1932

Abstract

Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions. However, over time, repeated activation of the ECS by cannabis can trigger neuroadaptations that may impair the sensitivity to stress and reward. This effect, in vulnerable individuals, can lead to addiction and other adverse consequences. The recent shift toward legalization of medical or recreational cannabis has renewed interest in investigating the physiological role of the ECS as well as the potential health effects, both adverse and beneficial, of cannabis. Here we review our current understanding of the ECS and its complex physiological roles. We discuss the implications of this understanding vis-á-vis the ECS's modulation of stress and reward and its relevance to mental disorders in which these processes are disrupted (i.e., addiction, depression, posttraumatic stress disorder, schizophrenia), along with the therapeutic potential of strategies to manipulate the ECS for these conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104615
2017-01-06
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-010716-104615.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104615&mimeType=html&fmt=ahah

Literature Cited

  1. 1. WHO (World Health Organ.). 2016. Management of Substance Abuse Geneva: World Health Organ http://www.who.int/substance_abuse/en/
  2. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V. 2.  et al. 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev. 62:588–631 [Google Scholar]
  3. Burns HD, Van Laere K, Sanabria-Bohórquez S, Hamill TG, Bormans G. 3.  et al. 2007. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. PNAS 104:9800–5 [Google Scholar]
  4. 4. Allen Inst. Brain Sci. 2016. Allen Brain Atlas. Seattle, WA: Allen Inst. http://www.brain-map.org/
  5. Ceccarini J, Kuepper R, Kemels D, van Os J, Henquet C, Van Laere K. 5.  2015. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict. Biol. 20:357–67 [Google Scholar]
  6. Sañudo-Peña MC, Romero J, Seale GE, Fernandez-Ruiz JJ, Walker JM. 6.  2000. Activational role of cannabinoids on movement. Eur. J. Pharmacol. 391:269–74 [Google Scholar]
  7. Bajaj V, Pathak P, Mehrotra S, Singh V, Govil S, Khanna A. 7.  2011. Cannabis induced periodic catatonia: a case report. Int. J. Mental Health Addict. 9:162–64 [Google Scholar]
  8. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D. 8.  et al. 1995. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232:54–61 [Google Scholar]
  9. Rom S, Persidsky Y. 9.  2013. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J. NeuroImmune Pharmacol. 8:608–20 [Google Scholar]
  10. Li Y, Kim J. 10.  2015. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus 26:275–81 [Google Scholar]
  11. García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, Pérez-Ortiz JM, Caltana L. 10a.  et al. 2013. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors.. Neuropharmacology 73:388–96 [Google Scholar]
  12. Li Y, Kim J. 10b.  2016. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016:9817089 [Google Scholar]
  13. Turu G, Hunyady L. 11.  2010. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 44:75–85 [Google Scholar]
  14. Rubino T, Viganò D, Premoli F, Castiglioni C, Bianchessi S. 12.  et al. 2006. Changes in the expression of G protein-coupled receptor kinases and β-arrestins in mouse brain during cannabinoid tolerance: a role for RAS–ERK cascade. Mol. Neurobiol. 33:199–213 [Google Scholar]
  15. Dudok B, Barna L, Ledri M, Szabo SI, Szabadits E. 13.  et al. 2015. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18:75–86 [Google Scholar]
  16. Gyombolai P, Boros E, Hunyady L, Turu G. 14.  2013. Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor. Mol. Cell. Endocrinol. 372:116–27 [Google Scholar]
  17. Khajehali E, Malone DT, Glass M, Sexton PM, Christopoulos A, Leach K. 15.  2015. Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol. Pharmacol. 88:368–79 [Google Scholar]
