical practice. J. Viral Hepatitis 19:377–86 [Google Scholar]
  74. 74. Arrowhead Research 2014. Arrowhead files IND for RNAi therapeutic ARC-520 to begin Phase 2b multiple-dose studies in chronic hepatitis B patients News Release, Dec. 15. http://ir.arrowheadresearch.com/releasedetail.cfm?releaseid=887586 [Google Scholar]
  75. 75. Arrowhead Research 2015. Arrowhead provides update on IND for ARC-520 Phase 2b study News Release, Jan. 12. http://ir.arrowheadresearch.com/releasedetail.cfm?releaseid=890676 [Google Scholar]
  76. 76. Arrowhead Research 2014. Arrowhead presents data on ARC-520 and ARC-AAT at AASLD The Liver Meeting® 2014 News Release, Nov. 10. http://ir.arrowheadresearch.com/releasedetail.cfm?releaseid=881791 [Google Scholar]
  77. Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN. 77.  et al. 2010. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375:1896–905 [Google Scholar]
  78. Haussecker D. 78.  2014. Developing aerosolized TKM-EBOLA as airborne transmission of Ebola likely..
  79. 79. Arbutus 2015. Tekmira initiates Phase I clinical trial of TKM-HBV News Release, Jan. 21. http://www.sec.gov/Archives/edgar/data/1447028/000117184315000285/newsrelease.htm [Google Scholar]
  80. 80. Dicerna 2015. EMA grants orphan drug designation to DCR-PH1, Dicerna's investigational therapy for the treatment of primary hyperoxaluria type 1 (PH1) News Release, Aug. 6. http://www.businesswire.com/news/home/20150806006411/en/EMA-Grants-Orphan-Drug-Designation-DCR-PH1-Dicernas#.VgWExN9VhBc [Google Scholar]
  81. 81. Alnylam 2015. Alnylam files clinical trial application (CTA) for ALN-AAT, an investigational RNAi therapeutic for the treatment of alpha-1 antitrypsin deficiency-associated liver disease (alpha-1 liver disease) News Release, May 17. http://investors.alnylam.com/releasedetail.cfm?ReleaseID=913507 [Google Scholar]
  82. 82. Arbutus 2015. Tekmira provides corporate update and announces year-end 2014 results News Release, Mar. 12. http://investor.arbutusbio.com/releasedetail.cfm?ReleaseID=901392 [Google Scholar]
  83. Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ. 83.  et al. 2015. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521:362–65 [Google Scholar]
  84. 84. Arbutus 2015. TKM-Ebola-Guinea enters Phase II clinical study in Sierra Leone News Release, Mar. 11. http://investor.arbutusbio.com/releasedetail.cfm?ReleaseID=901104 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010715-103633
Loading
/content/journals/10.1146/annurev-pharmtox-010715-103633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error