1932

Abstract

Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010715-103801
2016-01-06
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010715-103801.html?itemId=/content/journals/10.1146/annurev-pharmtox-010715-103801&mimeType=html&fmt=ahah

Literature Cited

  1. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B. 1.  et al. 2012. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19:1155–62 [Google Scholar]
  2. Dani JA, Bertrand D. 2.  2007. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47:699–729 [Google Scholar]
  3. Zhang L, Samet J, Caffo B, Punjabi NM. 3.  2006. Cigarette smoking and nocturnal sleep architecture. Am. J. Epidemiol. 164:6529–37 [Google Scholar]
  4. Baghdoyan HA, Lydic R. 4.  1999. M2 muscarinic receptor subtype in the feline medial pontine reticular formation modulates the amount of rapid eye movement sleep. SLEEP 22:7835–47 [Google Scholar]
  5. Nissen C, Power AE, Nofzinger EA, Feige B, Voderholzer U. 5.  et al. 2006. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation. J. Cogn. Neurosci. 18:111799–807 [Google Scholar]
  6. Takahashi K, Kayama Y, Lin JS, Sakai K. 6.  2010. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:31115–26 [Google Scholar]
  7. Jacobs BL, Fornal CA. 7.  1999. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:2 Suppl.9S–15S [Google Scholar]
  8. Takahashi K, Lin J-S, Sakai K. 8.  2006. Neuronal activity of histaminergic tubero-mammillary neurons during wake-sleep states in the mouse. J. Neurosci. 26:4010292–98 [Google Scholar]
  9. Fort P, Luppi PH. 9.  2009. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur. J. Neurosci. 29:91741–53 [Google Scholar]
  10. Lazarus M, Huang Z-L, Lu J, Urade Y, Chen J-F. 10.  2012. How do the basal ganglia regulate sleep-wake behavior?. Trends Neurosci. 35:12723–32 [Google Scholar]
  11. Holst SC, Landolt H-P. 11.  2015. Sleep homeostasis, metabolism, and adenosine. Curr. Sleep Med. Rep. 1:127–37 [Google Scholar]
  12. Qiu MH, Yao QL, Vetrivelan R, Chen MC, Lu J. 12.  2014. Nigrostriatal dopamine acting on globus pallidus regulates sleep. Cereb. Cortex. doi: 10.1093/cercor/bhu241 [Google Scholar]
  13. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. 13.  2007. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 92:1–2210–17 [Google Scholar]
  14. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. 14.  1997. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:53161265–68 [Google Scholar]
  15. Marks GA, Birabil CG. 15.  1998. Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation. Neuroscience 86:129–37 [Google Scholar]
  16. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV. 16.  et al. 2001. An adenosine A2A agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107:4653–63 [Google Scholar]
  17. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. 17.  2005. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:5787–98 [Google Scholar]
  18. Lai Y-Y, Kodama T, Schenkel E, Siegel JM. 18.  2010. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J. Neurophysiol. 104:42024–33 [Google Scholar]
  19. Monti JM, Torterolo P, Lagos P. 19.  2013. Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med. Rev. 17:4293–98 [Google Scholar]
  20. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. 20.  2008. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156:4819–29 [Google Scholar]
  21. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ. 21.  et al. 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16:111637–43 [Google Scholar]
  22. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. 22.  1996. Activation of ventrolateral preoptic neurons during sleep. Science 271:5246216–19 [Google Scholar]
  23. Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. 23.  2002. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J. Physiol. 543:Pt. 2665–77 [Google Scholar]
  24. McGinty DJ, Sterman MB. 24.  1968. Sleep suppression after basal forebrain lesions in the cat. Science 160:38331253–55 [Google Scholar]
  25. Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M. 25.  et al. 2013. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front. Neural Circuits 7:192 [Google Scholar]
  26. Moore RY, Eichler VB. 26.  1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:1201–6 [Google Scholar]