  18. Laprairie RB, Bagher AM, Kelly ME, Dupré DJ, Denovan-Wright EM. 16.  2014. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J. Biol. Chem. 289:24845–62 [Google Scholar]
  19. Lerner TN, Kreitzer AC. 17.  2012. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 73:347–59 [Google Scholar]
  20. Alger BE, Kim J. 18.  2011. Supply and demand for endocannabinoids. Trends Neurosci. 34:304–15 [Google Scholar]
  21. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D. 19.  et al. 2004. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20:441–58 [Google Scholar]
  22. Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH. 20.  et al. 2010. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13:951–57 [Google Scholar]
  23. Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M. 21.  2012. Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18:119–32 [Google Scholar]
  24. Okamoto Y, Tsuboi K, Ueda N. 22.  2009. Enzymatic formation of anandamide. Vitam. Horm. 81:1–24 [Google Scholar]
  25. Simon GM, Cravatt BF. 23.  2008. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J. Biol. Chem. 283:9341–49 [Google Scholar]
  26. Ohno-Shosaku T, Kano M. 24.  2014. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29:1–8 [Google Scholar]
  27. Ladarre D, Roland AB, Biedzinski S, Ricobaraza A, Lenkei Z. 25.  2014. Polarized cellular patterns of endocannabinoid production and detection shape cannabinoid signaling in neurons. Front. Cell. Neurosci. 8:426 [Google Scholar]
  28. Lee SH, Ledri M, Toth B, Marchionni I, Henstridge CM. 26.  et al. 2015. Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release. J. Neurosci. 35:10039–57 [Google Scholar]
  29. Egertová M, Cravatt BF, Elphick MR. 27.  2003. Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–96 [Google Scholar]
  30. Cristino L, Starowicz K, De Petrocellis L, Morishita J, Ueda N. 28.  et al. 2008. Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience 151:955–68 [Google Scholar]
  31. Ross RA. 29.  2003. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 140:790–801 [Google Scholar]
  32. Shonesy BC, Winder DG, Patel S, Colbran RJ. 30.  2015. The initiation of synaptic 2-AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium. Neuropharmacology 91:57–62 [Google Scholar]
  33. Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A. 31.  et al. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cβ4 signaling cascade in the cerebellum. J. Neurosci. 25:6826–35 [Google Scholar]
  34. Ramikie TS, Nyilas R, Bluett RJ, Gamble-George JC, Hartley ND. 32.  et al. 2014. Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses. Neuron 81:1111–25 [Google Scholar]
  35. Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K. 33.  et al. 2005. Phospholipase Cβ serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–68 [Google Scholar]
  36. Yamasaki M, Matsui M, Watanabe M. 34.  2010. Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. J. Neurosci. 30:4408–18 [Google Scholar]
  37. Ohno-Shosaku T, Shosaku J, Tsubokawa H, Kano M. 35.  2002. Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur. J. Neurosci. 15:953–61 [Google Scholar]
  38. Kim J, Isokawa M, Ledent C, Alger BE. 36.  2002. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J. Neurosci. 22:10182–91 [Google Scholar]
  39. Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K. 37.  et al. 2011. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J. Neurosci. 31:7700–14 [Google Scholar]
  40. Viader A, Blankman JL, Zhong P, Liu X, Schlosburg JE. 38.  et al. 2015. Metabolic interplay between astrocytes and neurons regulates endocannabinoid action. Cell Rep. 12:798–808 [Google Scholar]
  41. Pan B, Wang W, Long JZ, Sun D, Hillard CJ. 39.  et al. 2009. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) enhances retrograde endocannabinoid signaling. J. Pharmacol. Exp. Ther. 331:591–97 [Google Scholar]
  42. Jung KM, Mangieri R, Stapleton C, Kim J, Fegley D. 40.  et al. 2005. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol. Pharmacol. 68:1196–202 [Google Scholar]
  43. Huang GZ, Woolley CS. 41.  2012. Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron 74:801–8 [Google Scholar]
  44. Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW. 42.  2000. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57:1045–50 [Google Scholar]
  45. Smaga I, Bystrowska B, Gawliński D, Pomierny B, Stankowicz P, Filip M. 43.  2014. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. Neurotoxicity Res. 26:190–206 [Google Scholar]
  46. Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F. 44.  et al. 2008. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci. 11:152–59 [Google Scholar]
  47. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG. 45.  et al. 2003. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163:463–68 [Google Scholar]
  48. Jenniches I, Ternes S, Albayram O, Otte DM, Bach K. 46.  et al. 2015. Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol. Psychiatry 79:858–68 [Google Scholar]
  49. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C. 47.  et al. 2010. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30:2017–24 [Google Scholar]
  50. Khlaifia A, Farah H, Gackiere F, Tell F. 48.  2013. Anandamide, cannabinoid type 1 receptor, and NMDA receptor activation mediate non-Hebbian presynaptically expressed long-term depression at the first central synapse for visceral afferent fibers. J. Neurosci. 33:12627–37 [Google Scholar]
  51. Straiker A, Hu SS, Long JZ, Arnold A, Wager-Miller J. 49.  et al. 2009. Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons. Mol. Pharmacol. 76:1220–27 [Google Scholar]
  52. Hohmann AG, Suplita RL II, Bolton NM, Neely MH, Fegley D. 50.  et al. 2005. An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–12 [Google Scholar]
  53. Parsons LH, Hurd YL. 51.  2015. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 16:579–94 [Google Scholar]
  54. Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. 52.  2015. Dissecting the cannabinergic control of behavior: The where matters. BioEssays 37:1215–25 [Google Scholar]
  55. Morena M, Patel S, Bains JS, Hill MN. 53.  2016. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41:80–102 [Google Scholar]
  56. Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL II. 54.  et al. 2012. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-alpha initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J. Neurosci. 32:9457–68 [Google Scholar]
  57. McEwen BS. 55.  2007. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87:873–904 [Google Scholar]
  58. Viana TG, Hott SC, Resstel LB, Aguiar DC, Moreira FA. 56.  2015. Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats. Psychopharmacology 232:1545–53 [Google Scholar]
  59. Gunduz-Cinar O, MacPherson KP, Cinar R, Gamble-George J, Sugden K. 57.  et al. 2013. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 18:813–23 [Google Scholar]
  60. Woodhams SG, Sagar DR, Burston JJ, Chapman V. 58.  2015. The role of the endocannabinoid system in pain. Handb. Exp. Pharmacol. 227:119–43 [Google Scholar]
  61. Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE. 59.  et al. 2007. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10:870–79 [Google Scholar]
  62. Booker L, Kinsey SG, Abdullah RA, Blankman JL, Long JZ. 60.  et al. 2012. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br. J. Pharmacol. 165:2485–96 [Google Scholar]
  63. Romero TR, Resende LC, Guzzo LS, Duarte ID. 61.  2013. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth. Analg. 116:463–72 [Google Scholar]
  64. Lim J, Igarashi M, Jung KM, Butini S, Campiani G, Piomelli D. 62.  2015. Endocannabinoid modulation of predator stress-induced long-term anxiety in rats. Neuropsychopharmacology 41:1329–39 [Google Scholar]