  27. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. 27.  2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4:121165 [Google Scholar]
  28. Berson DM, Dunn FA, Takao M. 28.  2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:55571070–73 [Google Scholar]
  29. Fuller PM, Gooley JJ, Saper CB. 29.  2006. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J. Biol. Rhythms 21:6482–93 [Google Scholar]
  30. Wurts SW, Edgar DM. 30.  2000. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J. Neurosci. 20:114300–10 [Google Scholar]
  31. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. 31.  2011. Melatonin—a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93:3350–84 [Google Scholar]
  32. Gandhi AV, Mosser EA, Oikonomou G, Prober DA. 32.  2015. Melatonin is required for the circadian regulation of sleep. Neuron 85:61193–99 [Google Scholar]
  33. 33. Am. Acad. Sleep Med 2014. The International Classification of Sleep Disorders. Westchester, IL: Am. Acad. Sleep Med., 3rd ed.. [Google Scholar]
  34. Swanson LM, Arnedt JT, Rosekind MR, Belenky G, Balkin TJ, Drake C. 34.  2011. Sleep disorders and work performance: findings from the 2008 National Sleep Foundation Sleep in America poll. J. Sleep Res. 20:3487–94 [Google Scholar]
  35. Hillman DR, Lack LC. 35.  2013. Public health implications of sleep loss: the community burden. Med. J. Aust. 199:8S7–S10 [Google Scholar]
  36. Launois SH, Tamisier R, Lévy P, Pépin J-L. 36.  2013. On treatment but still sleepy: cause and management of residual sleepiness in obstructive sleep apnea. Curr. Opin. Pulm. Med. 19:6601–8 [Google Scholar]
  37. Kumar S, Sagili H. 37.  2014. Etiopathogenesis and neurobiology of narcolepsy: a review. J. Clin. Diagn. Res. 8:2190–95 [Google Scholar]
  38. Lin L, Faraco J, Li R, Kadotani H, Rogers W. 38.  et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:3365–76 [Google Scholar]
  39. Harris SF, Monderer RS, Thorpy M. 39.  2012. Hypersomnias of central origin. Neurol. Clin. 30:41027–44 [Google Scholar]
  40. Gjerstad MD, Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP. 40.  2006. Excessive daytime sleepiness in Parkinson disease: Is it the drugs or the disease?. Neurology 67:5853–58 [Google Scholar]
  41. Carlton R, Lunacsek O, Regan T, Carroll CA. 41.  2014. Healthcare costs among patients with excessive sleepiness associated with obstructive sleep apnea, shift work disorder, or narcolepsy. Am. Health Drug Benefits 7:6334–40 [Google Scholar]
  42. Sousek A, Tafti M. 42.  2015. The genetics of sleep. Sleep Disorders. Oxford Textb. Clin. Neurol. Oxford, UK: Oxford Univ. Press. In press [Google Scholar]
  43. Morin CM, Benca R. 43.  2012. Chronic insomnia. Lancet 379:98211129–41 [Google Scholar]
  44. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. 44.  2015. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 14:5547–58 [Google Scholar]
  45. Buhr A, Bianchi MT, Baur R, Courtet P, Pignay V. 45.  et al. 2002. Functional characterization of the new human GABAA receptor mutation β3(R192H). Hum. Genet. 111:2154–60 [Google Scholar]
  46. Deuschle M, Schredl M, Schilling C, Wüst S, Frank J. 46.  et al. 2010. Association between a serotonin transporter length polymorphism and primary insomnia. SLEEP 33:3343–47 [Google Scholar]
  47. Zanigni S, Calandra-Buonaura G, Grimaldi D, Cortelli P. 47.  2011. REM behaviour disorder and neuro-degenerative diseases. Sleep Med. 12:Suppl. 2S54–S58 [Google Scholar]
  48. Hublin C, Kaprio J, Partinen M, Heikkila K, Koskenvuo M. 48.  1997. Prevalence and genetics of sleepwalking: a population-based twin study. Neurology 48:1177–81 [Google Scholar]
  49. Licis AK, Desruisseau DM, Yamada KA, Duntley SP, Gurnett CA. 49.  2011. Novel genetic findings in an extended family pedigree with sleepwalking. Neurology 76:149–52 [Google Scholar]
  50. Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UFO. 50.  et al. 2005. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. PNAS 102:4315676–81 [Google Scholar]
  51. Mazzotti DR, Guindalini C, de Souza AAL, Sato JR, Santos-Silva R. 51.  et al. 2012. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLOS ONE 7:8e44154 [Google Scholar]
  52. Trenkwalder C, Paulus W. 52.  2010. Restless legs syndrome: pathophysiology, clinical presentation and management. Nat. Rev. Neurol. 6:6337–46 [Google Scholar]
  53. Banerjee D, Vitiello MV, Grunstein RR. 53.  2004. Pharmacotherapy for excessive daytime sleepiness. Sleep Med. Rev. 8:5339–54 [Google Scholar]