  65. Rácz I, Nent E, Erxlebe E, Zimmer A. 63.  2015. CB1 receptors modulate affective behaviour induced by neuropathic pain. Brain Res. Bull. 114:42–48 [Google Scholar]
  66. Fuss J, Steinle J, Bindila L, Auer MK, Kirchherr H. 64.  et al. 2015. A runner's high depends on cannabinoid receptors in mice. PNAS 112:13105–8 [Google Scholar]
  67. Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. 65.  2014. Mechanisms of exercise-induced hypoalgesia. J. Pain 15:1294–304 [Google Scholar]
  68. Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B. 66.  et al. 2012. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology 37:844–51 [Google Scholar]
  69. Morgan CJA, Page E, Schaefer C, Chatten K, Manocha A. 67.  et al. 2013. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br. J. Psychiatry 202:381–82 [Google Scholar]
  70. Häring M, Enk V, Aparisi Rey A, Loch S, Ruiz de Azua I. 68.  et al. 2015. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability. Front. Behav. Neurosci. 9:235 [Google Scholar]
  71. Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ. 69.  et al. 2011. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31:10506–15 [Google Scholar]
  72. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ. 70.  et al. 2013. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18:1034–40 [Google Scholar]
  73. Pietrzak RH, Huang Y, Corsi-Travali S, Zheng MQ, Lin SF. 71.  et al. 2014. Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors. Neuropsychopharmacology 39:2519–28 [Google Scholar]
  74. Mayer TA, Matar MA, Kaplan Z, Zohar J, Cohen H. 72.  2014. Blunting of the HPA-axis underlies the lack of preventive efficacy of early post-stressor single-dose Delta-9-tetrahydrocannabinol (THC). Pharmacol. Biochem. Behav. 122:307–18 [Google Scholar]
  75. Solinas M, Goldberg SR, Piomelli D. 73.  2008. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 154:369–83 [Google Scholar]
  76. Wang H, Lupica CR. 74.  2014. Release of endogenous cannabinoids from ventral tegmental area dopamine neurons and the modulation of synaptic processes. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 52:24–27 [Google Scholar]
  77. Oleson EB, Beckert MV, Morra JT, Lansink CS, Cachope R. 75.  et al. 2012. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron 73:360–73 [Google Scholar]
  78. Matyas F, Urban GM, Watanabe M, Mackie K, Zimmer A. 76.  et al. 2008. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 54:95–107 [Google Scholar]
  79. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL. 77.  2004. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 24:53–62 [Google Scholar]
  80. Alvarez-Jaimes L, Polis I, Parsons LH. 78.  2008. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 33:2483–93 [Google Scholar]
  81. Riegel AC, Lupica CR. 79.  2004. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24:11070–78 [Google Scholar]
  82. Floresco SB, Blaha CD, Yang CR, Phillips AG. 80.  2001. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J. Neurosci. 21:2851–60 [Google Scholar]
  83. Ward SJ, Dykstra LA. 81.  2005. The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940). Behav. Pharmacol. 16:381–88 [Google Scholar]
  84. Fattore L, Melis M, Fadda P, Pistis M, Fratta W. 82.  2010. The endocannabinoid system and nondrug rewarding behaviours. Exp. Neurol. 224:23–36 [Google Scholar]
  85. Wei D, Lee D, Cox CD, Karsten CA, Peñagarikano O. 83.  et al. 2015. Endocannabinoid signaling mediates oxytocin-driven social reward. PNAS 112:14084–89 [Google Scholar]
  86. Schechter M, Weller A, Pittel Z, Gross M, Zimmer A, Pinhasov A. 84.  2013. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression. J. Neuroendocrinol. 25:898–909 [Google Scholar]
  87. Russo R, D'Agostino G, Mattace Raso G, Avagliano C, Cristiano C. 85.  et al. 2012. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides 38:81–88 [Google Scholar]
  88. Koob GF, Volkow ND. 86.  2010. Neurocircuitry of addiction. Neuropsychopharmacology 35:217–38 [Google Scholar]
  89. Sidhpura N, Parsons LH. 87.  2011. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070–87 [Google Scholar]
  90. Massi L, Elezgarai I, Puente N, Reguero L, Grandes P. 88.  et al. 2008. Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. J. Neurosci. 28:10496–508 [Google Scholar]
  91. Reisiger AR, Kaufling J, Manzoni O, Cador M, Georges F, Caillé S. 89.  2014. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis. J. Neurosci. 34:4285–92 [Google Scholar]
  92. Terzian AL, Drago F, Wotjak CT, Micale V. 90.  2011. The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 5:49 [Google Scholar]
  93. Blume LC, Bass CE, Childers SR, Dalton GD, Roberts DCS. 91.  et al. 2013. Striatal CB1 and D2 receptors regulate expression of each other, CRIP1A and delta opioid systems. J. Neurochem. 124:6808–20 [Google Scholar]
  94. Bergamaschi MM, Queiroz RH, Chagas MH, de Oliveira DC, De Martinis BS. 92.  et al. 2011. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology 36:61219–26 [Google Scholar]
  95. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L. 93.  et al. 2016. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15:3270–78 [Google Scholar]
  96. Volkow ND, Baler RD, Compton WM, Weiss SR. 94.  2014. Adverse health effects of marijuana use. N. Engl. J. Med. 370:2219–27 [Google Scholar]
  97. van der Pol P, Liebregts N, Brunt T, van Amsterdam J, de Graaf R. 95.  et al. 2014. Cross-sectional and prospective relation of cannabis potency, dosing and smoking behaviour with cannabis dependence: an ecological study. Addiction 109:1101–9 [Google Scholar]
  98. Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T. 96.  2014. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat. Rev. Neurosci. 15:786–801 [Google Scholar]
  99. Glass M, Dragunow M, Faull RL. 97.  1997. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318 [Google Scholar]
  100. Romero J, Garcia-Palomero E, Berrendero F, Garcia-Gil L, Hernandez ML. 98.  et al. 1997. Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse 26:317–23 [Google Scholar]
  101. Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F. 99.  et al. 2009. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19:2439–50 [Google Scholar]
  102. Mulder J, Aguado T, Keimpema E, Barabás K, Ballester Rosado CJ. 100.  et al. 2008. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. PNAS 105:8760–65 [Google Scholar]
  103. Keimpema E, Barabás K, Morozov YM, Tortoriello G, Torii M. 101.  et al. 2010. Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J. Neurosci. 30:13992–4007 [Google Scholar]
  104. Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J. 102.  et al. 2007. Hardwiring the brain: Endocannabinoids shape neuronal connectivity. Science 316:1212–16 [Google Scholar]
  105. Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B. 103.  et al. 2005. The endocannabinoid system drives neural progenitor proliferation. FASEB J. 19:1704–6 [Google Scholar]
  106. Saez TMM, Aronne MP, Caltana L, Brusco AH. 104.  2014. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex. J. Neurochem. 129:637–48 [Google Scholar]
  107. Kim D, Thayer SA. 105.  2001. Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. J. Neurosci. 21:RC146 [Google Scholar]
  108. Tortoriello G, Morris CV, Alpar A, Fuzik J, Shirran SL. 106.  et al. 2014. Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 33:668–85 [Google Scholar]
  109. DiNieri JA, Hurd YL. 107.  2012. Rat models of prenatal and adolescent cannabis exposure. Methods Mol. Biol. 829:231–42 [Google Scholar]
  110. DiNieri JA, Wang X, Szutorisz H, Spano SM, Kaur J. 108.  et al. 2011. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70:763–69 [Google Scholar]
  111. Silva L, Harte-Hargrove L, Izenwasser S, Frank A, Wade D, Dow-Edwards D. 108a.  2015. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat. Neurosci. Lett. 602:89–94 [Google Scholar]