  54. Mitler MM, Walsleben J, Sangal RB, Hirshkowitz M. 54.  1998. Sleep latency on the maintenance of wakefulness test (MWT) for 530 patients with narcolepsy while free of psychoactive drugs. Electroencephalogr. Clin. Neurophysiol. 107:133–38 [Google Scholar]
  55. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. 55.  2012. Association of coffee drinking with total and cause-specific mortality. N. Engl. J. Med. 366:201891–904 [Google Scholar]
  56. Mignot EJM. 56.  2012. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 9:4739–52 [Google Scholar]
  57. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. 57.  2001. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21:51787–94 [Google Scholar]
  58. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W. 58.  et al. 2009. Effects of modafinil on dopamine and dopamine transporters in the male human brain. JAMA 301:111148–54 [Google Scholar]
  59. Nittur N, Konofal E, Dauvilliers Y, Franco P, Leu-Semenescu S. 59.  et al. 2013. Mazindol in narcolepsy and idiopathic and symptomatic hypersomnia refractory to stimulants: a long-term chart review. Sleep Med. 14:130–36 [Google Scholar]
  60. Houghton WC, Scammell TE, Thorpy M. 60.  2004. Pharmacotherapy for cataplexy. Sleep Med. Rev. 8:5355–66 [Google Scholar]
  61. Thorpy MJ, Dauvilliers Y. 61.  2015. Clinical and practical considerations in the pharmacologic management of narcolepsy. Sleep Med. 16:19–18 [Google Scholar]
  62. Videnovic A, Noble C, Reid KJ, Peng J, Turek FW. 62.  et al. 2014. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 71:4463–69 [Google Scholar]
  63. Dhillon S, Clarke M. 63.  2014. Tasimelteon: first global approval. Drugs 74:4505–11 [Google Scholar]
  64. Huang Y-S, Guilleminault C. 64.  2009. Narcolepsy: action of two γ-aminobutyric acid type B agonists, baclofen and sodium oxybate. Pediatr. Neurol. 41:19–16 [Google Scholar]
  65. Black SW, Morairty SR, Chen T-M, Leung AK, Wisor JP. 65.  et al. 2014. GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy. J. Neurosci. 34:196485–94 [Google Scholar]
  66. Riemann D, Perlis ML. 66.  2009. The treatments of chronic insomnia: a review of benzodiazepine receptor agonists and psychological and behavioral therapies. Sleep Med. Rev. 13:3205–14 [Google Scholar]
  67. Krystal AD, Richelson E, Roth T. 67.  2013. Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications. Sleep Med. Rev. 17:4263–72 [Google Scholar]
  68. Goforth HW. 68.  2009. Low-dose doxepin for the treatment of insomnia: emerging data. Expert Opin. Pharmacother. 10:101649–55 [Google Scholar]
  69. Schittecatte M, Dumont F, Machowski R, Cornil C, Lavergne F, Wilmotte J. 69.  2002. Effects of mirtazapine on sleep polygraphic variables in major depression. Neuropsychobiology 46:4197–201 [Google Scholar]
  70. Dresler M, Spoormaker VI, Beitinger P, Czisch M, Kimura M. 70.  et al. 2014. Neuroscience-driven discovery and development of sleep therapeutics. Pharmacol. Ther. 141:3300–334 [Google Scholar]
  71. Rudolph U, Möhler H. 71.  2006. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol. 6:118–23 [Google Scholar]
  72. Borbély AA, Mattmann P, Loepfe M, Strauch I, Lehmann D. 72.  1985. Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum. Neurobiol. 4:3189–94 [Google Scholar]
  73. Landolt H-P, Gillin JC. 73.  2000. GABAA1a receptors. CNS Drugs 13:3185–99 [Google Scholar]
  74. Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L. 74.  et al. 2006. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 332:7538385–93 [Google Scholar]
  75. Lemoine P, Zisapel N. 75.  2012. Prolonged-release formulation of melatonin (Circadin) for the treatment of insomnia. Expert Opin. Pharmacother. 13:6895–905 [Google Scholar]
  76. Saxvig IW, Wilhelmsen-Langeland A, Pallesen S, Vedaa Ø, Nordhus IH, Bjorvatn B. 76.  2014. A randomized controlled trial with bright light and melatonin for delayed sleep phase disorder: effects on subjective and objective sleep. Chronobiol. Int. 31:172–86 [Google Scholar]
  77. Rivara S, Pala D, Bedini A, Spadoni G. 77.  2015. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012–2014). Expert Opin. Ther. Pat. 25:4425–41 [Google Scholar]
  78. De Berardis D, Fornaro M, Serroni N, Campanella D, Rapini G. 78.  et al. 2015. Agomelatine beyond borders: current evidences of its efficacy in disorders other than major depression. Int. J. Mol. Sci. 16:11111–30 [Google Scholar]