  112. Keeley RJ, Trow J, McDonald RJ. 108b.  2015. Strain and sex differences in puberty onset and the effects of THC administration on weight gain and brain volumes. Neuroscience 305:328–42 [Google Scholar]
  113. Cooper ZD, Haney M. 108c.  2016. Sex-dependent effects of cannabis-induced analgesia. Drug Alcohol Depend. 167:112–20 [Google Scholar]
  114. Fogel JS, Kelly TH, Westgate PM, Lile JA. 108d.  2016. Sex differences in the subjective effects of oral Δ9-THC in cannabis users. Pharmacol. Biochem. Behav. In press. https://doi.org/10.1016/j.pbb.2016.01.007
  115. Schneider M, Kasanetz F, Lynch DL, Friemel CM, Lassalle O. 109.  et al. 2015. Enhanced functional activity of the cannabinoid type-1 receptor mediates adolescent behavior. J. Neurosci. 35:13975–88 [Google Scholar]
  116. Hoffman AF, Lupica CR. 110.  2013. Synaptic targets of Δ9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb. Perspect. Med. 3:a012203 [Google Scholar]
  117. Boileau I, Mansouri E, Williams B, Le Foll B, Rusjan P. 112.  et al. 2016. Fatty acid amide hydrolase binding in brain of cannabis users: imaging with the novel radiotracer [11C]CURB.. Biol. Psychiatry. 80:691–701 [Google Scholar]
  118. Iversen L. 111.  2003. Cannabis and the brain. Brain 126:1252–70 [Google Scholar]
  119. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C. 112.  et al. 1991. Cerebellar metabolic activation by delta-9-tetrahydro-cannabinol in human brain: a study with positron emission tomography and 18F-2-fluoro-2-deoxyglucose. Psychiatry Res. 40:69–78 [Google Scholar]
  120. Ramaekers JG, Berghaus G, van Laar M, Drummer OH. 113.  2004. Dose related risk of motor vehicle crashes after cannabis use. Drug Alcohol Depend. 73:109–19 [Google Scholar]
  121. Batalla A, Bhattacharyya S, Yucel M, Fusar-Poli P, Crippa JA. 114.  et al. 2013. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLOS ONE 8:e55821 [Google Scholar]
  122. Yucel M, Solowij N, Respondek C, Whittle S, Fornito A. 115.  et al. 2008. Regional brain abnormalities associated with long-term heavy cannabis use. Arch. Gen. Psychiatry 65:694–701 [Google Scholar]
  123. Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D. 116.  et al. 2011. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J. Psychiatric Res. 45:1055–66 [Google Scholar]
  124. Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. 117.  2012. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. NeuroImage 59:3845–51 [Google Scholar]
  125. Matochik JA, Eldreth DA, Cadet JL, Bolla KI. 118.  2005. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend. 77:23–30 [Google Scholar]
  126. Abel EL. 119.  1971. Marihuana and memory: acquisition or retrieval?. Science 173:1038–40 [Google Scholar]
  127. Miller LL, Cornett TL, Brightwell DR, McFarland DJ, Drew WG, Wikler A. 120.  1977. Marijuana: effects on storage and retrieval of prose material. Psychopharmacology 51:311–16 [Google Scholar]
  128. Volkow ND, Swanson JM, Evins AE, DeLisi LE, Meier MH. 121.  et al. 2016. Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiatry 73:292–97 [Google Scholar]
  129. Ranganathan M, D'Souza DC. 122.  2006. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology 188:425–44 [Google Scholar]
  130. Anthony JC. 123.  2006. The epidemiology of cannabis dependence. Cannabis Dependence: Its Nature, Consequences and Treatment R Roffman, RS Stephens 58–105 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  131. Anthony JC. 124.  2012. Steppingstone and gateway ideas: a discussion of origins, research challenges, and promising lines of research for the future. Drug Alcohol Depend. 123:Suppl. 1S99–104 [Google Scholar]
  132. Hirvonen J, Goodwin RS, Li CT, Terry GE, Zoghbi SS. 125.  et al. 2012. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 17:642–49 [Google Scholar]
  133. Ceccarini J, Hompes T, Verhaeghen A, Casteels C, Peuskens H. 126.  et al. 2014. Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J. Neurosci. 34:2822–31 [Google Scholar]