  79. McGrane IR, Leung JG, St Louis EK, Boeve BF. 79.  2015. Melatonin therapy for REM sleep behavior disorder: a critical review of evidence. Sleep Med. 16:119–26 [Google Scholar]
  80. Benes H, Grote L, Garcia-Borreguero D, Hoegl B, Hopp M. 80.  et al. 2013. Prolonged release oxycodone-naloxone for treatment of severe restless legs syndrome after failure of previous treatment: a double-blind, randomised, placebo-controlled trial with an open-label extension. Lancet Neurol. 12:121141–50 [Google Scholar]
  81. Stocking EM, Letavic MA. 81.  2008. Histamine H3 antagonists as wake-promoting and pro-cognitive agents. Curr. Top. Med. Chem. 8:11988–1002 [Google Scholar]
  82. Lin J-S, Sergeeva OA, Haas HL. 82.  2011. Histamine H3 receptors and sleep-wake regulation. J. Pharmacol. Exp. Ther. 336:117–23 [Google Scholar]
  83. Baier PC, Hallschmid M, Seeck-Hirschner M, Weinhold SL, Burkert S. 83.  et al. 2011. Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med. 12:10941–46 [Google Scholar]
  84. Partin KM. 84.  2015. AMPA receptor potentiators: from drug design to cognitive enhancement. Curr. Opin. Pharmacol. 20:46–53 [Google Scholar]
  85. Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA. 85.  2005. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLOS Biol. 3:9e299 [Google Scholar]
  86. Boyle J, Stanley N, James LM, Wright N, Johnsen S. 86.  et al. 2012. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep. J. Psychopharmacol. 26:81047–57 [Google Scholar]
  87. Zisapel N. 87.  2015. Current Phase II investigational therapies for insomnia. Expert Opin. Investig. Drugs 24:3401–11 [Google Scholar]
  88. Patel KV, Aspesi AV, Evoy KE. 88.  2015. Suvorexant: a dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia. Ann. Pharmacother. 49:4477–83 [Google Scholar]
  89. Hoyer D, Jacobson LH. 89.  2013. Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand?. Neuropeptides 47:6477–88 [Google Scholar]
  90. Monti JM. 90.  2011. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15:4269–81 [Google Scholar]
  91. Landolt H-P, Meier V, Burgess HJ, Finelli LA, Cattelin F. 91.  et al. 1999. Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 21:3455–66 [Google Scholar]
  92. Landolt H-P, Wehrle R. 92.  2009. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood?. Eur. J. Neurosci. 29:91795–809 [Google Scholar]
  93. Spadoni G, Bedini A, Rivara S, Mor M. 93.  2011. Melatonin receptor agonists: new options for insomnia and depression treatment. CNS Neurosci. Ther. 17:6733–41 [Google Scholar]
  94. Lankford DA. 94.  2011. Tasimelteon for insomnia. Expert Opin. Investig. Drugs 20:7987–93 [Google Scholar]
  95. Carocci A, Catalano A, Sinicropi MS. 95.  2014. Melatonergic drugs in development. Clin. Pharmacol. 6:127–37 [Google Scholar]
  96. Zemlan FP, Mulchahey JJ, Scharf MB, Mayleben DW, Rosenberg R, Lankford A. 96.  2005. The efficacy and safety of the melatonin agonist β-methyl-6-chloromelatonin in primary insomnia: a randomized, placebo-controlled, crossover clinical trial. J. Clin. Psychiatry 66:3384–90 [Google Scholar]
  97. Landolt H-P, Dijk D-J. 97.  2015. Genetics and genomic basis of sleep in healthy humans. Principles and Practice of Sleep Medicine MH Kryger, T Roth, pp. 30.1–30.12. St Louis, MO: Elsevier, 6th ed.. [Google Scholar]
  98. Landolt H-P. 98.  2008. Sleep homeostasis: a role for adenosine in humans?. Biochem. Pharmacol. 75:112070–79 [Google Scholar]
  99. Palchykova S, Winsky-Sommerer R, Shen H-Y, Boison D, Gerling A, Tobler I. 99.  2010. Manipulation of adenosine kinase affects sleep regulation in mice. J. Neurosci. 30:3913157–65 [Google Scholar]
  100. Riksen NP, Franke B, van den Broek P, Naber M, Smits P, Rongen GA. 100.  2008. The 22G>A polymorphism in the adenosine deaminase gene impairs catalytic function but does not affect reactive hyperaemia in humans in vivo. Pharmacogenet. Genomics 18:10843–46 [Google Scholar]
  101. Bachmann V, Klaus F, Bodenmann S, Schäfer N, Brugger P. 101.  et al. 2012. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb. Cortex 22:4962–70 [Google Scholar]
  102. Reichert CF, Maire M, Gabel V, Viola AU, Kolodyazhniy V. 102.  et al. 2014. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism. J. Biol. Rhythms 29:2119–30 [Google Scholar]