  134. Neumeister A, Normandin MD, Murrough JW, Henry S, Bailey CR. 127.  et al. 2012. Positron emission tomography shows elevated cannabinoid CB1 receptor binding in men with alcohol dependence. Alcohol. Clin. Exp. Res. 36:2104–9 [Google Scholar]
  135. Gage SH, Hickman M, Zammit S. 128.  2015. Association between cannabis and psychosis: epidemiologic evidence. Biol. Psychiatry 79:549–56 [Google Scholar]
  136. Sales-Carbonell C, Rueda-Orozco PE, Soria-Gómez E, Buzsáki G, Marsicano G, Robbe D. 129.  2013. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. PNAS 110:719–24 [Google Scholar]
  137. den Boon FS, Werkman TR, Schaafsma-Zhao Q, Houthuijs K, Vitalis T. 130.  et al. 2015. Activation of type-1 cannabinoid receptor shifts the balance between excitation and inhibition towards excitation in layer II/III pyramidal neurons of the rat prelimbic cortex. Pflügers Archiv.: Eur. J. Physiol. 467:1551–64 [Google Scholar]
  138. Cortes-Briones J, Skosnik PD, Mathalon D, Cahill J, Pittman B. 131.  et al. 2015. Δ9-THC disrupts gamma (γ)-band neural oscillations in humans. Neuropsychopharmacology 40:2124–34 [Google Scholar]
  139. Morrison PD, Nottage J, Stone JM, Bhattacharyya S, Tunstall N. 132.  et al. 2011. Disruption of frontal theta coherence by Δ9-tetrahydrocannabinol is associated with positive psychotic symptoms. Neuropsychopharmacology 36:827–36 [Google Scholar]
  140. Tzilos GK, Cintron CB, Wood JBR, Simpson NS, Young AD. 133.  et al. 2005. Lack of hippocampal volume change in long-term heavy cannabis users. Am. J. Addict. 14:64–72 [Google Scholar]
  141. Filbey F, Yezhuvath U. 134.  2013. Functional connectivity in inhibitory control networks and severity of cannabis use disorder. Am. J. Drug Alcohol Abuse 39:382–91 [Google Scholar]
  142. Gruber SA, Rogowska J, Yurgelun-Todd DA. 135.  2009. Altered affective response in marijuana smokers: an FMRI study. Drug Alcohol Depend 105:139–53 [Google Scholar]
  143. Liberzon I, Phan KL. 136.  2003. Brain-imaging studies of posttraumatic stress disorder. CNS Spectrums 8:641–50 [Google Scholar]
  144. Taylor SF, Kang J, Brege IS, Tso IF, Hosanagar A, Johnson TD. 137.  2012. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biol. Psychiatry 71:136–45 [Google Scholar]
  145. Bloomfield MAP, Morgan CJA, Egerton A, Kapur S, Curran HV, Howes OD. 138.  2014. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiatry 75:470–78 [Google Scholar]
  146. Bloomfield MAP, Morgan CJA, Kapur S, Curran HV, Howes OD. 139.  2014. The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study. Psychopharmacology 231:2251–59 [Google Scholar]
  147. van de Giessen E, Weinstein JJ, Cassidy CM, Haney M, Dong Z. 140.  et al. 2016. Deficits in striatal dopamine release in cannabis dependence. Mol. Psychiatry. In press. https://doi.org/10.1038/mp.2016.21
  148. Mizrahi R, Kenk M, Suridjan I, Boileau I, George TP. 141.  et al. 2014. Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39:1479–89 [Google Scholar]
  149. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB. 142.  et al. 2010. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatry 67:231–39 [Google Scholar]
  150. Durstewitz D, Seamans JK. 143.  2008. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 64:739–49 [Google Scholar]
  151. Kelley ME, Wan CR, Broussard B, Crisafio A, Cristofaro S. 144.  et al. 2016. Marijuana use in the immediate 5-year premorbid period is associated with increased risk of onset of schizophrenia and related psychotic disorders. Schizophr. Res. 171:1–362–67 [Google Scholar]
  152. van der Meer FJ, Velthorst E, Genet. 145.  Risk Outcome Psychos. (GROUP) Investig 2015. Course of cannabis use and clinical outcome in patients with non-affective psychosis: a 3-year follow-up study. Psychol. Med. 45:91977–88 [Google Scholar]
  153. Volk DW, Eggan SM, Horti AG, Wong DF, Lewis DA. 146.  2014. Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophr. Res. 159:124–29 [Google Scholar]