  103. Landolt H-P, Dijk DJ, Gaus SE, Borbély AA. 103.  1995. Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology 12:3229–38 [Google Scholar]
  104. Chen J-F, Eltzschig HK, Fredholm BB. 104.  2013. Adenosine receptors as drug targets—What are the challenges?. Nat. Rev. Drug Discov. 12:4265–86 [Google Scholar]
  105. Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A. 105.  et al. 2012. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79:7651–58 [Google Scholar]
  106. Roses AD. 106.  2000. Pharmacogenetics and the practice of medicine. Nature 405:6788857–65 [Google Scholar]
  107. Ingelman-Sundberg M. 107.  2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25:4193–200 [Google Scholar]
  108. Evans WE, Relling MV. 108.  1999. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:5439487–91 [Google Scholar]
  109. Zhou S-F, Liu J-P, Chowbay B. 109.  2009. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 41:289–295 [Google Scholar]
  110. Kerb R. 110.  2006. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 234:14–33 [Google Scholar]
  111. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. 111.  1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51:183–133 [Google Scholar]
  112. Gunes A, Dahl M-L. 112.  2008. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9:5625–37 [Google Scholar]
  113. Rasmussen BB, Brix TH, Kyvik KO, Brosen K. 113.  2002. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12:6473–78 [Google Scholar]
  114. Sim SC, Ingelman-Sundberg M. 114.  2010. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum. Genomics 4:4278–81 [Google Scholar]
  115. Sachse C, Brockmöller J, Bauer S, Roots I. 115.  1999. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 47:4445–49 [Google Scholar]
  116. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM. 116.  et al. 2011. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLOS Genet. 7:4e1002033 [Google Scholar]
  117. Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B. 117.  et al. 2011. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption. Hum. Mol. Genet. 20:102071–77 [Google Scholar]
  118. Härtter S, Nordmark A, Rose DM, Bertilsson L, Tybring G, Laine K. 118.  2003. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br. J. Clin. Pharmacol. 56:6679–82 [Google Scholar]
  119. Braam W, van Geijlswijk I, Keijzer H, Smits MG, Didden R, Curfs LMG. 119.  2010. Loss of response to melatonin treatment is associated with slow melatonin metabolism. J. Intellect. Disabil. Res. 54:6547–55 [Google Scholar]
  120. Pandi-Perumal SR, Srinivasan V, Spence DW, Moscovitch A, Hardeland R. 120.  et al. 2009. Ramelteon: a review of its therapeutic potential in sleep disorders. Adv. Ther. 26:6613–26 [Google Scholar]
  121. Kaye CM, Nicholls B. 121.  2000. Clinical pharmacokinetics of ropinirole. Clin. Pharmacokinet. 39:4243–54 [Google Scholar]
  122. Le Nedelec MJ, Rosengren RJ. 122.  2002. Methylphenidate inhibits cytochrome P450 in the Swiss Webster mouse. Hum. Exp. Toxicol. 21:5273–80 [Google Scholar]
  123. Agúndez JAG, García-Martín E, Alonso-Navarro H, Jiménez-Jiménez FJ. 123.  2013. Anti-Parkinson's disease drugs and pharmacogenetic considerations. Expert Opin. Drug Metab. Toxicol. 9:7859–74 [Google Scholar]
  124. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. 124.  2011. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics 12:179–82 [Google Scholar]
  125. Huang Z-L, Qu W-M, Eguchi N, Chen J-F, Schwarzschild MA. 125.  et al. 2005. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8:7858–59 [Google Scholar]
  126. Bodenmann S, Hohoff C, Freitag C, Deckert J, Rétey JV. 126.  et al. 2012. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Brit. J. Pharmacol. 165:61904–13 [Google Scholar]
  127. Rétey JV, Adam M, Khatami R, Luhmann UFO, Jung HH. 127.  et al. 2007. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 81:5692–98 [Google Scholar]
  128. Byrne EM, Johnson J, McRae AF, Nyholt DR, Medland SE. 128.  et al. 2012. A genome-wide association study of caffeine-related sleep disturbance: confirmation of a role for a common variant in the adenosine receptor. SLEEP 35:7967–75 [Google Scholar]
  129. Loy BD, O'Connor PJ, Lindheimer JB. 129.  2015. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. J. Caffeine Res. 5:273–81 [Google Scholar]
  130. Renda G, Committeri G, Zimarino M, Di Nicola M, Tatasciore A. 130.  et al. 2015. Genetic determinants of cognitive responses to caffeine drinking identified from a double-blind, randomized, controlled trial. Eur. Neuropsychopharmacol. 25:6798–807 [Google Scholar]
  131. Lo JC, Groeger JA, Santhi N, Arbon EL, Lázár AS. 131.  et al. 2012. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLOS ONE 7:9e45987 [Google Scholar]
  132. Rétey JV, Adam M, Gottselig JM, Khatami R, Dürr R. 132.  et al. 2006. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. J. Neurosci. 26:4110472–79 [Google Scholar]
  133. Hayaishi O, Urade Y, Eguchi N, Huang ZL. 133.  2004. Genes for prostaglandin D synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of NREM sleep. Arch. Ital. Biol. 142:4533–39 [Google Scholar]
  134. Rupp TL, Wesensten NJ, Newman R, Balkin TJ. 134.  2013. PER3 and ADORA2A polymorphisms impact neurobehavioral performance during sleep restriction. J. Sleep Res. 22:2160–65 [Google Scholar]
  135. Costa A, Riedel M, Müller U, Möller H-J, Ettinger U. 135.  2011. Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta-analysis of human single photon emission computed tomography studies. Synapse 65:10998–1005 [Google Scholar]
  136. Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt H-P. 136.  2014. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J. Neurosci. 34:2566–73 [Google Scholar]
  137. Mazzotti DR, Guindalini C, Pellegrino R, Barrueco KF, Santos-Silva R. 137.  et al. 2011. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. SLEEP 34:3399–402 [Google Scholar]
  138. Froehlich TE, Epstein JN, Nick TG, Melguizo Castro MS, Stein MA. 138.  et al. 2011. Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 50:111129–39.e2 [Google Scholar]
  139. Kereszturi E, Tarnok Z, Bognar E, Lakatos K, Farkas L. 139.  et al. 2008. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am. J. Med. Genet. B 147B:81431–35 [Google Scholar]
  140. Ujike H, Harano M, Inada T, Yamada M, Komiyama T. 140.  et al. 2003. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J. 3:4242–47 [Google Scholar]
  141. Li T, Chen C-K, Hu X, Ball D, Lin S-K. 141.  et al. 2004. Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B:1120–24 [Google Scholar]
  142. Bodenmann S, Xu S, Luhmann UFO, Arand M, Berger W. 142.  et al. 2009. Pharmacogenetics of modafinil after sleep loss: catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep. Clin. Pharmacol. Ther. 85:3296–304 [Google Scholar]
  143. Bodenmann S, Landolt H-P. 143.  2010. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. SLEEP 33:81027–35 [Google Scholar]
  144. Dauvilliers Y, Neidhart E, Tafti M. 144.  2002. Sexual dimorphism of the catechol-O-methyltransferase gene in narcolepsy is associated with response to modafinil. Pharmacogenomics J. 2:165–68 [Google Scholar]
  145. Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Tan E-K, Drozdzik M. 145.  2008. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson's disease, levodopa treatment response, and complications. Pharmacogenet. Genomics 18:9815–21 [Google Scholar]
  146. Droździk M, Białecka M, Kurzawski M. 146.  2013. Pharmacogenetics of Parkinson's disease—through mechanisms of drug actions. Curr. Genomics 14:8568–77 [Google Scholar]
  147. Liu Y-Z, Tang B-S, Yan X-X, Liu J, Ouyang D-S. 147.  et al. 2009. Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson's disease patients. Eur. J. Clin. Pharmacol. 65:7679–83 [Google Scholar]
  148. Arbouw MEL, Movig KLL, Egberts TCG, Poels PJE, van Vugt JPP. 148.  et al. 2009. Clinical and pharmacogenetic determinants for the discontinuation of non-ergoline dopamine agonists in Parkinson's disease. Eur. J. Clin. Pharmacol. 65:121245–51 [Google Scholar]
  149. Akutsu T, Kobayashi K, Sakurada K, Ikegaya H, Furihata T, Chiba K. 149.  2007. Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation. Drug Metab. Dispos 35:172–78 [Google Scholar]
  150. de Leon J, Nikoloff DM. 150.  2008. Paradoxical excitation on diphenhydramine may be associated with being a CYP2D6 ultrarapid metabolizer: three case reports. CNS Spectr. 13:2133–35 [Google Scholar]
  151. Saruwatari J, Matsunaga M, Ikeda K, Nakao M, Oniki K. 151.  et al. 2006. Impact of CYP2D6*10 on H1-antihistamine-induced hypersomnia. Eur. J. Clin. Pharmacol. 62:12995–1001 [Google Scholar]
  152. Kirchheiner J, Meineke I, Müller G, Roots I, Brockmöller J. 152.  2002. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 12:7571–80 [Google Scholar]