  154. Ujike H, Morita Y. 147.  2004. New perspectives in the studies on endocannabinoid and cannabis: cannabinoid receptors and schizophrenia. J. Pharmacol. Sci. 96:376–81 [Google Scholar]
  155. Ghosh A, Basu D. 148.  2015. Cannabis and psychopathology: the meandering journey of the last decade. Indian J. Psychiatry 57:140–49 [Google Scholar]
  156. Monteleone P, Bifulco M, Maina G, Tortorella A, Gazzerro P. 149.  et al. 2010. Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol. Res. 61:400–4 [Google Scholar]
  157. Andries A, Frystyk J, Flyvbjerg A, Stoving RK. 150.  2014. Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. Int. J. Eating Disord. 47:18–23 [Google Scholar]
  158. Pacher P, Batkai S, Kunos G. 151.  2006. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58:389–462 [Google Scholar]
  159. Passie T, Emrich HM, Karst M, Brandt SD, Halpern JH. 152.  2012. Mitigation of post-traumatic stress symptoms by Cannabis resin: a review of the clinical and neurobiological evidence. Drug Testing Anal. 4:649–59 [Google Scholar]
  160. Webb CW, Webb SM. 153.  2014. Therapeutic benefits of cannabis: a patient survey. Hawai'i J. Med. Public Health 73:109–11 [Google Scholar]
  161. Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M. 154.  2014. The endocannabinoid/endovanilloid system and depression. Curr. Neuropharmacol. 12:462–74 [Google Scholar]
  162. Suplita RL II, Eisenstein SA, Neely MH, Moise AM, Hohmann AG. 155.  2008. Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia. Neuropharmacology 54:161–71 [Google Scholar]
  163. Beyer CE, Dwyer JM, Piesla MJ, Platt BJ, Shen R. 156.  et al. 2010. Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol. Disease 39:148–55 [Google Scholar]
  164. Kedzior KK, Laeber LT. 157.  2014. A positive association between anxiety disorders and cannabis use or cannabis use disorders in the general population—a meta-analysis of 31 studies. BMC Psychiatry 14:136 [Google Scholar]
  165. Ghosh S, Kinsey SG, Liu QS, Hruba L, McMahon LR. 158.  et al. 2015. Full fatty acid amide hydrolase inhibition combined with partial monoacylglycerol lipase inhibition: augmented and sustained antinociceptive effects with reduced cannabimimetic side effects in mice. J. Pharmacol. Exp. Ther. 354:111–20 [Google Scholar]
  166. 159. US Food Drug Admin. 2016. FDA finds drugs under investigation in the U.S. related to French BIA 10-2474 drug do not pose similar safety risks News Release, Aug. 12. http://www.fda.gov/Drugs/DrugSafety/ucm482740.htm
  167. Dohlman HG. 159.  2015. Thematic Minireview Series: new directions in G protein-coupled receptor pharmacology. J. Biol. Chem. 290:19469–70 [Google Scholar]
  168. Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe M, Ghosh S. 160.  et al. 2015. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 40:2948–59 [Google Scholar]
  169. Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S. 161.  et al. 2014. Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98 [Google Scholar]
  170. Kenakin T, Christopoulos A. 162.  2013. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12:205–16 [Google Scholar]
  171. ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. 163.  2016. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United States. Biol. Psychiatry 79:613–19 [Google Scholar]
  172. Lee HJ, Groshek F, Petrovich GD, Cantalini JP, Gallagher M, Holland PC. 164.  2005. Role of amygdalo-nigral circuitry in conditioning of a visual stimulus paired with food. J. Neurosci. 25:3881–88 [Google Scholar]
  173. Okate K, Nakamura Y. 165.  2000. Possible pathways through which neurons of the shell of the nucleus accumbens influence the outflow of the core of the nucleus accumbens. Brain Dev. 22:Suppl. 1S17–26 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104615
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104615
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error