  153. Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M. 153.  et al. 2004. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur. J. Clin. Pharmacol. 60:5329–36 [Google Scholar]
  154. Kirchheiner J, Henckel H-B, Meineke I, Roots I, Brockmöller J. 154.  2004. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J. Clin. Psychopharmacol. 24:6647–52 [Google Scholar]
  155. Brockmöller J, Meineke I, Kirchheiner J. 155.  2007. Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin. Pharmacol. Ther. 81:5699–707 [Google Scholar]
  156. Neukamm MA, Vogt S, Hermanns-Clausen M, Naue J, Thierauf A, Auwärter V. 156.  2013. Fatal doxepin intoxication—suicide or slow gradual intoxication?. Forensic Sci. Int. 227:1–382–84 [Google Scholar]
  157. Ramaekers JG, Conen S, de Kam PJ, Braat S, Peeters P. 157.  et al. 2011. Residual effects of esmirtazapine on actual driving performance: overall findings and an exploratory analysis into the role of CYP2D6 phenotype. Psychopharmacology 215:2321–32 [Google Scholar]
  158. Gunja N. 158.  2013. The clinical and forensic toxicology of Z-drugs. J. Med. Toxicol. 9:2155–62 [Google Scholar]
  159. Park J-Y, Kim K-A, Park P-W, Lee O-J, Kang D-K. 159.  et al. 2006. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin. Pharmacol. Ther. 79:6590–99 [Google Scholar]
  160. Qin YP, Xie HG, Wang W, He N, Huang SL. 160.  et al. 1999. Effect of the gene dosage of CYP2C19 on diazepam metabolism in Chinese subjects. Clin. Pharmacol. Ther. 66:6642–46 [Google Scholar]
  161. Shen M, Shi Y, Xiang P. 161.  2013. CYP3A4 and CYP2C19 genetic polymorphisms and zolpidem metabolism in the Chinese Han population: a pilot study. Forensic Sci. Int. 227:1–377–81 [Google Scholar]
  162. Siller N, Egerer G, Weiss J, Mikus G. 162.  2014. Prolonged sedation of lorazepam due to absent UGT2B4/2B7 glucuronidation. Arch. Toxicol. 88:1179–80 [Google Scholar]
  163. Olivera M, Martínez C, Gervasini G, Carrillo JA, Ramos S. 163.  et al. 2007. Effect of common NAT2 variant alleles in the acetylation of the major clonazepam metabolite, 7-aminoclonazepam. Drug Metab. Lett. 1:13–5 [Google Scholar]
  164. Ursing C, Wikner J, Brismar K, Rojdmark S. 164.  2003. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2. J. Endocrinol. Investig. 26:5403–6 [Google Scholar]
  165. Härtter S, Korhonen T, Lundgren S, Rane A, Tolonen A. 165.  et al. 2006. Effect of caffeine intake 12 or 24 hours prior to melatonin intake and CYP1A2*1F polymorphism on CYP1A2 phenotyping by melatonin. Basic Clin. Pharmacol. Toxicol. 99:4300–304 [Google Scholar]
  166. Braam W, Keijzer H, Struijker Boudier H, Didden R, Smits M, Curfs L. 166.  2013. CYP1A2 polymorphisms in slow melatonin metabolisers: a possible relationship with autism spectrum disorder?. J. Intellect. Disabil. Res. 57:11993–1000 [Google Scholar]
  167. Song L, Du Q, Jiang X, Wang L. 167.  2014. Effect of CYP1A2 polymorphism on the pharmacokinetics of agomelatine in Chinese healthy male volunteers. J. Clin. Pharm. Ther. 39:2204–9 [Google Scholar]
  168. Urban TJ, Brown C, Castro RA, Shah N, Mercer R. 168.  et al. 2008. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin. Pharmacol. Ther. 83:3416–21 [Google Scholar]
  169. Xu H, Guan J, Yi H, Yin S. 169.  2014. A systematic review and meta-analysis of the association between serotonergic gene polymorphisms and obstructive sleep apnea syndrome. PLOS ONE 9:1e86460 [Google Scholar]
  170. Kato M, Serretti A. 170.  2010. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry 15:5473–500 [Google Scholar]
  171. Brüss M, Bönisch H, Bühlen M, Nöthen MM, Propping P, Göthert M. 171.  1999. Modified ligand binding to the naturally occurring Cys-124 variant of the human serotonin 5-HT1B receptor. Pharmacogenet. Genomics 9:195 [Google Scholar]
  172. Holmes C, McCulley M, Nicoll JAR, Alder JT, Chen CPLH, Francis PT. 172.  2007. Genetic variation in the 5-HT2A receptor and altered neocortical [3H] ketanserin binding in Alzheimer's disease. Neurosci. Lett. 420:158–60 [Google Scholar]
  173. Kang RH, Choi MJ, Paik JW, Hahn SW. 173.  2007. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int. J. Psychiatry Med. 37:3315–29 [Google Scholar]
  174. Tadić A, Rujescu D, Müller MJ, Kohnen R, Stassen HH. 174.  et al. 2007. A monoamine oxidase B gene variant and short-term antidepressant treatment response. Prog. Neuropsychopharmacol. Biol. Psychiatry 31:71370–77 [Google Scholar]
  175. Tadić A, Müller MJ, Rujescu D, Kohnen R, Stassen HH. 175.  et al. 2007. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B:3325–31 [Google Scholar]
  176. Szegedi A, Rujescu D, Tadic A, Müller MJ, Kohnen R. 176.  et al. 2005. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J. 5:149–53 [Google Scholar]
  177. Lee H-Y, Kang R-H, Paik J-W, Jeong YJ, Chang HS. 177.  et al. 2009. Association of the adrenergic α2a receptor-1291C/G polymorphism with weight change and treatment response to mirtazapine in patients with major depressive disorder. Brain Res. 1262:1–6 [Google Scholar]
  178. Kirchheiner J, Nickchen K, Sasse J, Bauer M. 178.  2007. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J. 7:148–55 [Google Scholar]
  179. Chang HS, Won ES, Lee H-Y, Ham B-J, Kim Y-G, Lee M-S. 179.  2014. Association of ARRB1 polymorphisms with the risk of major depressive disorder and with treatment response to mirtazapine. J. Psychopharmacol. 29:5615–22 [Google Scholar]
  180. Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. 180.  2014. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front. Neurosci. 8:57 [Google Scholar]
  181. Tobler I, Kopp C, Deboer T, Rudolph U. 181.  2001. Diazepam-induced changes in sleep: role of the α1 GABAA receptor subtype. PNAS 98:116464–69 [Google Scholar]
  182. Kopp C, Rudolph U, Low K, Tobler I. 182.  2004. Modulation of rhythmic brain activity by diazepam: GABAA receptor subtype and state specificity. PNAS 101:103674–79 [Google Scholar]
  183. Cope DW, Wulff P, Oberto A, Aller MI, Capogna M. 183.  et al. 2004. Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor γ2 subunit. Neuropharmacology 47:117–34 [Google Scholar]
  184. Hung C-C, Chen P-L, Huang W-M, Tai JJ, Hsieh T-J. 184.  et al. 2013. Gene-wide tagging study of the effects of common genetic polymorphisms in the α subunits of the GABAA receptor on epilepsy treatment response. Pharmacogenomics 14:151849–56 [Google Scholar]
  185. Iwata N, Cowley DS, Radel M, Roy-Byrne PP, Goldman D. 185.  1999. Relationship between a GABAA α6 Pro385Ser substitution and benzodiazepine sensitivity. Am. J. Psychiatry 156:91447–49 [Google Scholar]
  186. Berner J. 186.  2013. Sodium oxybate intolerance associated with familial serum acylcarnitine elevation. J. Clin. Sleep Med. 9:171–72 [Google Scholar]
  187. Ekmekcioglu C. 187.  2006. Melatonin receptors in humans: biological role and clinical relevance. Biomed. Pharmacother. 60:397–108 [Google Scholar]
  188. Karamitri A, Renault N, Clement N, Guillaume J-L, Jockers R. 188.  2013. Minireview: toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol. Endocrinol. 27:81217–33 [Google Scholar]
  189. Park HJ, Park JK, Kim SK, Cho A-R, Kim JW. 189.  et al. 2011. Association of polymorphism in the promoter of the melatonin receptor 1A gene with schizophrenia and with insomnia symptoms in schizophrenia patients. J. Mol. Neurosci. 45:2304–8 [Google Scholar]
  190. Rhodin A, Grönbladh A, Ginya H, Nilsson KW, Rosenblad A. 190.  et al. 2013. Combined analysis of circulating β-endorphin with gene polymorphisms in OPRM1, CACNAD2 and ABCB1 reveals correlation with pain, opioid sensitivity and opioid-related side effects. Mol. Brain 6:18 [Google Scholar]
  191. Deboer T, van Diepen HC, Meijer JH. 191.  2013. Reduced sleep and low adenosinergic sensitivity in Cacna1a R192Q mutant mice. SLEEP 36:1127–36 [Google Scholar]
  192. Byrne EM, Gehrman PR, Medland SE, Nyholt DR, Heath AC. 192.  et al. 2013. A genome-wide association study of sleep habits and insomnia. Am. J. Med. Genet. B 162B:5439–51 [Google Scholar]
  193. Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM. 193.  2013. Replication of genome-wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am. J. Med. Genet. B 162B:5431–38 [Google Scholar]
  194. Maercker A, Perkonigg A, Preisig M, Schaller K, Weller M. 194.  Cost of Disorders of the Brain in Europe Study Group 2013. The costs of disorders of the brain in Switzerland: an update from the European Brain Council Study for 2010. Swiss Med. Wkly. 143:w13751 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010715-103801
Loading
/content/journals/10.1146/annurev-pharmtox-010715-103801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error